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Abstract
Cross-lingual word embeddings (CLWE) are
often evaluated on bilingual lexicon induc-
tion (BLI). Recent CLWE methods use linear
projections, which underfit the training dic-
tionary, to generalize on BLI. However, un-
derfitting can hinder generalization to other
downstream tasks that rely on words from the
training dictionary. We address this limitation
by retrofitting CLWE to the training dictionary,
which pulls training translation pairs closer in
the embedding space and overfits the train-
ing dictionary. This simple post-processing
step often improves accuracy on two down-
stream tasks, despite lowering BLI test accu-
racy. We also retrofit to both the training dictio-
nary and a synthetic dictionary induced from
CLWE, which sometimes generalizes even bet-
ter on downstream tasks. Our results confirm
the importance of fully exploiting the training
dictionary in downstream tasks and explains
why BLI is a flawed CLWE evaluation.

1 Introduction

Cross-lingual word embeddings (CLWE) map
words across languages to a shared vector
space. Recent supervised CLWE methods follow a
projection-based pipeline (Mikolov et al., 2013).
Using a training dictionary, a linear projection
maps pre-trained monolingual embeddings to a
multilingual space. While CLWE enable many mul-
tilingual tasks (Klementiev et al., 2012; Guo et al.,
2015; Zhang et al., 2016; Ni et al., 2017), most
recent work only evaluates CLWE on bilingual lexi-
con induction (BLI). Specifically, a set of test words
are translated with a retrieval heuristic (e.g., near-
est neighbor search) and compared against gold
translations. BLI accuracy is easy to compute and
captures the desired property of CLWE that transla-
tion pairs should be close. However, BLI accuracy
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Figure 1: To fully exploit the training dictionary, we
retrofit projection-based CLWE to the training dictio-
nary as a post-processing step (pink parts). To preserve
correctly aligned translations in the original CLWE, we
optionally retrofit to a synthetic dictionary induced
from the original CLWE (orange parts).

does not always correlate with accuracy on down-
stream tasks such as cross-lingual document clas-
sification and dependency parsing (Ammar et al.,
2016; Fujinuma et al., 2019; Glavas et al., 2019).

Let’s think about why that might be. BLI accu-
racy is only computed on test words. Consequently,
BLI hides linear projection’s inability to align all
training translation pairs at once; i.e., projection-
based CLWE underfit the training dictionary. Un-
derfitting does not hurt BLI test accuracy, because
test words are excluded from the training dictio-
nary in BLI benchmarks. However, words from the
training dictionary may be nonetheless predictive
in downstream tasks; e.g., if “good” is in the train-
ing dictionary, knowing its translation is useful for
multilingual sentiment analysis.

In contrast, overfitting the training dictionary
hurts BLI but can improve downstream models.
We show this by adding a simple post-processing
step to projection-based pipelines (Figure 1). After
training supervised CLWE with a projection, we
retrofit (Faruqui et al., 2015) the CLWE to the same
training dictionary. This step pulls training trans-
lation pairs closer and overfits: the updated em-
beddings have perfect BLI training accuracy, but
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BLI test accuracy drops. Empirically, retrofitting
improves accuracy in two downstream tasks other
than BLI, confirming the importance of fully ex-
ploiting the training dictionary.

Unfortunately, retrofitting to the training dictio-
nary may inadvertently push some translation pairs
further away. To balance between fitting the train-
ing dictionary and generalizing on other words, we
explore retrofitting to both the training dictionary
and a synthetic dictionary induced from the CLWE.
Adding the synthetic dictionary keeps some cor-
rectly aligned translations in the original CLWE and
can further improve downstream models by striking
a balance between training and test BLI accuracy.

In summary, our contributions are two-fold.
First, we explain why BLI does not reflect down-
stream task accuracy. Second, we introduce two
post-processing methods to improve downstream
models by fitting the training dictionary better.

2 Limitation of Projection-Based CLWE

This section reviews projection-based CLWE. We
then discuss how BLI evaluation obscures the limi-
tation of projection-based methods.

Let X ∈ Rd×n be a pre-trained d-dimensional
word embedding matrix for a source language,
where each column xi ∈ Rd is the vector for word
i from the source language with vocabulary size n,
and let Z ∈ Rd×m be a pre-trained word embed-
ding matrix for a target language with vocabulary
size m. Projection-based CLWE maps X and Z to a
shared space. We focus on supervised methods that
learn the projection from a training dictionary D
with translation pairs (i, j).

Mikolov et al. (2013) first propose projection-
based CLWE. They learn a linear projection W ∈
Rd×d from X to Z by minimizing distances be-
tween translation pairs in a training dictionary:

min
W

∑︂
(i,j)∈D

∥Wxi − zj∥22. (1)

Recent work improves this method with different
optimization objectives (Dinu et al., 2015; Joulin
et al., 2018), orthogonal constraints on W (Xing
et al., 2015; Artetxe et al., 2016; Smith et al., 2017),
pre-processing (Zhang et al., 2019), and subword
features (Chaudhary et al., 2018; Czarnowska et al.,
2019; Zhang et al., 2020).

Projection-based methods underfit—a linear pro-
jection has limited expressiveness and cannot per-
fectly align all training pairs. Unfortunately, this

weakness is not transparent when using BLI as the
standard evaluation for CLWE, because BLI test sets
omit training dictionary words. However, when the
training dictionary covers words that help down-
stream tasks, underfitting limits generalization to
other tasks. Some BLI benchmarks use frequent
words for training and infrequent words for test-
ing (Mikolov et al., 2013; Conneau et al., 2018).
This mismatch often appears in real-world data, be-
cause frequent words are easier to find in digital
dicitonaries (Czarnowska et al., 2019). Therefore,
training dictionary words are often more important
in downstream tasks than test words.

3 Retrofitting to Dictionaries

To fully exploit the training dictionary, we explore a
simple post-processing step that overfits the dictio-
nary: we first train projection-based CLWE and then
retrofit to the training dictionary (pink parts in Fig-
ure 1). Retrofitting was originally introduced for
refining monolingual word embeddings with syn-
onym constraints from a lexical ontology (Faruqui
et al., 2015). For CLWE, we retrofit using the train-
ing dictionary D as the ontology.

Intuitively, retrofitting pulls translation pairs
closer while minimizing deviation from the orig-
inal CLWE. Let X′ and Z′ be CLWE trained by a
projection-based method, where X′ = WX are
the projected source embeddings and Z′ = Z are
the target embeddings. We learn new CLWE X̂ and
Ẑ by minimizing

L = La + Lb, (2)

where La is the squared distance between the up-
dated CLWE from the original CLWE:

La = α∥X̂−X′∥2 + α∥Ẑ− Z′∥2, (3)

and Lb is the total squared distance between trans-
lations in the dictionary:

Lb =
∑︂

(i,j)∈D

βij∥x̂i − ẑj∥2. (4)

We use the same α and β as Faruqui et al. (2015)
to balance the two objectives.

Retrofitting tends to overfit. If α is zero, mini-
mizing Lb collapses each training pair to the same
vector. Thus, all training pairs are perfectly aligned.
In practice, we use a non-zero α for regularization,
but the updated CLWE still have perfect training
BLI accuracy (Figure 2). If the training dictionary
covers predictive words, we expect retrofitting to
improve downstream task accuracy.
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Figure 2: Train and test accuracy (P@1) for BLI on MUSE; Projection-based CLWE underfit the training dictionary
(gray), but retrofitting to the training dictionary overfits (pink). Adding a synthetic dictionary balances between
training and test accuracy (orange).

3.1 Retrofitting to Synthetic Dictionary

While retrofitting brings pairs in the training dic-
tionary closer, the updates may also separate
translation pairs outside of the dictionary because
retrofitting ignores words outside the training dic-
tionary. This can hurt both BLI test accuracy and
downstream task accuracy. In contrast, projection-
based methods underfit but can discover translation
pairs outside the training dictionary. To keep the
original CLWE’s correct translations, we retrofit to
both the training dictionary and a synthetic dictio-
nary induced from CLWE (orange, Figure 1).

Early work induces dictionaries from CLWE

through nearest-neighbor search (Mikolov et al.,
2013). We instead use cross-domain similarity lo-
cal scaling (Conneau et al., 2018, CSLS), a trans-
lation heuristic more robust to hubs (Dinu et al.,
2015) (a word is the nearest neighbor of many
words). We build a synthetic dictionary D′ with
word pairs that are mutual CSLS nearest neighbors.
We then retrofit the CLWE to a combined dictionary
D ∪ D′. The synthetic dictionary keeps closely
aligned word pairs in the original CLWE, which
sometimes improves downstream models.

4 Experiments

We retrofit three projection-based CLWE to their
training dictionaries and synthetic dictionaries.1

We evaluate on BLI and two downstream tasks.
While retrofitting decreases test BLI accuracy, it
often improves downstream models.

4.1 Embeddings and Dictionaries

We align English embeddings with six target lan-
guages: German (DE), Spanish (ES), French (FR),
Italian (IT), Japanese (JA), and Chinese (ZH). We
use 300-dimensional fastText vectors trained on
Wikipedia and Common Crawl (Grave et al., 2018).
We lowercase all words, only keep the 200K most
frequent words, and apply five rounds of Iterative
Normalization (Zhang et al., 2019).

We use dictionaries from MUSE (Conneau et al.,
2018), a popular BLI benchmark, with standard
splits: train on 5K source word translations and
test on 1.5K words for BLI. For each language,
we train three projection-based CLWE: canonical
correlation analysis (Faruqui and Dyer, 2014, CCA),

1Code at https://go.umd.edu/retro_clwe.

https://go.umd.edu/retro_clwe
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Figure 3: For each CLWE, we report accuracy for document classification (left) and unlabeled attachment score
(UAS) for dependency parsing (right). Compared to the original embeddings (gray), retrofitting to the training
dictionary (pink) improves average downstream task scores, confirming that fully exploiting the training dictionary
helps downstream tasks. Adding a synthetic dictionary (orange) further improves test accuracy in some languages.

Procrustes analysis (Conneau et al., 2018, PROC),
and Relaxed CSLS loss (Joulin et al., 2018, RCSLS).
We retrofit these CLWE to the training dictionary
(pink in figures) and to both the training and the
synthetic dictionary (orange in figures).

In MUSE, words from the training dictionary
have higher frequencies than words from the test
set.2 For example, the most frequent word in the
English-French test dictionary is “torpedo”, while
the training dictionary has translations for frequent
words such as “the” and “good”. As discussed
in §2, more frequent words are likely to be more
salient in downstream tasks, so underfitting these
more frequent training pairs hurts generalization to
downstream tasks.3

4.2 Intrinsic Evaluation: BLI

We first compare BLI accuracy on both training
and test dictionaries (Figure 2). We use CSLS

to translate words with default parameters. The
original projection-based CLWE have the highest
test accuracy but underfit the training dictionary.
Retrofitting to the training dictionary perfectly

2https://github.com/facebookresearch/
MUSE/issues/24

3A pilot study confirms that retrofitting to infrequent word
pairs is less effective.

fits the training dictionary but drops test accuracy.
Retrofitting to the combined dictionary splits the
difference: higher test accuracy but lower train
accuracy. These three modes offer a continuum
between BLI test and training accuracy.

4.3 Extrinsic Evaluation: Downstream Tasks

We compare CLWE on two downstream tasks: doc-
ument classification and dependency parsing. We
fix the embeddng layer of the model to CLWE and
use the zero-shot setting, where a model is trained
in English and evaluated in the target language.

Document Classification Our first downstream
task is document-level classification. We use
MLDoc, a multilingual classification bench-
mark (Schwenk and Li, 2018) using the standard
split with 1K training and 4K test documents. Fol-
lowing Glavas et al. (2019), we use a convolutional
neural network (Kim, 2014). We apply 0.5 dropout
to the final layer, run Adam (Kingma and Ba, 2015)
with default parameters for ten epochs, and report
the average accuracy of ten runs.

Dependency Parsing We also test on depen-
dency parsing, a structured prediction task. We
use Universal Dependencies (Nivre et al., 2019,

https://github.com/facebookresearch/MUSE/issues/24
https://github.com/facebookresearch/MUSE/issues/24
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v2.4) with the standard split. We use the bi-
affine parser (Dozat and Manning, 2017) in Al-
lenNLP (Gardner et al., 2017) with the same hyper-
parameters as Ahmad et al. (2019). To focus on the
influence of CLWE, we remove part-of-speech fea-
tures (Ammar et al., 2016). We report the average
unlabeled attachment score (UAS) of five runs.

Results Although training dictionary retrofitting
lowers BLI test accuracy, it improves both down-
stream tasks’ test accuracy (Figure 3). This con-
firms that over-optimizing the test BLI accuracy can
hurt downstream tasks because training dictionary
words are also important. The synthetic dictionary
further improves downstream models, showing that
generalization to downstream tasks must balance
between BLI training and test accuracy.

Qualitative Analysis As a qualitative example,
coordinations improve after retrofitting to the train-
ing dictionary. For example, in the German sen-
tence “Das Lokal ist sauber, hat einen gemütlichen
‘Raucherraum’ und wird gut besucht”, the bar
(“Das Lokal”) has three properties: it is clean, has
a smoking room, and is popular. However, with-
out retrofitting, the final property “besucht” is con-
nected to “hat” instead of “sauber”; i.e., the final
clause stands on its own. After retrofitting to the
English-German training dictionary, “besucht” is
moved closer to its English translation “visited”
and is correctly parsed as a property of the bar.

5 Related Work

Previous work proposes variants of retrofitting
broadly called semantic specialization methods.
Our pilot experiments found similar trends when
replacing retrofitting with Counter-fitting (Mrkšić
et al., 2016) and Attract-Repel (Mrkšić et al., 2017),
so we focus on retrofitting.

Recent work applies semantic specialization to
CLWE by using multilingual ontologies (Mrkšić
et al., 2017), transferring a monolingual ontology
across languages (Ponti et al., 2019), and asking
bilingual speakers to annotate task-specific key-
words (Yuan et al., 2019). We instead re-use the
training dictionary of the CLWE.

Synthetic dictionaries are previously used to it-
eratively refine a linear projection (Artetxe et al.,
2017; Conneau et al., 2018). These methods still
underfit because of the linear constraint. We in-
stead retrofit to the synthetic dictionary to fit the

training dictionary better while keeping some gen-
eralization power of projection-based CLWE.

Recent work investigates cross-lingual con-
textualized embeddings as an alternative to
CLWE (Eisenschlos et al., 2019; Lample and Con-
neau, 2019; Huang et al., 2019; Wu and Dredze,
2019; Conneau et al., 2020). Our method may
be applicable, as recent work also applies projec-
tions to contextualized embeddings (Aldarmaki and
Diab, 2019; Schuster et al., 2019; Wang et al., 2020;
Wu et al., 2020).

6 Conclusion and Discussion

Popular CLWE methods are optimized for BLI

test accuracy. They underfit the training dictio-
nary, which hurts downstream models. We use
retrofitting to fully exploit the training dictionary.
This post-processing step improves downstream
task accuracy despite lowering BLI test accuracy.
We then add a synthetic dictionary to balance BLI

test and training accuracy, which further helps
downstream models on average.

BLI test accuracy does not always correlate with
downstream task accuracy because words from the
training dictionary are ignored. An obvious fix is
adding training words to the BLI test set. How-
ever, it is unclear how to balance between training
and test words. BLI accuracy assumes that all test
words are equally important, but the importance of
a word depends on the downstream task; e.g., “the”
is irrelevant in document classification but impor-
tant in dependency parsing. Therefore, future work
should focus on downstream tasks instead of BLI.

We focus on retrofitting due to its simplicity.
There are other ways to fit the dictionary better;
e.g., using a non-linear projection such as a neural
network. We leave the exploration of non-linear
projections to future work.
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