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Abstract

We introduce Span-ConveRT, a light-weight
model for dialog slot-filling which frames the
task as a turn-based span extraction task. This
formulation allows for a simple integration of
conversational knowledge coded in large pre-
trained conversational models such as Con-
veRT (Henderson et al., 2019a). We show that
leveraging such knowledge in Span-ConveRT
is especially useful for few-shot learning sce-
narios: we report consistent gains over 1) a
span extractor that trains representations from
scratch in the target domain, and 2) a BERT-
based span extractor. In order to inspire more
work on span extraction for the slot-filling task,
we also release RESTAURANTS-8K, a new
challenging data set of 8,198 utterances, com-
piled from actual conversations in the restau-
rant booking domain.

1 Introduction

Conversational agents are finding success in a wide
range of well-defined tasks such as customer sup-
port, restaurant, train or flight bookings (Hemphill
et al., 1990; Williams, 2012; El Asri et al., 2017,
Budzianowski et al., 2018), language learning
(Raux et al., 2003; Chen et al., 2017), and also in
domains such as healthcare (Laranjo et al., 2018) or
entertainment (Fraser et al., 2018). Scaling conver-
sational agents to support new domains and tasks,
and particular system behaviors is a highly chal-
lenging and resource-intensive task: it critically
relies on expert knowledge and domain-specific
labeled data (Williams, 2014; Wen et al., 2017b,a;
Liu et al., 2018; Zhao et al., 2019).

Slot-filling is a crucial component of any task-
oriented dialog system (Young, 2002, 2010; Belle-
garda, 2014). For instance, a conversational agent
for restaurant bookings must fill all the slots date,

*Both authors contributed equally to the work. The work
of TF was done during an internship at PolyAl.
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time and number of guests with correct values given
by the user (e.g. tomorrow, 8pm, 3 people) in or-
der to proceed with a booking. A particular chal-
lenge is to deploy slot-filling systems in low-data
regimes (i.e., few-shot learning setups), which is
needed to enable quick and wide portability of con-
versational agents. Scarcity of in-domain data has
typically been addressed using domain adaption
from resource-rich domains, e.g. through multi-
task learning (Jaech et al., 2016; Goyal et al., 2018)
or ensembling (Jha et al., 2018; Kim et al., 2019).

In this work, we approach slot-filling as a turn-
based span extraction problem similar to Rastogi
et al. (2019): in our Span-ConveRT model we do
not restrict values to fixed categories, and simulta-
neously allow the model to be entirely independent
of other components in the dialog system. In or-
der to facilitate slot-filling in resource-lean settings,
our main proposal is the effective use of knowledge
coded in representations transferred from large
general-purpose conversational pretraining mod-
els, e.g., the ConveRT model trained on a large
Reddit data set (Henderson et al., 2019a).

To help guide other work on span extraction-
based slot-filling, we also present a new data set
of 8,198 user utterances from a commercial restau-
rant booking system: RESTAURANTS-8K. The data
set spans 5 slots (date, time, people, first name,
last name) and consists of actual user utterances
collected “in the wild”. This comes with a broad
range of natural and colloquial expressions,! as il-
lustrated in Figure 1, which makes it both a natural
and challenging benchmark. Each training example
is a dialog turn annotated with the slots requested
by the system and character-based span indexing
for all occurring values.

As our key findings show, conversational pre-

"For instance, a value for the slot people can either be a
number like 7, or can be expressed fully in natural language,
e.g., me and my husband.
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REQUESTED SLOTS: []

“Can | book a table for me and my husband tonight? Anything free at half nine?”
PEOPLE DATE TIME

REQUESTED SLOTS: []

“Is there a table free in an hour?”
TIME,DATE

REQUESTED SLOTS: [FIRST_NAME, LAST_NAME]

“It's Daniela Levin”
FIRST_NAME LAST_NAME

REQUESTED SLOTS: [PEOPLE]
i

PEOPLE

REQUESTED SLOTS: [TIME]
wn

TIME

Figure 1: Turn-based span extraction with the new
RESTAURANTS-8K data set. Note how the requested
slot feature is needed to differentiate time or party size
in short utterances like “7”. The single-turn examples
are extracted from different conversations.

training is instrumental to span extraction perfor-
mance in few-shot setups. By using subword
representations transferred from ConveRT (Hen-
derson et al., 2019a), we demonstrate that: 1)
our ConveRT-backed span extraction model out-
performs the model based on transferred BERT
representations, and 2) it also yields consistent
gains over a span extraction model trained from
scratch in the target domains, with large gains
reported in few-shot scenarios. We verify both
findings on the new RESTAURANTS-8K data set,
as well as on four DSTC8-based data sets (Ras-
togi et al., 2019). All of the data sets used in

this work are available online at: https://github.

com/PolyAI-LDN/task-specific-datasets.

2 Methodology: Span-ConveRT

Before we delve into describing the core methodol-
ogy, we note that in this work we are not concerned
with the task of normalizing extracted spans to
their actual values: this can be solved effectively
with rule-based systems after the span extraction
step for cases such as times, dates, and party sizes.
There exist hierarchical rule-based parsing engines
(e.g., Duckling) that allow for parsing times and
dates such as “the day after next Tuesday”. Further,
phrases such as “Me and my wife and 2 kids” can
be parsed using singular noun and number counts
in the span with high precision.

Span Extraction for Dialog. We have recently
witnessed increasing interest in intent-restricted ap-
proaches (Coucke et al., 2018; Goo et al., 2018;
Chen et al., 2019) for slot-filling. In this line of
work, slot-filling is treated as a span extraction
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problem where slots are defined to occur only with
certain intents. This solves the issue of complex
categorical modeling but makes slot-filling depen-
dent on an intent detector. Therefore, we propose a
framework that treats slot-filling as a fully intent-
agnostic span extraction problem. Instead of us-
ing rules to constrain the co-occurrence of slots
and intents, we identify a slot as either a single
span of text or entirely absent. This makes our
approach more flexible than prior work; it is fully
independent of other system components. Regard-
less, we can explicitly capture turn-by-turn context
by adding an input feature denoting whether a slot
was requested for this dialog turn (see Figure 1).

Pretrained Representations. Large-scale pre-
trained models have shown compelling benefits
in a plethora of NLP applications (Devlin et al.,
2019; Liu et al., 2019): such models drastically
lessen the amount of required task/domain-specific
training data with in-domain fine-tuning. This is
typically achieved by adding a task-specific output
layer to a large pretrained encoder and then fine-
tuning the entire model (Xie et al., 2019). However,
this process requires a fine-tuned model for each
slot or domain, rather than a single model shared
across all slots and domains. This adds a large
memory and computational overhead and makes
the approach impractical in real-life applications.
Therefore, we propose to keep the pretrained en-
coder models fixed in order to emulate a production
system where a single encoder model is used.

Underlying Representation Model: ConveRT.
ConverRT (Henderson et al., 2019a) is a light-
weight sentence encoder implemented as a dual-
encoder network that models the interaction be-
tween inputs/contexts and relevant (follow-up) re-
sponses. In other words, it performs conversational
pretraining based on response selection on the Red-
dit corpus (Henderson et al., 2019a,b). It utilizes
subword-level tokenization and is very compact
and resource-efficient (i.e. it is S9MB in size and
can be trained in less than 1 day on 12 GPUs) while
achieving state-of-the-art performance on conver-
sational tasks (Casanueva et al., 2020; Bunk et al.,
2020). Through pretrained ConveRT representa-

In other words, we do not fine-tune the parameters of the
pretrained encoders which would require running a separate
encoder for each slot. This would mean, for example, we
would need 100 fine-tuned encoders running in production to
support 100 different slots. As the encoder models have both
high memory and runtime requirements, this would drastically
increase the running costs of a conversational system.


https://github.com/PolyAI-LDN/task-specific-datasets
https://github.com/PolyAI-LDN/task-specific-datasets

tions, we can leverage conversational cues from
over 700M conversational turns for the few-shot
span extraction task.’

Span ConveRT: Final Model. We now describe
our model architecture, illustrated in Figure 2. Our
approach builds on established sequence tagging
models using Conditional Random Fields (CRFs)
(Ma and Hovy, 2016; Lample et al., 2016). We
propose to replace the LSTM part of the model
with fixed ConveRT embeddings.* We take contex-
tualized subword embeddings from ConveRT, giv-
ing a sequence of the same length as the subword-
tokenized sentence. For sequence tagging, we train
a CNN and CRF on top of these fixed subword
representations. We concatenate three binary fea-
tures to the subword representations to emphasize
important textual characteristics: (1) whether the
token is alphanumeric, (2) numeric, or (3) the start
of a new word. In addition, we concatenate the
character length of the token as another integer fea-
ture. To incorporate the requested slots feature, we
concatenate a binary feature representing if the slot
is requested to each embedding in the sequence. To
contextualize the modified embeddings, we apply
a dropout layer followed by a series of 1D convolu-
tions of increasing filter width.

Spans are represented using a sequence of fags,
indicating which members of the subword token
sequence are in the span. We use a tag representa-
tion similar to the IOB format annotating the span
with a sequence of before, begin, inside and after
tags, see Figure 2 for an example.

The distribution of the tag sequence is modeled
with a CRF, whose parameters are predicted by a
CNN that runs over the contextualized subword
embeddings v. At each step ¢, the CNN outputs
a 4 x 4 matrix of transition scores W; and a 4-
dimensional vector of unary potentials u;. The
probability of a predcited tag sequence y is then
modeled as:

T-1
p(y|v) HeXp (Wlye+1, yt) Hexp (ue|ye)
t=1 t=1

The loss is the negative log-likelihood, equal to
minus the sum of the transition scores and unary

3 As we show later in §4, we can also leverage BERT-based
representations in the same span extraction framework, but our
ConveRT-based span extractors result in higher performance.

“LSTM:s are known to be computationally expensive and
require large amounts of resources to obtain any notable suc-
cess (Pascanu et al., 2013). By utilizing ConveRT instead, we
arrive at a much more lightweight and efficient model.
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Figure 2: Span-ConveRT model architecture. Contex-
tual subword embeddings, computed by ConveRT, are
augmented with token features, and fed through a CNN.
The outputs of the CNN parameterise a CRF sequence
model, defining a distribution over sequence tag la-
bellings, using the before, begin, inside, after scheme.
Dashed lines denote CNN kernels.

total

8198
3731

date

1721 (601)
802 (300)

first_name last_name

887 (364) 891 (353)
413 (177) 426 (174)

people time
train 2164 (547) 2164 (547)
dev 983 (244) 853 (276)

Table 1: The number of examples for each slot in the
RESTAURANTS-8K data set. Numbers in brackets show
how many examples have the slot requested.

potentials that correspond to the true tag labels,
up to a normalization term. The top scoring tag
sequences can be computed efficiently using the
Viterbi algorithm.

3 Experimental Setup

New Evaluation Data Set: RESTAURANTS-8K.
Data sets for task-oriented dialog systems typi-
cally annotate slots with exclusively categorical
labels (Budzianowski et al., 2018). While some
data sets such as SNIPS (Coucke et al., 2018) or
ATIS (Tiir et al., 2010) do contain span annota-
tions, they are built with single-utterance voice
commands in mind rather than a natural multi-turn
dialog. To fill this gap and enable more work on
span extraction for dialog, we introduce a new data



Hyperparameter

Dimensionality of the input subword embeddings

Size of minibatches during training

The learning rate for the SGD optimizer

Keep probability of elements in the sub-word embedding

Keep probability of elements in the sub-word feature embeddings

The size of the subword-CNN filters
Width of the subword CNN filters
Activation function for subword CNN

ConveRT BERT Vanilla

512 768 32

16 16 64

0.01 0.01 0.1

0.5 0.9 0.5

0.6 0.6 0.5

(128, 64) (128, 64) (100, 100, 100)
(1,5) (1,5) 8,4,1)

swish swish swish

Table 2: The final hyper-parameters used for different subword representations; swish refers to swish activation

taken from Ramachandran et al. (2017).

Fraction Span-ConveRT V-CNN-CRF Span-BERT

1(8198) 0.96 0.94 0.92
1/2 (4099) 0.95 0.92 0.91
1/4 (2049) 0.93 0.89 0.87
1/8 (1024) 0.90 0.85 0.80
1/16 (512) 0.81 0.75 0.71
1/32 (256) 0.64 0.57 0.47
1/64 (128) 0.55 0.39 0.23
1/128 (64) 0.41 0.26 0.17

Table 3: Average F) scores across all slots for

RESTAURANTS-8K with varying training set fractions.
Numbers in brackets represent training set sizes.

set called RESTAURANTS-8K. It comprises con-
versations from a commercial restaurant booking
system, and covers 5 slots essential for the booking
task: date, time, people, first name, last name. The
data statistics are provided in Table 1.

DSTCS8 Data Sets. The Schema-Guided Dialog
Dataset (SGDD) (Rastogi et al., 2019) released for
DSTCS8 contains span annotations for a subset of
slots. We extract span annotated data sets from
SGDD in four different domains based on their
large variety of slots: (1) bus and coach booking
(labelled Buses_1), (2) buying tickets for events
(Events_l1), (3) property viewing (Homes_1I) and
renting cars (RentalCars_1). A detailed descrip-
tion of the data extraction protocol and the statistics
of the data sets, also released with this paper, are
available in appendix A.

Baseline Models. We compare our proposed

3The data set contains some challenging examples where
multiple values are mentioned, or values are mentioned that
do not pertain to a slot. For example, in the utterance “I said
Spm not 6pm” multiple times are mentioned; in “I called
earlier today” a date is mentioned that is not the day of the
booking. Further, there are noticeable differences compared to
previous data sets such as DSTC8 (Rastogi et al., 2019): e.g.,
while all slots in other datasets which pertained to integers
(e.g. the number of travelers for a coach journey, number of
tickets for an event booking) are modeled categorically (i.e.
all numbers from 1 to 10 are separate classes), we model the
number of people coming for a booking using spans because
people often mention this value indirectly. For example me
and my husband, 3 adults, 4 kids, 2 couples.

110

model with two strong baselines: V-CNN-CRF
is a vanilla approach that uses no pretrained model
and instead learns sub-word representations from
scratch. Span-BERT uses fixed BERT subword
representations. All use the same CNN+CREF ar-
chitecture on top of the subword representations.
For each baseline, we conduct hyper-parameter op-
timization similar to Span-ConveRT: this is done
via grid search and evaluation on the development
set of RESTAURANTS-8K. The final sets of hyper-
parameters are provided in Table 2. Span-BERT
relies on BERT-base, with 12 transformer layers
and 768-dim embeddings. ConveRT uses 6 trans-
former layers with 512-dim embeddings, so it is
roughly 3 times smaller.

Following prior work (Coucke et al., 2018; Ras-
togi et al., 2019), we report the F scores for ex-
tracting the correct span per user utterance. If the
models extract part of the span or a longer span,
this is treated as an incorrect span prediction.

Few-Shot Scenarios. For both data sets, we mea-
sure performance on smaller sets sampled from the
full data. We gradually decrease training sets in
size whilst maintaining the same test set: this pro-
vides insight on performance in low-data regimes.

4 Results and Discussion

The results across all slots are summarized in Ta-
ble 3 for RESTAURANTS-8K, and in Table 4 for
DSTCS. First, we note the usefulness of conversa-
tional pretraining and transferred representations:
Span-ConveRT outperforms the two baselines in al-
most all evaluation runs, and the gain over V-CNN-
CREF directly suggests the importance of transferred
pretrained conversational representations. Second,
we note prominent gains with Span-ConveRT espe-
cially in few-shot scenarios with reduced training
data: e.g., the gap over V-CNN-CRF widens from
0.02 on the full RESTAURANTS-8K training set to
0.15 when using only 64 training examples. Simi-



Fraction Span-ConveRT V-CNN-CRF Span-BERT

Buses_1
1(1133) 0.92 0.93 0.89
12 (566) 0.87 0.83 0.84
1/4 (283) 0.87 0.77 0.80
/8 (141) 0.79 0.71 0.62
116 (70) 0.60 0.53 0.44
Events_1
1 (1498) 0.92 0.92 0.79
12 (749) 0.86 0.84 0.73
14 (374) 0.81 0.77 0.70
/8 (187) 0.65 0.54 0.36
116 (93) 0.66 0.52 0.42
Homes_1
1 (2064) 0.98 0.95 0.97
12 (1032) 0.96 0.90 0.94
/4 (516) 0.95 0.88 0.87
1/ (258) 0.92 0.82 0.80
1116 (129) 0.88 0.69 0.70
RentalCars_1
1(874) 0.91 0.89 0.89
1/ (437) 0.87 0.83 0.82
/4 (218) 0.81 0.69 0.74
18 (109) 0.75 0.59 0.56
1116 (54) 0.62 0.31 0.38

Table 4: Average F) scores on the DSTCS8 single-
domain datasets. A full breakdown of results for each
individual slot is available in appendix B.

lar trends are observed on all four DSTCS subsets.
Again, this indicates that general-purpose conver-
sational knowledge coded in ConveRT can indeed
boost dialog modeling in low-data regimes. If suf-
ficient domain-specific data is available (e.g., see
the results of V-CNN-CRF with full data), learning
domain-specialized representations from scratch
can lead to strong performance, but using trans-
ferred conversational representations seems to be
widely useful and robust.

We also observe consistent gains over Span-
BERT, and weaker performance of Span-BERT
even in comparison to V-CNN-CREF in some runs
(see Table 3). These results indicate that for conver-
sational end-applications such as slot-filling, pre-
training on a conversational task (such as response
selection) is more beneficial than standard language
modeling-based pretraining. Our hypothesis is that
both the vanilla baseline and ConveRT leverage
some “domain adaptation”: ConveRT is trained on
rich conversational data, while the baseline repre-
sentations are learned directly on the training data.
BERT, on the other hand, is not trained on conver-
sational data directly and usually relies on much
longer passages of text. This might not make the
BERT representations suitable for conversational
tasks such as span extraction. Similar findings,
where ConveRT-based conversational representa-
tions outperform BERT-based baselines (even with
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full fine-tuning), have recently been established in
other dialog tasks such as intent detection (Hen-
derson et al., 2019a; Casanueva et al., 2020; Bunk
et al., 2020). In general, our findings also call for
investing more effort in investigating different pre-
training strategies that are better aligned to target
tasks (Mehri et al., 2019; Henderson et al., 2019a;
Humeau et al., 2020).

Error Analysis. To better understand the perfor-
mance of Span-ConveRT on the RESTAURANTS-
8K data set, we also conducted a manual error anal-
ysis, comparing it with the best performing base-
line model, V-CNN-CRF. In Appendix C we lay
out the types of errors that occur in a generic span
extraction task and investigate the distribution of
these types of errors across slots and models. We
show that when trained in the high-data setting the
distribution is similar between the two models, sug-
gesting that gains from Span-ConveRT are across
all types of error. We also show that the distribution
varies more in the low-data setting and discuss how
that might impact their comparative performance in
practice. Additionally, in Appendix D we provide
a qualitative analysis on the errors the two models
make for the slot first name. We show that the base-
line model has a far greater tendency to wrongly
identify generic out-of-vocabulary words as names.

5 Conclusion and Future Work

We have introduced Span-ConveRT, a light-weight
model for dialog slot-filling that approaches the
problem as a turn-based span extraction task. The
formulation allows the model to effectively lever-
age representations available from large-scale con-
versational pretraining. We have shown that, due to
pretrained representations, Span-ConveRT is espe-
cially useful in few-shot learning setups on small
data sets. We have also introduced RESTAURANTS-
8K, a new challenging data set that will hopefully
encourage further work on span extraction for dia-
logue. In future work, we plan to experiment with
multi-domain span extraction architectures.
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A DSTCS Datasets: Data Extraction and
Statistics

As discussed in §3, we extract span annotated
data sets from the Schema Guided Dialog Dataset
(SGDD) in four different domains. SGDD is a
multi-domain data set with each domain consist-
ing of several sub-domains. As the data set has
been built for transfer learning from one domain
to another, many sub-domains only exist in either
the training or development data sets. We are inter-
ested in single-domain dialog, and therefore chose
datasets from four different domains of the origi-
nal dataset: (1) bus and coach booking, (2) buying
tickets for events, (3) property viewing and renting
cars. We select these domains due to their high
number of conversations and their large variety of
slots (e.g. area of city to view an apartment, type
of event to attend, time/date of coach to book). For
each of these domains, we chose their first sub-
domain®, and took all turns from conversations that
stay within this sub-domain. For the requested slots
feature, we check for when the system action of
the turn prior contains a REQUEST action. The train-
ing and development split is kept the same for all
extracted turns. Table 5 shows the resulting data
set sizes for each sub-domain. We are releasing
these filtered single-domain data sets, along with
the code to create them from the original SGDD
data.

SWe refer to them by their corresponding ID in the original
data set: Buses_1, Events_I, Homes_1, RentalCars_1
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Sub-domain Train Size Dev Size Slots

Buses_1 1133 377 from_location (169/54), leaving_date (165/57),
to_location (166/52)
Events_1 1498 521 city_of_event (253/82), date (151/33), subcate-
gory (56/26)
Homes_1 2064 587 area (288/86), visit_date (237/62)
RentalCars_1 874 328 dropoft_date (112/42), pickup_city (116/48),

pickup_date (120/43), pickup_time (119/43)

Table 5: Statistics of the used data sets extracted from the DSTCS8 schema-guided dialog dataset. We also report
the number of examples in the train and development sets for each slot in parentheses.
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B Experimental Results on RESTAURANTS-8K and DSTCS8: F} Scores for Each Slot

Slot Fraction Span-ConveRT V-CNN-CRF Span-BERT
date 1 0.96 0.95 0.92
172 0.95 0.94 0.90
1/4 0.93 0.93 0.86
1/8 0.91 0.88 0.84
1/16 0.86 0.82 0.76
1/32 0.83 0.70 0.62
1/64 0.76 0.64 0.21
1/128 0.58 0.43 0.20
first_name 1 0.97 0.93 0.92
172 0.95 0.92 0.92
1/4 0.93 0.88 0.85
1/8 0.93 0.85 0.82
1/16 0.81 0.65 0.53
1/32 0.54 0.30 0.19
1/64 0.45 0.23 0.02
1/128 0.19 0.09 0.00
last_name 1 0.97 0.92 0.93
12 0.96 0.88 0.92
1/4 0.94 0.83 0.89
1/8 0.90 0.78 0.72
1/16 0.80 0.67 0.71
1/32 0.51 0.45 0.30
1/64 0.33 0.07 0.01
1/128 0.24 0.04 0.00
people 1 0.96 0.95 0.91
172 0.94 0.93 0.90
1/4 0.91 0.92 0.87
1/8 0.88 0.87 0.80
1/16 0.83 0.79 0.79
1/32 0.73 0.63 0.58
1/64 0.68 0.49 0.43
1/128 0.60 0.39 0.29
time 1 0.95 0.95 0.91
172 0.93 0.94 0.89
1/4 0.91 0.91 0.86
1/8 0.88 0.89 0.82
1/16 0.76 0.85 0.76
1/32 0.62 0.76 0.67
1/64 0.53 0.52 0.46
1/128 0.43 0.36 0.37

Table 6: F1 scores for each slot in the Restaurants8k datastet.
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Dataset Slot Fraction ConveRT Reps Vanilla Reps BERT Reps.
Buses_1 from_location 1 0.93 0.94 0.87
12 0.78 0.80 0.75
1/4 0.82 0.77 0.72
1/8 0.71 0.67 0.52
1/16 0.53 0.54 0.35
leaving_date 1 0.96 0.95 0.96
12 1.00 0.88 0.95
1/4 0.96 0.88 0.89
1/8 0.91 0.81 0.72
1/16 0.79 0.61 0.57
to_location 1 0.87 0.89 0.84
172 0.82 0.81 0.81
1/4 0.82 0.65 0.79
1/8 0.75 0.64 0.61
1/16 0.49 0.44 0.38
Events_1 city_of_event 1 0.94 0.94 0.90
172 0.92 0.91 0.85
1/4 0.90 0.80 0.81
1/8 0.74 0.68 0.51
1/16 0.80 0.72 0.58
date 1 0.90 0.88 0.89
12 0.88 0.91 0.91
1/4 0.84 0.83 0.79
1/8 0.74 0.62 0.57
1/16 0.77 0.53 0.68
subcategory 1 0.90 0.94 0.58
172 0.78 0.71 0.42
1/4 0.68 0.70 0.50
1/8 0.46 0.30 0.00
1/16 0.40 0.31 0.00
Homes_1 area 1 0.97 0.98 0.94
172 0.93 0.90 0.90
1/4 0.93 0.87 0.86
1/8 0.87 0.76 0.72
1/16 0.81 0.64 0.56
visit_date 1 0.98 0.93 0.99
12 0.98 0.89 0.98
1/4 0.98 0.88 0.89
1/8 0.96 0.87 0.88
1/16 0.95 0.73 0.83
RentalCars_1 | dropoff_date 1 0.93 0.89 0.88
172 0.89 0.87 0.72
1/4 0.73 0.58 0.70
1/8 0.64 0.71 0.46
1/16 0.62 0.48 0.33
pickup_city 1 0.88 0.84 0.86
12 0.86 0.75 0.85
1/4 0.83 0.65 0.71
1/8 0.74 0.60 0.49
1/16 0.53 0.15 0.10
pickup_date 1 0.86 0.87 0.87
172 0.76 0.74 0.81
1/4 0.74 0.70 0.72
1/8 0.71 0.53 0.58
1/16 0.47 0.26 0.42
pickup_time 1 0.98 0.95 0.95
12 0.98 0.96 091
1/4 0.95 0.81 0.84
1/8 0.91 0.50 0.69
1/16 0.85 0.33 0.68

Table 7: F1 scores for all of the slots in the DSTCS single-domain experiments
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C Quantitative Error Analysis of
Span-ConveRT and V-CNN-CRF on
RESTAURANTS-8K

We divide the errors into four categories:

1. The model predicted no span when there was
a span present.

2. The model predicted a span when no span was
present.

3. The model predicted a span which does not
overlap the label span.

4. The model predicted a span which overlaps
label span.

When training on the full training set (Figure 3),
there is little difference in error breakdown between
Span-ConveRT and V-CNN-CREF. This suggests the
behavior of these models is similar when trained
in a high-data setting, but improvements made by
Span-ConveRT are on all fronts.

When trained on a 16th of the dataset (Figure 4),
the difference between the models becomes more
pronounced. Most notably, the Span-ConveRT
model produces a greater proportion of type 4 er-
rors compared to the V-CNN-CRF model on every
slot. This suggests that the errors Span-ConveRT
makes, although not precisely correct with its span
prediction, are more likely to yield a span that could
parse to a correct value. For example, consider the
sentence “a table for 8pm this evening”. The cor-
rect span for the slot time is "8pm", but if a model
erroneously predicts “8pm this evening” (a span
which overlaps the label span) it will still parse to
the same time as the label span.
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Figure 3: Breakdown of errors made on the test set of RESTAURANTS-8K after training on the entire train set.
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Figure 4: Breakdown of errors made on the test set of RESTAURANTS-8K after training on a 16th of the train set.
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D Qualitative Error Analysis of
Span-ConveRT and V-CNN-CRF on
RESTAURANTS-8K

As an accompaniment to the quantitative results,
we provide a brief qualitative analysis of errors in
the best performing models. Considering only the
first name slot, we collect the errors made on the
test set that are exclusive to each model. That left
10 errors for Span-ConveRT and 50 for V-CNN-
CRF. Along with our analysis based on the full
set of 60 errors, we provide a random sample of 5
errors from each model in Tables 8 and 9.

A large portion of the errors exclusively made
by V-CNN-CRF were predictions of spans where
no name was mentioned. Many words that are
not standard to the domain of restaurant book-
ing were, often confidently, wrongly predicted as
names. For example, in Table 9 we show that
the words “bloody”, “web”, “animal” and “spread”
were all predicted as first names by the baseline
model. Employing transferred conversational repre-
sentations evidently lessens the likelihood of these
forms of errors occurring. Also included in the
table is an example where the baseline model fails
to recognize a name which, when corroborated
with similar occurrences in the wider set of errors,
suggests that it is less likely to predict spans for
out-of-vocabulary names than Span-ConveRT.

As well as backing up the conclusions formed
by our numerical results, we were also interested in
what ways using pretrained representations might
hinder performance. With only 10 errors exclu-
sively made by Span-ConveRT it was not possible
to form any sweeping conclusions but a handful
of errors suggest that the model might employ its
background knowledge to reject unfamiliar first
names or accept familiar ones in spite of the sen-
tence structure suggesting otherwise. For example,
in the first row of Table 8 we find that the model
rejects the name “Wen” despite it being part of a
fairly common exchange for this domain and in
a natural place for a first name. The other exam-
ples demonstrate that the model can sometimes
predict last names as first names and in spite of
contextual cues suggesting otherwise, can do so
over-confidently.

120



Probability  Text/Spans

N/A Books, for 7:15PM, I made a reservation yesterday for a party of 8
0.4447  Saul
0.9685  Adragna
0.9247  last name Prader

0.9553  Verjan

Table 8: Random sample of errors exclusively made by Span-ConveRT for the slot first name. Red text denotes
incorrectly predicted spans and orange denotes true spans that were not predicted.

Probability  Text/Spans

0.8872  bloody useless

0.3939  What is their web URL?

0.3319 ok are you guys animal friendly

0.8604 My 7 friends and I can spread ourselves over two tables if necessary

N/A Hayslett

Table 9: Random sample of errors exclusively made by V-CNN-CREF for the slot first name. Red text denotes
incorrectly predicted spans and orange denotes true spans that were not predicted.
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