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Abstract

In this paper, we introduce TextBrewer, an
open-source knowledge distillation toolkit de-
signed for natural language processing. It
works with different neural network mod-
els and supports various kinds of super-
vised learning tasks, such as text classifica-
tion, reading comprehension, sequence label-
ing. TextBrewer provides a simple and uni-
form workflow that enables quick setting up
of distillation experiments with highly flexible
configurations. It offers a set of predefined dis-
tillation methods and can be extended with cus-
tom code. As a case study, we use TextBrewer
to distill BERT on several typical NLP tasks.
With simple configurations, we achieve results
that are comparable with or even higher than
the public distilled BERT models with similar
numbers of parameters. |

1 Introduction

Large pre-trained language models, such as GPT
(Radford, 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b) and XLNet (Yang
et al., 2019) have achieved great success in many
NLP tasks and greatly contributed to the progress
of NLP research. However, one big issue of these
models is the high demand for computing resources
— they usually have hundreds of millions of param-
eters, and take several gigabytes of memory to train
and inference — which makes it impractical to de-
ploy them on mobile devices or online systems.
From a research point of view, we are tempted
to ask: is it necessary to have such a big model
that contains hundreds of millions of parameters
to achieve a high performance? Motivated by the
above considerations, recently, some researchers
in the NLP community have tried to design lite
models (Lan et al., 2019), or resort to knowledge

'TextBrewer: http://textbrewer.hfl-rc.com
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distillation (KD) technique to compress large pre-
trained models to small models.

KD is a technique of transferring knowledge
from a teacher model to a student model, which is
usually smaller than the teacher. The student model
is trained to mimic the outputs of the teacher model.
Before the birth of BERT, KD had been applied to
several specific tasks like machine translation (Kim
and Rush, 2016; Tan et al., 2019) in NLP. While the
recent studies of distilling large pre-trained mod-
els focus on finding general distillation methods
that work on various tasks and are receiving more
and more attention (Sanh et al., 2019; Jiao et al.,
2019; Sun et al., 2019a; Tang et al., 2019; Liu et al.,
2019a; Clark et al., 2019; Zhao et al., 2019).

Though various distillation methods have been
proposed, they usually share a common workflow:
firstly, train a teacher model, then optimize the stu-
dent model by minimizing some losses that are
calculated between the outputs of the teacher and
the student. Therefore it is desirable to have a
reusable distillation workflow framework and treat
different distillation strategies and tricks as plu-
gins so that they could be easily and arbitrarily
added to the framework. In this way, we could
also achieve great flexibility in experimenting with
different combinations of distillation strategies and
comparing their effects.

In this paper, we introduce TextBrewer, a
PyTorch-based distillation toolkit for NLP that
aims to provide a unified distillation workflow, save
the effort of setting up experiments and help users
to distill more effective models. TextBrewer pro-
vides simple-to-use APIs, a collection of distilla-
tion methods, and highly customizable configura-
tions. It has also been proved able to distill BERT
models efficiently and reproduce the state-of-the-
art results on typical NLP tasks. The main features
of TextBrewer are:
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e Versatility in tasks and models. It works
with a wide range of models, from the RNN-
based model to the transformer-based model, and
works on typical natural language understanding
tasks. Its usability in tasks like text classification,
reading comprehension, and sequence labeling
has been fully tested.

Flexibility in configurations. The distillation
process is configured by configuration objects,
which can be initialized from JSON files and
contain many tunable hyperparameters. Users
can extend the configurations with new custom
losses, schedulers, etc., if the presets do not meet
their requirements.

Including various distillation methods and
strategies. KD has been studied extensively in
computer vision (CV) and has achieved great
success. It would be worthwhile to introduce
these studies to the NLP community as some
of the methods in these studies could also be
applied to texts. TextBrewer includes a set of
methods from both CV and NLP, such as flow of
solution procedure (FSP) matrix loss (Yim et al.,
2017), neuron selectivity transfer (NST) (Huang
and Wang, 2017), probability shift and dynamic
temperature (Wen et al., 2019), attention matrix
loss, multi-task distillation (Liu et al., 2019a). In
our experiments, we will show the effectiveness
of applying methods from CV on NLP tasks.

Being non-intrusive and simple to use. Non-
intrusive means there is no need to modify the
existing code that defines the models. Users
can re-use the most parts of their existing train-
ing scripts, such as model definition and initial-
ization, data preprocessing and task evaluation.
Only some preparatory work (see Section 3.3)
are additionally required to use TextBrewer to
perform the distillation.

TextBrewer also provides some useful utilities
such as model size analysis and data augmentation
to help model design and distillation.

2 Related Work

Recently some distilled BERT models have been
released, such as DistilBERT (Sanh et al., 2019),
TinyBERT (Jiao et al., 2019), and ERNIE Slim?.
DistilBERT performs distillation on the pre-
training task, i.e., masked language modeling.

*https://github.com/PaddlePaddle/ERNIE
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TinyBERT performs transformer distillation at both
the pre-training and task-specific learning stages.
ERNIE Slim distills ERNIE (Sun et al., 2019b,c)on
a sentiment classification task. Their distillation
code is publicly available, and users can replicate
their experiments easily. However, it is laborious
and error-prone to change the distillation method
or adapt the distillation code for some other models
and tasks, since the code is not written for general
distillation purposes.

There also exist some libraries for general model
compression. Distiller (Zmora et al., 2018) and
PaddleSlim? are two versatile libraries supporting
pruning, quantization and knowledge distillation.
They focus on models and tasks in computer vision.
In comparison, TextBrewer is more focused on
knowledge distillation on NLP tasks, more flexible,
and offers more functionalities. Based on PyTorch,
It provides simple APIs and rich customization for
fast and clean implementations of experiments.

3 Architecture and Design

Figure 1 shows an overview of the main function-
alities and architecture of TextBrewer. To support
different models and different tasks and meanwhile
stay flexible and extensible, TextBrewer provides
distillers to conduct the actual experiments and con-
figuration classes to configure the behaviors of the
distillers.

3.1 Distillers

Distillers are the cores of TextBrewer. They
automatically train and save models and sup-
port custom evaluation functions. Five distillers
have been implemented: BasicDistiller
is used for single-task single-teacher distilla-
tion; GeneralDistiller in addition sup-
ports more advanced intermediate loss functions;
MultiTeacherDistiller distills an ensem-
ble of teacher models into a single student
model; MultiTaskDistiller distills multi-
ple teacher models of different tasks into a sin-
gle multi-task student model (Clark et al., 2019;
Liu et al., 2019a). We also have implemented
BasicTrainer for training teachers on labeled
data to unify the workflows of supervised learning
and distillation. All the distillers share the same
interface and usage. They can be replaced by each
other easily.

*https://github.com/PaddlePaddle/PaddleSlim
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Figure 1:
adaptors inside a distiller.

3.2 Configurations and Presets

The general training settings and the distilla-
tion method settings of a distiller are specified
by two configurations: TrainingConfig and
DistillationConfig.

TrainingConfig defines the settings that are
general to deep learning experiments, including
the directory where logs and student model are
stored (log._dir, output_dir), the device to
use (device), the frequency of storing and evalu-
ating student model (ckpt _frequencey), etc.

DistillationConfig defines the settings that
are pertinent to distillation, where various
distillation methods could be configured
or enabled. It includes the type of KD
loss (kd-loss_type), the temperature and
weight of KD loss (temperature and
kd_loss_weight), the weight of hard-label
loss (hard_label weight), probability shift
switch, schedulers and intermediate losses, etc.
Intermediate losses are used for computing the
losses between the intermediate states of teacher
and student, and they could be freely combined
and added to the distillers. Schedulers are used to
adjust loss weight or temperature dynamically.

The available values of configuration options
such as loss functions and schedulers are defined as
dictionaries in presets. For example, the loss func-
tion dictionary includes hidden state loss, cosine
similarity loss, FSP loss, NST loss, etc.

All the configurations can be initialized from
JSON files. In Figure 3 we show an exam-
ple of DistillationConfig for distilling
BERTgsE, to a 4-layer transformers. See Section
4 for more details.

v !

lTeacher model ‘ lStudent model ‘

| Teacher adaptor | | Student adaptor |
v
Utilities {logits’ : ..., {logits’ : ...,
Basic ‘inputs_mask’:..., ‘inputs_mask’:...,
. ‘losses’: ..., ‘losses’: ...,
Trainer hidden’:..., hidden’:...,
‘attention’: ... } ‘attention’: ... }
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.| Calculate loss
and optimize

(b)

(a) An overview of the main functionalities of TextBrewer. (b) A sketch that shows the function of

from textbrewer import GeneralDistiller
from textbrewer import TrainingConfig, DistillationConfig

# We omit the initialization of models, optimizer, and dataloader.
teacher_model : torch.nn.Module = ...

student_model : torch.nn.Module = ...

dataloader : torch.utils.data.DatalLoader = ...

optimizer : torch.optim.Optimizer = ...

scheduler : torch.optim.lr_scheduler = ...

O NV A WN R
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def simple_adaptor(batch, model_outputs):
# We assume that the first element of model_outputs
# is the logits before softmax
return {'logits': model_outputs[@]}

train_config = TrainingConfig()

distill_config = DistillationConfig()

distiller = GeneralDistiller(
train_config=train_config, distill_config = distill_config,
model_T = teacher_model, model_S = student_model,
adaptor_T = simple_adaptor, adaptor_S = simple_adaptor)

distiller.train(optimizer, scheduler,

dataloader, num_epochs, callback=None)

Figure 2: A code snippet that demonstrates the mini-
mal TextBrewer workflow.

3.3 Workflow

Before distilling a teacher model using TextBrewer,
some preparatory works have to be done:

1. Train a teacher model on a labeled dataset.
Users usually train the teacher model with
their own training scripts. TextBrewer also
provides BasicTrainer for supervised
training on a labeled dataset.

Define and initialize the student model.

. Build a dataloader of the dataset for distilla-
tion and initialize the optimizer and learning
rate scheduler.

The above steps are usually common to all deep
learning experiments. To perform distillation, take
the following additional steps:

1. Initialize training and distillation configura-
tions, and construct a distiller.



2. Define adaptors and a callback function.

3. Call the t rain method of the distiller.

A code snippet that shows the minimal workflow
is presented in Figure 2. The concepts of callback
and adaptor will be explained below.

{"temperature": 8,
"temperature_scheduler":
"hard_label_weight": 0,
"hard_label_weight_scheduler":
"kd_loss_type": "ce",
"kd_loss_weight": 1,
"kd_loss_weight_scheduler":
"probability_shift": False,
"intermediate_matches": [

'none’

'none',

'none',

{'layer_T':0, 'layer_S':0, 'feature':'hidden’,

'loss': 'hidden_mse', 'weight' : 1,'proj':['linear',312,7681},
{'layer_T':3, 'layer_S':1, 'feature':'hidden’,

'loss': 'hidden_mse', ‘'weight' : 1,'proj':['linear',312,7681},
{'layer_T':6, 'layer_S':2, 'feature':'hidden’,

‘loss': 'hidden_mse', ‘weight' : 1,'proj':['linear',312,7681},
{'layer_T':9, 'layer_S':3, 'feature':'hidden’,

‘loss': 'hidden_mse', ‘weight' : 1,'proj':['linear',312,7681},
{'layer_T':12, 'layer_S':4, 'feature':'hidden',

'loss': 'hidden_mse', ‘'weight' : 1,'proj':['linear',312,7681},
{'layer_T':[0,0], 'layer_S':[0,0], 'feature':'hidden',

'loss': 'nst', 'weight': 1}
{'layer_T':[3,3], 'layer_S':[1,1], 'feature':'hidden',

'loss': 'nst', 'weight': 1}

{'layer_T7':[6,6], 'layer_S':[2,2], 'feature':'hidden',
‘loss': 'nst', ‘'weight': 1}

{'layer_T1':[9,9], 'layer_S':[3,3], 'feature':'hidden',
‘loss': 'nst', 'weight': 1}

{'layer_T':[12,12], 'layer_S':[4,4],
'loss': 'nst', 'weight': 1}1}

'feature':'hidden',

Figure 3:  An example of distillation configura-
tion. This configuration is used to distill a 12-layer
BERT53,sx to a 4-layer T4-tiny.

3.3.1 Callback Function

To monitor the performance of the student model
during training, people usually evaluate the stu-
dent model on a development set at some check-
points besides logging the loss curve. For exam-
ple, in the early stopping strategy, users choose
the best model weights checkpoint based on the
performance of the student model on the develop-
ment set at the end of each epoch. TextBrewer
supports such functionality by providing the call-
back function argument in the train method,
as shown in line 24 of Figure 2. The callback
function takes two arguments: the student model
and the current training step. At each checkpoint
step (determined by num_train_epochs and
ckpt_frequencey), the distiller saves the stu-
dent model and then calls the callback function.

Since it is impractical to implement evaluation
metrics and evaluation procedures for all NLP
tasks, we encourage users to implement their own
evaluation functions as the callbacks for the best
practice.
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3.3.2 Adaptor

The distiller is model-agnostic. It needs a translator
to translate the model outputs into meaningful data.
Adaptor plays the role of translator. An Adaptor
is an interface and responsible for explaining the
inputs and outputs of the teacher and student for
the distiller.

Adaptor takes two arguments: the model inputs
and the model outputs. It is expected to return a
dictionary with some specific keys. Each key ex-
plains the meaning of the corresponding value, as
shown in Figure 1 (b). For example, 1logits is the
logits of final outputs, hidden is intermediate hid-
den states, attent ion is the attention matrices,
inputs_mask is used to mask padding positions.
The distiller only takes necessary elements from
the outputs of adaptors according to its distillation
configurations. A minimal adaptor only needs to
explain logits, as shown in lines 11-14 of Figure 2.

3.4 Extensibility

TextBrewer also works with users’ custom modules.
New loss functions and schedulers can be easily
added to the toolkit. For example, to use a custom
loss function, one first implements the loss function
with a compatible interface, then adds it to the loss
function dictionary in the presets with a custom
name, so that the new loss function becomes avail-
able as a new option value of the configuration and
can be recognized by distillers.

4 Experiments

In this section, we conduct several experiments
to show TextBrewer’s ability to distill large pre-
trained models on different NLP tasks and achieve
results are comparable with or even higher than the
public distilled BERT models with similar numbers
of parameters. *

4.1 Settings

Datasets and tasks. We conduct experiments
on both English and Chinese datasets. For En-
glish datasets, We use MNLI (Wang et al., 2019)
for text classification task, SQuAD1.1 (Rajpurkar
et al., 2016) for span-extraction machine read-
ing comprehension (MRC) task and CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003) for
named entity recognition (NER) task. For Chi-
nese datasets, we use the Chinese part of XNLI

* More results are presented in the online documentation:
https://textbrewer.readthedocs.io
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Dataset Task Metrics #Train #Dev
MNLI Classification Acc 393K 20K
SQuAD MRC EM/F1 88K 11K
CoNLL-2003 NER F1 23K 6K
XNLI Classification Acc 393K 25K
LCQMC Classification Acc 203K  8.8K
CMRC 2018 MRC EM/F1 10K 34K
DRCD MRC EM/F1 27K 3.5K
Table 1: A summary of the datasets used in experi-

ments. The size of CoNLL-2003 is measured in num-
ber of entities.

(Conneau et al., 2018), LCQMC (Liu et al., 2018),
CMRC 2018 (Cui et al., 2019b) and DRCD (Shao
et al., 2018). XNLI is the multilingual version of
MNLI. LCQMC is a large-scale Chinese question
matching corpus. CMRC 2018 and DRCD are two
span-extraction machine reading comprehension
datasets similar to SQuAD. The statistics of the
datasets are listed in Table 1.

Models. All the teachers are BERTz55x-based
models. For English tasks, teachers are initialized
with the weights released by Google’ and converted
into PyTorch format via Transformers®. For Chi-
nese tasks, teacher is initialized with the pre-trained
RoBERTa-wwm-ext ’ (Cui et al., 2019a). We test
the performance of the following student models:

e T6 and T3 are BERTgas; With fewer layers of
transformers. Especially, T6 has the same struc-
ture as DistilBERT (Sanh et al., 2019).

e T3-small is a 3-layer BERT with half BERT-
base’s hidden size and feed-forward size.

e T4-tiny is the same as TinyBERT, a 4-layer
model with an even smaller hidden size and feed-
forward size.

e BiGRU is a single-layer bidirectional GRU. Its
word embeddings are taken from BERTgagE.

T3-small and T4-tiny are initialized randomly. The
model structures of the teacher and students are
summarized in Table 3.

Training settings. To keep experiments sim-
ple, we directly distill the teacher model that has
been trained on the task, while we do not perform
task-irrelevant language modeling distillation in ad-
vance. The number of epochs ranges from 30 to
60, and the learning rate of students is 1e-4 for all
distillation experiments.

Shttps://github.com/google-research/bert

Shttps://github.com/huggingface/transformers
"https://github.com/ymcui/Chinese-BERT-wwm
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MNLI SQuAD CoNLL-2003

Model m mm EM Fl Fl
BERTgxs;  83.7 84.0 815 88.6 91.1
Public
DistilBERT 81.6 81.1 79.1 86.9 -
TinyBERT 80.5 81.0 - - -

+DA 82.8 829 727 82.1 -
TextBrewer
BiGRU - - - - 85.3
T6 83.6 84.0 80.8 88.1 90.7
T3 81.6 825 763 84.8 87.5
T3-small 81.3 81.7 723 814 78.6
T4-tiny 82.0 82.6 737 825 77.5

+DA - - 752 84.0 89.1

Table 2: Performance of BERTy s (teacher) and var-
ious students on the development sets of MNLI and
SQuAD, and the test set of CoNLL-2003. m and mm
under MNLI denote the accuracies on matched and mis-
matched sections respectively.

Distillation settings. Temperature is set to 8 for
all experiments. We add intermediate losses uni-
formly distributed among all the layers between
teacher and student (except BiGRU). The loss func-
tions we choose are hidden_mse loss which com-
putes the mean square loss between two hidden
states, and NST loss which is an effective method in
CV. In Figure 3 we show an example of distillation
configuration for distilling BERTg, g to a T4-tiny.
Since their hidden sizes are different, we use proj
option to add linear layers to match the dimensions.
The linear layers will be trained together with the
student automatically. We experiment with two
kinds of distillers: GeneralDistiller and
MultiTeacherDistiller.

4.2 Results on English Datasets

We list the public results (DistilBERT and Tiny-
BERT) and our distillation results obtained by
GeneralDistiller in Table 2. We have the
following observations.

First, teachers can be distilled to T6 models with
minor losses in performance. All the T6 models
achieve 99% performance of the teachers, higher
than the DistilBERT.

Second, T4-tiny outperforms TinyBERT though
they share the same structure. This is attributed
to the NST losses in the distillation configuration.
This result proves the effectiveness of applying KD
method developed in CV on NLP tasks.

Third, although T4-tiny has less parameters than
T3-small, T4-tiny outperforms T3-small in most



Model # Layers Hidden size Feed-forward size # Parameters Relative size
BERTgz,sx (teacher) 12 768 3072 108M 100%
T6 6 768 3072 65M 60%
T3 3 768 3072 44M 41%
T3-small 3 384 1536 1M 16%
T4-tiny 4 312 1200 14M 13%
BiGRU 1 768 - 31IM 29%

Table 3: Model sizes of teacher and students. The number of parameters includes embeddings but does not include

output layers.

MNLI SQUAD  CoNLL-2003
Model m mm EM Fl Fl
Teacher I 83.6 840 81.1 88.6 91.2
Teacher2 83.6 842 812 88.5 90.8
Teacher3 837 83.8 812 887 913
Ensemble 84.3 847 823 89.4 915
Student  84.8 853 835 90.0 91.6

Table 4: Results of multi-teacher distillation. All the
models are BERTy,5;. Different teachers are trained
with different random seeds. For each task, the ensem-
ble is the average of three teachers’ results.

cases. It may be a hint that narrow-and-deep mod-
els are better than wide-and-shallow models.

Finally, data augmentation (DA) is critical. For
the experiments in the last line in Table 2, we use
additional datasets during distillation: a subset of
NewsQA (Trischler et al., 2017) training set is used
in SQuAD; passages from the HotpotQA (Yang
et al., 2018) training set is used in CoNLL-2003.
The augmentation datasets significantly improve
the performance, especially when the size of the
training set is small, like CoNLL-2003.

We next show the effectiveness of
MultiTeacherDistiller, which  dis-
tills an ensemble of teachers to a single student
model. For each task, we train three BERTgase
teacher models with different seeds. The student is
also a BERTg, sz model. The temperature is set to
8, and intermediate losses are not used. As Table 4
shows, for each task, the student achieves the best
performance, even higher than the ensemble result.

5 Results on Chinese Datasets

The results on Chinese datasets are presented in
Table 5. We notice that T4-tiny still outperforms
T3-small on all tasks, which is consistent with their
performance on English tasks. In the experiments
with DA, CMRC 2018 and DRCD take each other’s
dataset as data augmentation. We observe that since
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Model XNLI LCQMC CMRC2018 DRCD
ode Acc Acc EM FI EM Fl
RoBERTa-wwm  79.9 89.4 688 864 865 925
T3 784 890 634 824 767 852
+DA . . 664 842 782 864
T3-small 760 881 461 710 714 822
+DA - - 580 793 758 84.8
T4-tiny 762 884 543 768 755 849
+DA - . 61.8 818 773 86.1

Table 5: Development set results for the teacher and
various students on Chinese tasks.

CMRC 2018 has a relatively small training set, DA
has a much more significant effect.

6 Conclusion and Future Work

In this paper, we present TextBrewer, a flexible
PyTorch-based distillation toolkit for NLP research
and applications. TextBrewer provides rich cus-
tomization options for users to compare different
distillation methods and build their strategies. We
have conducted a series of experiments. The re-
sults show that the distilled models can achieve
state-of-the-art results with simple settings.

TextBrewer also has its limitations. For exam-
ple, its usability in generation tasks such as ma-
chine translation has not been tested. We will
keep adding more examples and tests to expand
TextBrewer’s scope of application.

Apart from the distillation strategies, the model
structure also affects the performance. In the future,
we aim to integrate neural architecture search into
the toolkit to automate the searching for model
structures.
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