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Abstract

Within the prosperity of Massive Open On-
line Courses (MOOCs), the education appli-
cations that automatically provide extracurric-
ular knowledge for MOOC users have be-
come rising research topics. However, MOOC
courses’ diversity and rapid updates make it
more challenging to find suitable new knowl-
edge for students. In this paper, we present Ex-
panRL, an end-to-end hierarchical reinforce-
ment learning (HRL) model for concept ex-
pansion in MOOCs. Employing a two-level
HRL mechanism of seed selection and con-
cept expansion, ExpanRL is more feasible to
adjust the expansion strategy to find new con-
cepts based on the students’ feedback on ex-
pansion results. Our experiments on nine
novel datasets from real MOOCs show that
ExpanRL achieves significant improvements
over existing methods and maintain competi-
tive performance under different settings.

1 Introduction

The cognitive-driven theory has been widely used
in practical teaching since Ausubel firstly proposed
it in (Ausubel, 1968), which suggests educators
provide new knowledge for students to motivate
their learning continuously. In fact, in addition to
the concepts taught in course, many related con-
cepts are also attractive and worthy of learning.
As shown in Figure 1, when a student studies the
concept LSTM in “Deep Learning” course from
Coursera1, many related concepts, including its pre-
requisite concepts (RNN), related scientists (Jürgen
Schmidhuber) and its related applications (Machine
Translation) can also benefit his/her further study.
In traditional classrooms, these concepts are often
considerately introduced by teachers.

∗Corresponding author.
1https://www.coursera.org

Figure 1: An example of course-related concepts in the
“Deep Learning” course from Coursera.

However, in the era of Massive Open Online
Courses (MOOCs), thousands of courses are pre-
recorded for with millions of students with various
backgrounds (Shah, 2019), which makes it infeasi-
ble to pick out these essential concepts manually.
Therefore, there is a clear need to automatically
discover course-related concepts so that they can
easily acquire additional knowledge and achieve
better educational outcomes.

This task is formally defined as Course Concept
Expansion (Yu et al., 2019a), a special type of
Concept Expansion or Set Expansion (Wang and
Cohen, 2007), which refers to the task of expanding
a small set of seed concepts into a complete set of
concepts that belong to the same course or subject
from external resources. Despite abundant efforts
in related topics (He and Xin, 2011; Shen et al.,
2017; Yan et al., 2019), existing methods still face
three challenges when applied to MOOCs.

First, distinct from the task of enriching a certain
concept set, the purpose of course concept expan-
sion is to benefit students’ learning, making the
context information insufficient to detect whether
a concept is appropriate to be an expansion result.
How to properly introduce student feedback in the
model’s loop is a crucial challenge.

Second, unlike the set expansion for a clear gen-
eral category (e.g., countries), courses are often the

https://www.coursera.org
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combinations of multiple categories, especially in
interdisciplinary courses like Mathematics for Com-
puter Science2. Therefore, it isn’t easy to model
the course’s semantic scope (Curran et al., 2007)
when applying existing expansion methods.

Third, MOOCs are updated continuously, and
numerous new courses arise everyday (Shah, 2019),
which requires a good generalization ability of the
expansion model; otherwise, the frequent model
retraining will cause severe waste of resources.

To address the above problems, we construct
a novel interactive environment on real MOOCs,
which collects students’ feedback on expansion
results and provides new knowledge for MOOC
students in an interesting way for better education.
And based on the feedback, we propose ExpanRL,
a hierarchical reinforcement learning framework
for course concept expansion in MOOCs, which
decomposes the concept expansion task into a hi-
erarchy of two subtasks: high-level seed selection
and low-level expansion.

Boosted by user feedback on expansion results,
ExpanRL jointly learns how to select seed concepts
to model the semantic scope of the course better,
and whether a concept is beneficial for students.
Moreover, the hierarchical reinforcement learning
(HRL) structure enables ExpanRL to learn proper
expansion strategies instead of the modeling of a
particular course, making our model keep a high
performance even in unobserved courses.

The evaluation is conducted on 9 datasets from
real MOOC courses, compared with 5 represen-
tative baseline methods. We further conduct an
online evaluation to investigate whether students
admit the expanded concepts.

Our contributions include 1) an investigation on
how to involve HRL framework into the task of
concept expansion; 2) a paradigm that connects the
NLP concept expansion task with the educational
application; 3) an interactive MOOC environment,
consisting of 9 novel datasets of different subjects,
6,553 extracted course concepts, and 495,324 user
behaviors from a real MOOC website.

2 Preliminaries

2.1 Problem Formulation

Following (Yu et al., 2019a), Course Concept Ex-
pansion is formally defined as: given the course
corpus D, course conceptsM, and a knowledge

2A course from the University of London in Coursera.

base KB as an external source, the task is to return
a ranked list of expanded concepts Ec.

In this formulation, a course corpus is defined
as D = {Cj}

|n|
j=1

, which is composed of n courses’
video subtitles in the same subject area. Course
concepts are the subjects taught in the course (such
as LSTM in Figure 1), denoted asM = {ci}|M|i=1 .
(Pan et al., 2017). Knowledge base KB = (E,R)
is consist of concepts E and relations R, which is
utilized as an external source to obtain expansion
candidates. Though other source (such as Web
tables) can also take on this role, we still employ
a KB to search for expansion candidates like the
prior work, i.e., Ec ⊂ E.

2.2 Basic Model for Concept Expansion

The general idea of concept expansion is first to
characterize the concept set according to its repre-
sentative elements, then find new candidates and
rank them to expand the set.
Seed Selection Stage. A group of representative
concepts are called seeds and formalized to K ⊂
Ec (Wang and Cohen, 2007; Mamou et al., 2018).
While the expansion process is often carried out
iteratively, we also formalize the expansion set of
round t to Etc. Seed selection is to calculate the
possibility that each concept in Etc becomes a seed,
i.e., P (ci ∈ Kt ⊂ Etc|t), where Kt contains the
seeds of t-th round.

Based on these seeds, we can extract features of
the current set and search for candidate concepts
for expansion from external sources.
Expansion Stage. After finding a new list of candi-
dates Lt =

{
c1, ..., ct′ , ..., c|Lt|

}
, expansion stage

aims to calculate the likelihood of ct′ to be a ex-
panded concept. The top candidates ranked by
ct′ are selected as new expanded concepts, de-
noted as N t the likelihood can be formalized as
P (ct′ ∈ N t ⊂ Lt|Kt, t′).

The expansion set is refreshed as Et+1
c = Etc ∪

N t until its size reaches the preset upper limit τ or
cannot find new candidates (He and Xin, 2011).

2.3 Interactive MOOC Environment

The workflow above has been experimentally
proven to be effective in many concept expansion
tasks (Shen et al., 2018; Rastogi et al., 2019). How-
ever, such methods only consider the course con-
cepts’ semantic information, which makes their
expansion results hard to match real learning needs,
especially when dealing with the multi-category
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MOOC courses. Meanwhile, since the models are
trained before launching, how to maintain high per-
formance on new arisen courses is challenging. Yu
et al. (2019a) designs an online game in MOOCs
to collect user feedback on the expansion result,
thereby employing an active pipeline model to face
the above problems, which provides an interactive
MOOC environment for reinforcement learning
models.

However, the size of publicly published datasets
(4 courses with 800 concepts in each course) is
still insufficient to meet the need to train advanced
deep learning models. Therefore, we extract 68
real MOOC courses of six subjects and build a
large-scale MOOC interactive environment, which
contains a gamefied interface for feedback collec-
tion and several course datasets: “Mathematics”,
“Chemistry”, “Architecture”, “Psychology”, “Ma-
terial Science” and “Computer Science”, covering
diverse subjects of natural science, social science
and engineering. The details of the datasets are
presented in the experiment section.

We construct the environment through three
stages. First, for each subject, we select its most rel-
evant courses from a real MOOC website3. We use
the method of Pan (2017) to extract the course con-
cepts and manually select the high-quality ones as
the course conceptsM. Second, we take XLORE
(Jin et al., 2019) as KB to search for candidate
expansion concepts.

Figure 2: A demonstration of our interactive game in
course Introduction to psychology. MOOC users can
click irrelevant expansion candidates to get bonuses.
The yellow concept on the left is from course, and the
green concepts are expanded candidates.

Finally, we set up a game to present the expan-
sion candidates. As shown in Figure 2, real MOOC
users are drawn to pick out the course-unrelated
ones to get bonuses. To ensure data quality, we
set the game bonus depending on the group voting

3Anonymous for blind review.

result. We also avoid their irresponsible operations
by mixing some extracted course concepts among
candidates to detect the spoilers. The operation
records are employed to train our reinforcement
learning model proposed in the next section.

3 The Proposed Model

In this section, we first introduce our hierarchical
reinforcement concept expansion framework, Ex-
panRL, then present our high-level seed selection
model and low-level expansion model separately.

Figure 3: Framework of ExpanRL.

3.1 Overview

To obtain high-quality expanded course concepts
for serving students in MOOCs, ExpanRL still
needs to address three crucial problems. 1. How
to properly utilize user feedback? 2. How to keep
accurate modeling of the course during iterations?
3. How to keep a good generalization ability of the
model when expanding in new MOOC courses?

Thanks to the interactive MOOC environment,
we can deal with these issues by decomposing the
basic concept expansion workflow into a hierarchi-
cal reinforcement learning framework. Figure 3
shows that the model can learn the complex con-
nection between concepts and courses from user
feedback instead of simple contextual information.
The main idea of ExpanRL is to upgrade expanding
strategies via such an end-to-end model, whose en-
tire expansion process works as the basic concept
expansion methods in Section 2.2, which can be
naturally formulated as a semi-Markov decision
process (Sutton et al., 1999) like : 1) a high-level
RL process that selects seeds from Etc to search
for a list of candidates Lt; 2) a low-level RL pro-
cess that detect the high-quality expansion results
among candidates and obtain N t to refresh the set



773

to Et+1
c . This process iterate until the size of the

expansion set reaches the preset limit, τ .
Specially, before the whole process, we first uti-

lize the method in (Pan et al., 2017) to extract
course conceptsM from the given course corpus
D and initialize E0

c =M.

3.2 Seed Selection with High-level RL

The high-level RL policy µ aims to select k seeds
from the existing set Ec, which can be regarded as
a conventional RL over options. An option refers
to a high-level action, and a low-level RL will be
launched once the agent executes an option. The
high-level time step t is the expansion round.
Option: The option ot is a vector consisting of
0 and 1, which represents the i-th concepts from
expansion set Etc is or is not a selected seed for the
current expansion round. Thus the dimension of
ot is the same as the size of Etc. When a low-level
RL process enters a final state, the agent’s control
will be taken over to the high-level RL process to
execute the next options.
State: The state sht ∈ Sh of the high level RL
process at time step t, is represented by a k × C
matrix reshaped from the hidden state ht, where
k is the size of seed set and C is the size of a
compressed word embedding.

sht = reshape(ht) (1)

To obtain the hidden state ht, we introduce a set
representation RepSet (Skianis et al., 2019) to en-
code the current expansion set Etc. RepSet is un-
supervised, order independent and can encode an
n× V matrix to a V dimension vector. Note that
Et−1c ⊂ Etc, so the current state is effected by the
last state ht−1.

ht = RepSet(Etc). (2)

Policy: The stochastic policy for seed selection µ :
S → O which specifies a probability distribution
over options:

ot ∼ µ(ot | sht ) = Rt = softmax(shtW(Etc)
T ).
(3)

where W is a learnable parameter, which com-
presses a V length word embedding to a C length
word embedding. Etc is the matrix which consists
of all course concepts’ word vector. Rt is a ma-
trix, while Rt

j,i indicates the possibility of the i-th

concept in Etc to be the j-th seed:

p(Kt
j = ci, ci ∈ Etc|t) =

{
Rt
j,i

0 if ci is selected before.
(4)

And the possibility of the high-level RL to select
Kt is shown below. Note that this possibility p is
independent of i.

ph(Kt) =

k∏
j=1

p(Kt
j = ci, ci ∈ Etc|t) (5)

Reward: Then, the environment provides interme-
diate reward rht to estimate the future return when
executing ot. The reward is given by the total re-
ward of the last round of concept expansion.

rht =
∑

rlt′(ot), (6)

where rl
t′
(ot) is the low-level reward in time t′

while the high-level option is ot.
Candidate generation after high-level options:
After the agent gives out an option ot, we link the
seed concepts from Kt into KB and find their first-
order neighbor concepts as the candidate list Lt.
Note that Lt is sorted using the pairwise similarity
between newly found candidates and seeds.

3.3 Concept Expansion with Low-level RL
Once the high-level policy has selected the seed
set and generated a candidate list Lt, the low-level
policy π will scan the list and select high-quality
expansion concepts from it to update Ec. The low-
level policy over actions is formulated very sim-
ilarly as the high-level policy over options. The
option ot and Kt from the high-level RL is taken
as additional input throughout the low-level expan-
sion process. The time step t′ in low-level means
the t′-th candidate in Lt and the final expanded
concepts in this round is N t.
Action: The action at each time step is to assign
a tag to the current candidate concept. The action
space, i.e., A = {1, 0}, where 1 represents the
present concept is an expansion result of this set,
0 represents that the concept is not an expansion
result.
State: The low-level intra-option state slt is repre-
sented by the word embedding of current expansion
candidate ct′ .

slt′ = ct′ (7)

Moreover, we use a Bi-LSTM (Huang et al., 2015)
to provide a hidden state of current candidate list
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hlt by encoding: 1) the selected seeds Kt, 2) a
zero vector as a segmentation, 3) the candidate list
Lt, thereby utilizing the information of high-level
option ot to help low-level decisions.

hlt = BiLSTM(
[
Kt;0;Lt

]
) (8)

Policy: The stochastic policy for expansion π :
S → A outputs an action distribution given intra-
option state slt and the high-level option ot′ that
launches the current subtask. Here � is the vector
dot product.

at′ ∼ π(at′ | slt; ot) = pl(ct′) = p(ct′ ∈ N t|t′)
= sigmoid(hlt � st′),

(9)
Reward: As introduced in section of Preliminar-
ies, we construct an interactive game on the MOOC
website to collect feedback from users on the ex-
panded concepts. Users can pick out the unrelated
concepts of the course, and the picked times of each
expansion result ci is recorded as ϕ(ci). Since such
operations indicate the users’ disagreements of the
result, the low-level reward is designed to be nega-
tively correlated with ϕ(ci) as follows:

rlt′ =

{
−ϕ(ci)/maxcj∈Lt(ϕ(cj)), at‘ = 1

ϕ(ci)/maxcj∈Lt(ϕ(cj)), at′ = 0
(10)

The count of user clicks determines the degree of
relevance of each candidate to the course. It is
worth noting that this degree is dynamic and de-
pends on the concept that is mostly picked. This
setting effectively controls the range of rewards.
Set refreshment after low-level actions: After
the agent gives out an action at′ , we can finally
obtain the new expanded concepts N t. The expan-
sion set is updated as Et+1

c = Etc ∪ N t and the
process turn to another round.

3.4 Hierarchical Policy Learning
To optimize the high level policy, we aim to max-
imize the expected cumulative rewards from the
main task at each step t as the agent samples trajec-
tories following the high-level policy µ, which can
be computed as follows:

J(θµ,t) = Esh,o,rh∼µ(o|sh)[

T∑
t=0

logph(Kt)

T∑
s=t

γs−trhs ],

(11)

where µ is parameterized by θµ, γ is a discount
factor in RL, and the whole sampling process µ
takes T time steps before it terminates.

Algorithm 1: Training Procedure of HRL
1 Extract course concepts from D and initiate

E0
c =M;

2 Initiate state sh0 ← 0 and time step t← 0;
3 while |Ec| < σ do
4 Calculate sht by Eq.(1);
5 Sample ot from sht by Eq.(3);
6 Search for candidates from KB and generate a

ranked candidate list L;
7 for j ← 1 to |L| do
8 t′ ← t′ + 1;
9 Calculate slt′ by Eq.(7);

10 Sample alt′ from slt′ by Eq.(9);
11 Add the expansion result into game and get

feedback;
12 Obtain low-level reward rlt′ by Eq.(10);
13 end
14 t← t+ 1, refresh Ec;
15 Obtain low-level final reward rlfin, high-level

reward rht ;
16 end
17 Obtain high-level final reward rhfin by Eq.(6);
18 Optimize the model with Eq.(11) and Eq.(12);

Similarly, we learn the low-level policy by max-
imizing the expected cumulative intra-option re-
wards from the sub task over option ot when the
agent samples along low-level policy π(· | ot) at
time step t:

J(θπ,t; ot′) = Esl,a,rl∼π(a|sl;ot′ )
[

T ′∑
t′=0

logpl(ct
′
)

T ′∑
s=t′

γs−trls],

(12)

if the subtask ends at time step T ′.
Then we use policy gradient methods (Sutton

et al., 2000) with the REINFORCE (Williams,
1992) algorithm to optimize both high-level and
low-level policies. The entire training process is
described at Algorithm 1.

4 Experiments

4.1 Experiment Setting
4.1.1 Datasets
We construct an interactive MOOC environment as
Section 2.3 to collect user feedback on expansion
results. To build a solid evaluation, we randomly
selected 5% expanded concepts to be manually
labeled benchmarks. For each concept, three an-
notators majoring in the corresponding domain are
asked to label them as “0: Not helpful” or “1: Help-
ful” based on their knowledge. Thus, each dataset
is triply annotated, and Pearson correlation coef-
ficient is computed to assess the inter-annotator
agreement. A candidate is labeled as a related con-
cept when more than two annotators give positive
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MAT CHEM PSY MS ARC CS MAT+CS CHEM+MS MS+ARC
#courses 12 6 16 8 14 12 4 4 5
|M| 1,688 1,404 568 842 1,036 1,015 230 417 382

#operations 93,762 103,652 48,492 40,254 120,384 88,779 33,521 52,467 56,787
0-Label 24,278 15,796 13,245 11,876 33,127 17,775 7,092 9,367 7,898
1-Label 6,976 18,755 2,919 1,542 7,001 11,818 3,533 4,790 1,229

correlation 0.712 0.694 0.705 0.732 0.678 0.689 0.655 0.688 0.701

Table 1: Statistics of datasets

tags. Table 1 presents the detailed statistics, where
#courses, |M|, 1-Label and 0-Label are the number
of courses, course concepts, positive and negative
labels. #operations are user click times which is
obtained from the game. MAT, CHEM, PSY, MS,
ARC and CS correspond to Mathematics, Chem-
istry, Psychology, Material Science, Architecture
and Computer Science.

In particular, we select 13 interdisciplinary
courses4 and build three multi-category course
datasets as MAT+CS, CHEM+MS and MS+ARC
to further estimate the performance of ExpanRL
on interdisciplinary courses. Note that these three
datasets are subsets of the above six’s.
Dataset Usage. All the models are trained on the
user operation data and evaluated on the expert an-
notated data. For the supervised learning baselines,
we set the concepts with top 70% click records as
negative, and the rest as positive samples.

4.1.2 Basic Settings
All hyper-parameters are tuned on the validation set.
The dimension of word vectors in Eq. (2) is 768.
The dimension of the compressed word vector C
in Eq. (1) is 128. The word vectors of all baseline
methods are initialized using BERT (Devlin et al.,
2019). The learning rate is 1.0×10−4 for low-level
RL, and 1.0 × 10−5 for high-level. The discount
factor γ is 0.99. The seed size k is set to 10 and the
upper limit τ of Ec is 20,000.

4.1.3 Baselines
We compare our hierarchical RL model (denoted
as HRL) with five typical methods of set expansion.
As these methods obtain expansion candidates from
diverse resources, we mainly employ the different
similarity metrics to rank the same expansion can-
didate list for evaluation. Especially to investigate
the impact of seed selection strategies, we use a
K-means clustering-based method and a pairwise
similarity-based method to replace the high-level
RL network, which are denoted as C-RL and P-RL.

4Course list is shown in Appendix.

• PR. Graph based method: We build the candi-
dates and course concepts into a graph. When the
similarity between two concepts exceeds a thresh-
old5 σPR , there is a link between them. The PageR-
ank score of each candidate is finally used for sort-
ing. A most famous method employing graph based
ranking is SEAL (Wang and Cohen, 2007)
• SEISA. SEISA (He and Xin, 2011) is an entity

set expansion system developed by Microsoft af-
ter SEAL and outperforms traditional graph-based
methods by an original unsupervised similarity met-
ric. We implement its Dynamic Thresholding algo-
rithm to sort expanded concepts.
• EMB. Embedding based method mainly uti-

lizes context information to examine the similarity
between expanded concepts and seeds according to
(Mamou et al., 2018). For each expanded concept
e, we calculate the sum of its cosine similarities
with course conceptsM in BERT (Devlin et al.,
2019) and use the average as golden standard to
rank the expanded concept list.
• PUL. PU learning is a semi-supervised learn-

ing model regarding set expansion as a binary clas-
sification task. We employ the same setting as
(Wang et al., 2017) to classify and sort concepts.
• PIP. It is a pipeline method for course concept

expansion (Yu et al., 2019a), which first uses an on-
line clustering method during candidate generation
and then classify them to obtain final expansion
results. We follow the workflow of this work to
sort expanded concepts.

4.1.4 Evaluation Metrics
Our objective is to generate a ranked list of ex-
panded concepts. Thus, we use the Mean Average
Precision(MAP) as our evaluation metric, which
is the preferred metric in information retrieval for
evaluating ranked lists.

4.2 Overall Evaluation

Table 2 summarizes the comparing results of dif-
ferent methods on all datasets. The evaluation is

5σPR is experimentally set to 0.5.
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MAT CHEM PSY MS ARC CS Avg MAT+CS CHEM+MS MS+ARC I-Avg
PR 0.763 0.705 0.482 0.470 0.300 0.690 0.568 0.659 0.664 0.401 0.575

SEISA 0.805 0.711 0.473 0.524 0.570 0.713 0.632 0.797 0.691 0.377 0.622
EMB 0.747 0.687 0.474 0.533 0.442 0.812 0.616 0.710 0.655 0.377 0.581
PUL 0.878 0.811 0.845 0.745 0.757 0.850 0.822 0.880 0.782 0.646 0.769
PIP 0.848 0.782 0.803 0.772 0.775 0.821 0.800 0.893 0.835 0.851 0.865

C-RL 0.902 0.795 0.818 0.753 0.716 0.800 0.797 0.851 0.849 0.758 0.820
P-RL 0.892 0.768 0.606 0.749 0.821 0.767 0.835 0.871 0.852 0.662 0.795
HRL 0.903 0.857 0.901 0.806 0.828 0.878 0.862 0.909 0.903 0.886 0.898

Table 2: MAP of different methods on datasets. (Seed set size = 10)

divided into two parts. The six datasets on the
left are the performance of the model on various
subjects, and Avg represents the average of their
MAPs. The three datasets on the right are from
the selected interdisciplinary courses, and I-Avg
is the average of the model performance on them.
We also divide the methods into unsupervised, su-
pervised, and reinforcement learning models for
further analysis. Overall, our approach HRL main-
tains an impressive performance (at 0.862 of Avg
and 0.898 of I-Avg) over the existing methods, and
unsupervised methods (such as SEISA, PR) are
not so competitive when compared with methods
with supervised information. We lead a detailed
investigation to detect the performance among dif-
ferent datasets and the impact of seed selection in
the following aspects:
For different datasets, our methods achieve ro-
bust results. It is worth noting that the range of
the MAP of our method on these datasets does not
exceed 0.097, while other baselines suffering from
severe oscillations (SEISA of 0.428, EMB of 0.435,
and PUL of 0.234). And these supervised methods
(PUL, PIP) that perform well on a certain dataset
are further analyzed in subsequent experiments.
For the performance on interdisciplinary
courses. Most of the baselines meet a decline when
turned to interdisciplinary courses. From this angle,
PUL can not face this challenge. But PIP, C-RL,
and HRL perform even better (with a lift of 0.04
on average), most likely because they all have a
clustering-like seed selection process.
For different seed selection strategies. We also
detect the impact of seed selection by replacing
high-level RL. The comparison among three RL
methods shows that: 1) P-RL performs better in
one-category expansion tasks (beat C-RL at 0.038
); 2) C-RL deal with interdisciplinary courses better
than P-RL (as discussed above); 3) HRL is stronger
than these two methods in all datasets. The results

(a) The MAP of different
number of training sets.

(b) The MAP of seed sizes.

Figure 4: Performance of different settings. (a) shows
the average MAP when mask some of the datasets in
training. (b) shows the MAP of different seed size.

exactly prove the superiority of HRL’s seed selec-
tion over rule-based strategies.

4.3 Result Analysis
Generalization Ability. Expansion models in
MOOCs need to face with plenty of new courses
every day. Thus we lead strict experiments to es-
timate the generalization ability of the model by
masking training datasets. For example, the bar of
n = 5 in Figure 4(a) indicates the average MAP
when the models are trained on five subject datasets
and tested on the other one. Thus n = 6 is the av-
erage MAP in Table 2 while n = 5 and n = 4
present the results of facing one or two kinds of
new courses. Here we select HRL, PUL, and PIP
for observation. Such an experiment shows that
HRL still maintains an outstanding performance
in new courses. Still, PIP and PUL suffer from a
sharp decline in untrained new datasets (even at the
same level as unsupervised methods).
The size of seed set k. For different settings of
seed sizes, we compare the performance of Ex-
panRL with other RL based baselines. As shown in
Figure 4(b), HRL keeps a high level of MAP among
these settings (all over 0.8 on average). Meanwhile,
we find that all these RL-based methods perform
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Cr@10 Cr@20 Cr@50
PR 0.097 0.182 0.425

SEISA 0.097 0.204 0.459
EMB 0.071 0.150 0.359
PUL 0.041 0.091 0.349
PIP 0.069 0.126 0.342

HRL 0.036 0.082 0.258

Table 3: Online Evaluation results.

better in small or large seed size (less than 10 or
larger than 40), which requires future detection on
this phenomenon.
Discussion. Based on the above experimental re-
sults, we summarize the analysis as follows: 1)
the performance of unsupervised methods on dif-
ferent datasets is not as stable as the supervised
or RL methods; 2) except for models that have
a clustering-like seed selection process (PIP, C-
RL, HRL), most models suffer from declines on
interdisciplinary datasets; 3) although supervised
models (PIP, PUL) perform well in some cases,
they drastically decline in untrained new courses;
4) HRL, consisting of a feasible seed selection RL
and expansion strategies from human efforts, keep
a high performance under different settings. HRL
deal with the challenges in MOOC expansion tasks,
as claimed in the introduction.

4.4 MOOC Online Evaluation
Utilizing user feedback on the expansion results
from our interactive MOOC environment, we also
set up an online evaluation to detect whether users
agree on the expansion results. Following the same
evaluation metric in (Yu et al., 2019a), we denote
Click Rate as Cr@q, which means the click rate
of top q expanded concepts, i.e.,

Cr@q =

q∑
i=1

ϕ(ci)/

|Ec|∑
j=1

ϕ(cj)) (13)

A smaller Cr@q indicates more users think the
results are relevant to the course. We record the
performance of each method in Table 3. Results
show that ExpanRL obtains the best feedback from
MOOC users under all three settings. It’s worth
noting that the advantage of ExpanRL is evident
while selecting larger-scale samples (The overlap
rises from 0.005 to 0.091), which indicates that our
model can provide more high-quality concepts.

5 Related Work

Our work follows the task of concept expansion in
MOOCs (Yu et al., 2019a), a particular type of set

expansion problem, which takes several seeds as
input and expands the entity set.

Set expansion was born to serve knowledge ac-
quisition applications on the Internet. Google Sets
was a pioneer which leaded a series of early re-
search, e.g. Bayesian Sets (Ghahramani and Heller,
2006), SEAL (Wang and Cohen, 2007), SEISA
(He and Xin, 2011) and others (Sarmento et al.,
2007; Shi et al., 2010; Wang et al., 2015). These
efforts utilize web tables as a resource and mainly
serves for search engines. Recently, more related
research has turned its attention to other applica-
tion fields, such as news mining (Redondo-Garcı́a
et al., 2014), knowledge graphs (Zhang et al., 2017),
education assistance (Yu et al., 2019a), etc. Mean-
while, corpus-based expansion methods snowball,
and iterative bootstrapping became a common solu-
tion (Shen et al., 2017; Yu et al., 2019b; Yan et al.,
2019), which expands the set in round and select
high-quality results to extract feature iteratively.
ExpanRL is inspired by this type of method and is
designed to optimize the existing iterative process.

ExpanRL also benefits from hierarchical rein-
forcement learning (HRL), which has been em-
ployed in many NLP tasks (Zhang et al., 2019;
Takanobu et al., 2019) and achieved impressive re-
sults. By decomposing complex tasks into multiple
small tasks to reduce the complexity of decision
making (Barto and Mahadevan, 2003), HRL natu-
rally matches the iterative set expansion tasks.

6 Conclusion and Future Work

We investigate the task of course concept expan-
sion, which utilizes the NLP approaches in improv-
ing MOOC education. After constructing a novel
interactive MOOC environment to collect user feed-
back on expansion results, we design a paradigm,
ExpanRL, which decomposes the concept expan-
sion task into a hierarchy of two subtasks: high-
level seed selection and low-level concept expan-
sion. Experiment results on nine datasets from real
MOOCs prove that ExpanRL can better serve stu-
dents by recognizing the helpful expanded results
and maintaining good performance in interdisci-
plinary courses and even new courses.

Promising future directions include detecting
how to ensemble supervised learning and RL ex-
pansion models and applying the proposed model
in related tasks. We also hope our design of in-
teractive games can call for more fancy methods
that utilize student feedback in NLP applications
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in Education.
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A Dataset Analysis & Case Study

We also analyze the characteristics of the datasets
and do a case study to explore further the impact
of different expansion tasks on the model, which
will help choose the appropriate expansion model
for various tasks.

Figure 5: The average pairwise similarity of seeds, ex-
panded concepts and seed-expand concept pairs.

We assess the degree of dispersion of the con-
cepts from different subjects by calculating the
pairwise average similarities. Combining the re-
sults in Overall Evaluation and Figure 5, we find
the science subjects, MAT and CHEM, obtain the
most aggregated concepts (Green bars in Figure),
which also leads to a booming of all methods in this
two datasets. Simultaneously, unsupervised mod-
els (SEISA, EMB) show significant performance
degradation on PSY and ARC datasets, with the
lowest average similarity of expansion results (Red
and orange bars). This demonstrates the critical
role of supervisory information in complex set ex-
pansion.

The contest between the supervised learning
methods (PUL, PIP) and the RL methods can be ob-
served more intuitively through the case study. We
sample some errors from ARC and CHEM datasets
in Figure 6. It is easy to find that the errors of
supervised learning methods mainly come from
some noise words, e.g., the word “architecture”
in computer architecture. However, the errors of
RL methods are mainly caused by classification,
e.g., electric potential energy is highly relevant to
chemistry, but it is a physics concept.

From this phenomenon, we speculate that SL
knows more about the context of the concept, and
RL understands the meaning of the concept better.
Therefore, the joint method of combining super-
vised learning and RL is likely to be a promising
research direction in expansion tasks.
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Figure 6: Some error cases in ARC and CHEM
datasets. Blue concepts are errors from supervised
methods, orange ones are from RL methods and black
is the shared errors.

B List of interdisciplinary courses

In this section, we list the selected interdisciplinary
courses to present this situation in real MOOCs. As
shown in Table 4, many courses from MOOCs are
related to more than one subject; this is a common
phenomenon in practical teaching. The URLs of
these courses are hidden for blind review.

Domain CourseName

MAT+CS

Introduction to Data Science
Computational Geometry

Algorithm of Big Data
Multivariate statistical analysis

and R language modeling

CHEM+MS

Plant Fiber Chemistry
Chemical Reaction Engineering

Magical Material World
Catalyst Design and Preparation

MS+ARC

Construction Materials
Architecture Materials

Explore the Materials Around You
Road Engineering Materials

Reinforced Concrete and
Masonry Structures

Table 4: The list of selected interdisciplinary courses.


