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Abstract

Span extraction is an essential problem in ma-
chine reading comprehension. Most of the ex-
isting algorithms predict the start and end po-
sitions of an answer span in the given corre-
sponding context by generating two probabil-
ity vectors. In this paper, we propose a novel
approach that extends the probability vector
to a probability matrix. Such a matrix can
cover more start-end position pairs. Precisely,
to each possible start index, the method al-
ways generates an end probability vector. Be-
sides, we propose a sampling-based training
strategy to address the computational cost and
memory issue in the matrix training phase. We
evaluate our method on SQuAD 1.1 and three
other question answering benchmarks. Lever-
aging the most competitive models BERT and
BiDAF as the backbone, our proposed ap-
proach can get consistent improvements in all
datasets, demonstrating the effectiveness of
the proposed method.

1 Introduction

Machine reading comprehension (MRC), which re-
quires the machine to answer comprehension ques-
tions based on the given passage of text, has been
studied extensively in the past decades (Liu et al.,
2019). Due to the increase of various large-scale
datasets (e.g., SQuAD (Rajpurkar et al., 2016) and
MS MARCO (Nguyen et al., 2016)), and the en-
hancement of pre-trained models (e.g., ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
XLNet (Yang et al., 2019)), remarkable advance-
ments have been made recently in this area. Among
various MRC tasks, span extraction is one of the
essential tasks. Given the context and question, the
span extraction task is to extract a span of the most
plausible text from the corresponding context as a

∗This work was done during the first author’s internship
at Microsoft

Passage: ...,Begun as a one-page journal in September 1876, 
the Scholastic magazine is issued twice monthly and ...
Question: When did the Scholastic Magazine of Notre dame 
begin publishing?
Answer: September 1876
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Figure 1: An illustration of a machine reading compre-
hension framework. Most of previous works are vector-
based approaches shown as the left part. Our matrix-
based conditional approach is shown in the right part.
In our setting, every start (or end) position has an end
(or start) probability vector, which leads that the output
probabilities is a matrix (best seen in color).

candidate answer. Although there exist unanswer-
able cases beyond the span extraction, the span-
based task is still fundamental and significant in
the MRC field.

Previous methods used to predict the start and
end position of an answer span can be divided into
two categories. The first one regards the generation
of begin position and end position independently.
We refer to this category as independent approach.
It can be written as p∗= p(∗|H∗), where ∗ ∈ {s,e},
the s and e denote start and end, respectively. H∗ is
the hidden representation, in which Hs and He usu-
ally have shared features. The other one constructs
a dependent route from the start position when pre-
dicting the end position. We refer to this category
as conditional approach. It can be formalized as
ps = p(s|Hs) , pe = p(e|s,He). This category usu-
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ally reuses the predicted position information (e.g.,
s) to assist in the subsequent prediction. The dif-
ference between these two approaches is that the
conditional approach considers the relationship be-
tween start and end positions, but the independent
approach does not. In the literature, AMANDA
(Kundu and Ng, 2018b), QANet (Yu et al., 2018),
and SEBert (Keskar et al., 2019) can be regarded as
the independent approach, where the probabilities
of the start and end positions are calculated sepa-
rately with different representations. DCN (Xiong
et al., 2017), R-NET (Wang et al., 2017), BiDAF1

(Seo et al., 2017), Match-LSTM (Wang and Jiang,
2017), S-Net (Tan et al., 2018), SDNet (Zhu et al.,
2018), and HAS-QA (Pang et al., 2019) belong
to the conditional approach. The probabilities are
generated in sequence.

The conditional approach empirically has an ad-
vantage over the independent approach. However,
the output distributions of the previous conditional
approaches are two probability vectors. It ignores
some more possible start-end pairs. As an exten-
sion, every possible start (or end) position should
have an end (or start) probability vector. Thus, the
output conditional probabilities is a matrix.

We propose a Matrix-based Prediction approach
(MaP) based on the above consideration in this pa-
per. As Figure 1 shown, the key point is to consider
as many probabilities as possible in training and
inference phases. Specifically, we calculate a con-
ditional probability matrix instead of a probability
vector to expand the choices of start-end pairs. Be-
cause of more values contained in a matrix than a
vector, there is a big challenge in the training phase
of the MaP. That is the high computational cost and
memory issues if the input sequence is long. As
an instance, the matrix contains 262,144 probabil-
ity values if the sequence length is 512. Therefore,
we propose a sampling-based training strategy to
speed up the training and reduce the memory cost.

The main contributions of our work are four-
fold.

• A novel conditional approach is proposed to
address the limitation of the probability vec-
tor generated by the vector-based conditional
approach. It increases the likelihood of hitting
the ground-truth start and end positions.

• A sampling-based training strategy is pro-
1We classify BiDAF as a conditional approach by its offi-

cial implementation: https://github.com/allenai/
bi-att-flow

posed to overcome the computation and mem-
ory issues in the training phase of the matrix-
based conditional approach.

• An ensemble approach on both start-to-end
and end-to-start directions of conditional prob-
ability is investigated to improve the accuracy
of the answer span.

• We evaluate our strategy on SQuAD 1.1 and
three other question answering benchmarks.
The implementation of the matrix-based con-
ditional approach is designed based on the
BERT and BiDAF, which are the most com-
petitive models, to test the generalization of
our strategy. The consistent improvements in
all datasets demonstrate the effectiveness of
the strategy.

2 Methodology

In this section, we first give the problem definition.
Then we introduce a typical vector-based condi-
tional approach. Next, we mainly introduce our
matrix-based conditional approach and sampling-
based training strategy. Finally, an ensemble ap-
proach on both start-to-end and end-to-start direc-
tions of conditional probability is discussed.

2.1 Problem Statement
Given the passage P = {t1, t2, · · · , tn} and the ques-
tion Q = {q1,q2, · · · ,qm}, the span extraction task
needs to extract the continuous subsequence A =
{ts, · · · , te} (1≤ s≤ e≤ n) from the passage as the
right answer to the question, where n and m are
the length of the passage and question respectively,
s and e are the start and end position in the pas-
sage. Usually, the objective to predict a = (s,e) is
maximizing the conditional probability p(a|P,Q).

2.2 A Typical Vector-based Approach
We summarize a typical implementation of the
vector-based conditional approach shown in Fig-
ure 2. Previous mentioned R-NET, BiDAF, Match-
LSTM, S-Net, and SDNet can be regarded as such
implementation. Its backbone is the Pointer Net-
work proposed by Vinyals et al. (2015). The inter-
active representation H ∈ Rn×d between the given
question Q and passage P is calculated as follows,

H =M(Q,P), (1)

where M is a neural network, e.g., Match-LSTM,
QANet, BERT, and XLNet, d is the dimension size

https://github.com/allenai/bi-att-flow
https://github.com/allenai/bi-att-flow
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Figure 2: A typical implementation of the vector-based
conditional approach.

of the representation. After generating the interac-
tive representation, the next step is to predict the
answer span.

The main architecture of the span prediction is
an RNN. As an instance, LSTM is used in (Wang
and Jiang, 2017), and GRU is adopted in (Tan et al.,
2018; Zhu et al., 2018). Take the hidden representa-
tion he ∈ Rk of end position as an example, which
is calculated as follows,

he = RNN(hs,ce), (2)

ce = H>ps, (3)

where ps = p(s|H) is the start probability and
ps ∈ Rn, k is the dimension size of he. Then
pe = p(e|s,H)(pe ∈ Rn) can be calculated using
he as follows,

p(e|s,H) = softmax
(

v>tanh
(
VH>+ JWeheKn))

(4)

where J·Kn is an operation that generates a matrix
by repeating the vector on the left n times, v ∈ Rl ,
V ∈ Rl×d , and We ∈ Rl×k are parameters to be
learned.

The calculation of p(s|H) is similar to p(e|s,H).
The key is to obtain the hidden state hs. A choice
is to use an attention approach to condense the
question representation into a vector. The process
is as follows,

pinit = softmax
(

v>Q tanh
(
VQH>Q

))
, (5)

hs = H>Q pinit , (6)

where HQ ∈Rm×d is the representation correspond-
ing to Q, vQ ∈ Rl , and VQ ∈ Rl×d are parameters.

Η

i

Η P
n[ ]iH 

 

 

Figure 3: Matrix-based conditional approach.

There is a vast number of works on MRC. How-
ever, most of these works focus on the design of M
and generate the answer span based on the vector-
based conditional approach. In this paper, we ex-
pand the vector to a probability matrix. Thus, many
more possibilities can be covered. It is also a natu-
ral manner because that every start (or end) position
should have an end (or start) probability vector.

2.3 Matrix-based Conditional approach

As the previous description, the implementation of
the vector-based conditional approach has a uni-
fied and important implementation step: create a
‘condition’. Take the forward direction (‘condition’
constructed from the start position to end position)
of the vector-based conditional approach as an ex-
ample, the ‘condition’ is the probability vector ps.
The end probability vector pe can not be calcu-
lated until generating ps. However, there is only
one probability vector pe whatever the start posi-
tion is. In this paper, we keep the ‘condition’ step
but propose calculating an individual pe for each
start position. Specifically, the probability matrix
Pe ∈ Rn×n is calculated as follows,

P(i)
e = softmax

(
v>tanh

(
V
[

H>;
r(

H[i]
)>zn

]))
(7)

where P(i)
e denotes the i-th row of Pe, [; ] is a con-

catenate operation, J·Kn is an operation that gener-
ates a matrix by repeating the vector on the left n
times, [i] means to choose the i-th row from the
matrix H, v ∈ Rl and V ∈ Rl×2d are parameters.
Figure 3 illustrates the calculation process of Eq.
(7).

Although the calculation is brief and can cover
more probabilities than the vector-based approach,
there is a big question on computation cost and
memory occupation. The main computation cost
comes from the matrix multiplication between V

and
[

H>;
r(

H[i]
)>zn

]
in Eq. (7), totally n times
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such computation for Pe. The number of probabil-
ities is also n times bigger than the vector-based
conditional approach. It also causes the issue of out
of memory (OOM), especially with a big n, due
to intermediate gradient values needing cache in
the training phase. We propose a sampling-based
training strategy to solve the above issues.

2.4 Sampling-based Training Strategy
In order to train the probability matrix effectively,
we propose a sampling-based strategy in the train-
ing phase. Given the hyper-parameter k, we first
choose the indexes Î of top k−1 possibilities from
p(-ŝ)s ,

Î = top
(

p(-ŝ)s ,k−1
)
, (8)

where top(p,v) is an operation used to get the in-
dexes of top v values in p, p(-w) contains all but
w-th value of p, and ŝ is the truth start position
used as the supervised information in the training
phase. Then, the ŝ must merge to Î,

I = Î+{ŝ}, (9)

where I contains k indexes.
Eq. (8) and Eq. (9) promise that the sampled

start probabilities must contain and only contain
the target probability which we need to train in each
iteration. The target probability is the ŝ-th value in
ps, and the bigger, the better.

After sampling the start probability vector, the
computation cost of Pe decrease. For each i∈ I , ex-
ecuting Eq. (7) repeatedly can generate a sampling-
based end probability matrix. It is noted that this
sampling-based matrix is a part of the original Pe.
We refer to it as P̃e, and P̃e ∈ Rk×n. It is still a
big issue of computation cost and memory occupa-
tion for P̃e with a long sequence. So, we carry out
similar operations in Eq. (8) and Eq. (9) for each
row of P̃e using ê instead of ŝ, where ê is the end
truth position. Finally, the sampling-based matrix
P̂e ∈ Rk×k is generated. It is small enough to train
compared with Pe. Figure 4 shows the sampling
results colored with a yellow background on the
left and corresponding ground truth matrix on the
right.

2.5 Training
In the training phase, the objective function is to
minimize the cross-entropy error averaged over
start and end positions,

L=
1
2
(Ls +Le), (10)

  
      

Ground Truth

i

j e

eP

s



Figure 4: A sampling of probability matrix. Left: the
calculated probability matrix with sampled top four po-
sitions (in both row and column directions colored with
yellow background). Right: the ground truth matrix,
where position (ŝ, ê) with the red background has prob-
ability 1.

Ls =−
1
N

N

∑
i=1

(
I(ŝ)

(
log(ps)

)>)
, (11)

Le =−
1
N

N

∑
i=1

(
T
(
I(ŝ, ê)

)(
log
(
T (P̂e)

))>)
,

(12)

where N is the number of data, I(ŝ) means the one-
hot vector of ŝ, I(ŝ, ê) means a zero matrix with a
value of 1 in row ŝ and column ê, and T () is a row
wise flatten operation. The flatten operation makes
the loss function on matrix-based distribution simi-
lar to that on vector-based distribution.

As the introduction of the sampling-based train-
ing strategy, there are limited end probabilities that
could be trained in each iteration. The extreme
situation is k equals to n, which makes all proba-
bility matrix calculate each time. As our previous
argumentation, it is almost impossible for time and
memory limitations. However, there is a question
of what makes sampling strategy works. The fol-
lowing content gives some explanation based on
gradient backpropagation.

The gradient of the cross-entropy L∗ to the pre-
dicted logits z∗ is,

∂L∗
∂ z∗

=

{
p(i)∗ −1, if i is the ground-truth;

p( j)
∗ , others

(13)

where p∗ = softmax(z∗) is probabilities in which
values are between 0 and 1 (exclusion). Thus
p(i)∗ − 1 is negative, and p( j)

∗ is positive in most
cases. As the parameters θ update usually follows
θt = θt−1−η ·∇θL(θ) and learning rate η is a
positive value, the probability in ground-truth po-
sition should go up, and the probabilities in other
sampled positions should go down.
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Itera�on #2

Itera�on #3

Figure 5: Sampling-based probabilities training (k = 5).
Block with red color is the ground-truth, blocks with
blue color are the sampled probabilities. Probabilities
with a gray background will not change their values in
each iteration.

Figure 5 illustrates the sampling-based training
process, where the parameter k is set to 5. It means
that there are extra top-4 probabilities (blue back-
ground) except ground-truth (red background) will
be chosen to calculate. With the iteration going
from #1 to #3, the probability in ground-truth po-
sition goes up, and that in sampled top-4 positions
goes down. Such a sampling-based training ap-
proach has the same goal with the training on the
whole probabilities, thus should have proximity
results.

2.6 Ensemble for Inference
The vector-based conditional approach usually
searches the span (s,e) via the computation of
p(i)s × p( j)

e under the condition of i≤ j, and choices
the (i∗, j∗) with the highest p(i

∗)
s × p( j∗)

e as the out-
put in the inference phase. The matrix-based con-
ditional approach follows the same idea, but the
calculation of the probability is p(i)s ×P(i, j)

e instead
of p(i)s × p( j)

e . The p(i)s is the i-th probability in ps,
and P(i, j)

e is the probability in row i, column j of
Pe.

The above inference strategy only involves one
direction, e.g., start-to-end direction (generate start
position firstly, then generate end position), which
is the most cases in previous works. An ensemble
of both start-to-end and end-to-start directions is
a good choice to improve the performance. The
difference in end-to-start direction is that Eqs. (7-
12) should be repeated in the opposite direction.
In other words, the start is replaced by e, and
the end is replaced by s. Totally, there are two
groups of probabilities, (ps,Pe) and (pe,Ps). In
this paper, we design a type of ensemble strategy,
which first chooses top k pairs F = {(i f , j f )} with

Algorithm 1 MaP Training Algorithm

Input: N pairs of passage P and question Q, k
used to choose top probabilities;

Output: Learned MaP model
1: Initialize all learnable parameters Θ;
2: repeat
3: Select a batch of pairs from corpus;
4: for each pair (P,Q) do
5: Use a neural network M to generate the

representation H; (Eq. 1)
6: Compute start probability vector ps;

(Eqs. 4-6)
7: Sample indexes I by choosing top k−1

probabilities of ps; (Eqs. 8,9)
8: Compute end probability matrix Pe;

(Eq. 7)
9: Compute objective L; (Eq. 10-12)

10: end for
11: Use the backpropagation algorithm to up-

date parameters Θ by minimizing the objec-
tive with the batch update mode

12: until stopping criteria is met

highest probability p(i f )
s × P(i f , j f )

e , then chooses
top k pairs B = {( jb, ib)} with highest probabil-
ity p( jb)

e ×P( jb,ib)
s . It is noted that some pairs may

have the same position, e.g., (3 f ,5 f ) and (5b,3b).
If there are the same elements, we prune away them
in B. Then, we choose the (i∗, j∗) with highest prob-
ability in F∪B.

The overall training procedure of MaP is sum-
marized in Algorithm 1.

3 Experiments

In this section, we conduct experiments to evaluate
the effectiveness of the proposed MaP.

3.1 Datasets

We first evaluate our strategy on SQuAD 1.1, which
is a reading comprehension benchmark. The bench-
mark benefits to our evaluation compared with its
augmented version SQuAD 2.0 due to its questions
always have a corresponding answer in the given
passages. We also evaluate our strategy on three
other datasets from the MRQA 2019 Shared Task2:
NewsQA (Trischler et al., 2017), HotpotQA (Yang
et al., 2018), Natural Questions (Kwiatkowski et al.,
2019). As the SQuAD 1.1 dataset, the format of

2https://github.com/mrqa/
MRQA-Shared-Task-2019

https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/mrqa/MRQA-Shared-Task-2019
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Models
SQuAD NewsQA HotpotQA Natural Questions

EM F1 EM F1 EM F1 EM F1
BERT-Base InD 81.24 88.38 52.59 67.12 59.01 75.69 67.31 78.96

MaPF 81.78 88.59 52.66 66.50 59.82 75.81 67.68 78.99
MaPE 82.12 88.63 53.06 67.37 60.55 76.12 68.21 79.09

BERT-Large InD 84.05 90.85 54.46 69.61 62.26 78.18 69.44 80.93
MaPF 84.50 90.89 54.84 68.73 63.19 78.99 69.56 80.49
MaPE 84.79 90.89 55.29 69.98 63.70 79.25 69.91 81.22

BiDAF VCP 68.57 78.23 44.04 58.07 47.31 62.42 56.95 68.79
MaPF 68.85 78.06 44.19 58.65 50.25 65.21 57.04 68.87
MaPE 69.55 78.91 44.25 58.91 51.45 66.74 57.21 69.08

Table 1: The performance (%) of EM and F1 on SQuAD 1.1 and three MRQA extractive question answering tasks.
MaPF is the matrix-based conditional approach calculating on start-to-end direction. MaPE means the ensemble of
both directions of matrix-based conditional approach. InD denotes the independent approach. VCP is vector-based
conditional approach.

the task is extractive question answering. It con-
tains no unanswerable or non-span answer ques-
tions. Besides, the fact that these datasets vary in
both domain and collection pattern benefits for the
evaluation of our strategy on generalization across
different data distributions. Table 2 shows the statis-
tics of these datasets.

Dataset Training Development
SQuAD 1.1 86,588 10,507
NewsQA 74,160 4,212
HotpotQA 72,928 5,904
Natural Questions 104,071 12,836

Table 2: The statistics of datasets.

3.2 Baselines
To validate the effectiveness and generalization of
our proposed strategy on the span extraction, we
implement it using two strong backbones, BERT
and BiDAF. Specifically, we borrow their main bod-
ies except the top layer to implement the proposed
strategy to finish the span extraction on different
datasets. Some more tests on other models, e.g.,
XLNet (Yang et al., 2019) and SpanBERT (Joshi
et al., 2019), and datasets will be our future work.

• BERT: BERT is an empirically powerful lan-
guage model, which obtained state-of-the-art
results on eleven natural language processing
tasks in the past (Devlin et al., 2019). The orig-
inal implementation in their paper on the span
prediction task belongs to the independent ap-
proach. Both BERT-base and BERT-large with

uncased pre-trained weights are used in com-
parison to investigating the effect of the ability
of language model on span extraction with dif-
ferent prediction approaches.

• BiDAF: BiDAF is used as a baseline of the
vector-based conditional approach (Seo et al.,
2017). The use of a multi-stage hierarchi-
cal process and a bidirectional attention flow
mechanism makes its representation powerful.

There are four strategies of span extraction in-
volved in our comparison: InD denotes the inde-
pendent approach; VCP is the vector-based condi-
tional approach; MaPF is our matrix-based condi-
tional approach calculating on start-to-end direc-
tion; MaPE means the ensemble of both directions
of matrix-based conditional approach. The InD is
used to compare with MaPF and MaPE in BERT,
and the VCP is used to compare with MaPF and
MaPE in BiDAF.

3.3 Experimental Settings
We implement the BERT and BiDAF following
the official settings for a fair comparison. For the
BERT, we train for 3 epochs with a learning rate
of 5e-5 and a batch size of 32. The max sequence
length is 384 for SQuAD 1.1 and 512 for other
datasets, and a sliding window of size 128 is used
for all datasets is the sentence is longer than the
max length. For the BiDAF, we keep all original
settings except a difference that we use ADAM
(Kingma and Ba, 2015) optimizer with a learn-
ing rate of 1e-3 in the training phase instead of
AdaDelta (Zeiler, 2012) for a stable performance.
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Following the work from (Rajpurkar et al., 2016),
we evaluate the results using Exact Match (EM) and
Macro-averaged F1 score. The sampling parameter
k is set to 20 for our strategy. We implement our
model in python using the pytorch-transformers
library3 for BERT and the AllenNLP library4 for
BiDAF. The reported results are average scores of 5
runs with different random seeds. All computations
are done on 4 NVIDIA Tesla V100 GPUs.

3.4 Main Results

The results of our strategies as well as the base-
lines are shown in Table 1. All these values come
from the evaluation of the development sets in each
dataset due to the test sets are withheld. Neverthe-
less, our strategy achieves a consistent improve-
ment compared with the independent approach and
the vector-based conditional approach. The values
with a bold type mean the winner across all strate-
gies. As we can observe, the MaPE wins 16 out of
16 in both BERT-base and BERT-large groups. It
proves that the ensemble of both directions is help-
ful for the span extraction. In the BiDAF group, The
MaPE is also the best on all datasets compared with
VCP. It shows the robustness of our matrix-based
conditional approach in language models. The fact
that the MaPF wins 12 out of 12 in EM, and 8 out
of 12 in F1 demonstrates that the matrix-based con-
ditional approach is capable of predicting a clean
answer span that matches human judgment exactly.
We suppose the reason is that more start-end posi-
tion pairs considered in the probability matrix can
enhance the interaction and constraint between the
start and end, thus, make the MaPF perform more
consistently in EM than in F1.
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Figure 6: EM and F1 of MaPF and VCP based on
BiDAF under different answer length.

3https://github.com/huggingface/
pytorch-transformers

4https://github.com/allenai/allennlp

3.5 Strategy Analysis
Figure 6 shows how the performance changes with
respect to the answer length, which is designed
on HotpotQA. We can see that the matrix-based
conditional approach works better than the vector-
based conditional approach as the span decrease in
length. Since the short answers have a high rate in
all answer spans, so the matrix-based conditional
approach is better for the answer span task. In other
words, this observation supports the ensemble of
both directions as E does. The MaPE combining the
MaPF ’s advantage in short answers and the VCP’s
advantage in long answers can get a better result
than any of them.
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Figure 7: Impact of hyper-parameter k in MaPF on
SQuAD 1.1 with BERT-base as the backbone.

We investigate the impact of k used to choose
the top probabilities in the training phase. The re-
sults are shown in Figure 7. With the increase of k,
the EM and F1 show a downtrend. The best perfor-
mance happens at k = 20. We guess that choosing
more probabilities makes the training difficult and
brings extra noises to the candidate positions. E.g.,
if k is set to 30, the number of candidate probabili-
ties will be 900, which is larger than the sequence
length 512 in vector-based conditional approach.
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We analyze the convergence of the sampling-

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://github.com/allenai/allennlp
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based training strategy on SQuAD 1.1. Due to the
effectiveness of the sampling-based training strat-
egy is proved in MaP, we conduct an further experi-
ment under the VCP to prove its generalization. Fig-
ure 8 demonstrates the results. As our expectation,
the sampling-based training strategy optimizes the
model as training in whole samples. However, it
will cost longer training steps to get the same loss
compared with standard training. So our sampling-
based training strategy is good for the training of
the matrix-based conditional approach.

4 Related Work

Machine reading comprehension is an important
topic in the NLP community. More and more neu-
ral network models are proposed to tackle this
problem, including DCN (Xiong et al., 2017), R-
NET (Wang et al., 2017), BiDAF (Seo et al., 2017),
Match-LSTM (Wang and Jiang, 2017), S-Net (Tan
et al., 2018), SDNet (Zhu et al., 2018), QANet (Yu
et al., 2018), HAS-QA (Pang et al., 2019). Among
various MRC tasks, span extraction is a typical task
that extracting a span of text from the correspond-
ing passage as the answer of a given question. It
can well overcome the weakness that words or en-
tities are not sufficient to answer questions (Liu
et al., 2019).

Previous models proposed for span extraction
mostly focus on the design of architecture, espe-
cially on the representation of question and pas-
sage, and the interaction between them. There are
few works devoted to the top-level design of span
output, which refers to the probabilities generation
from the representation. We divide the previous top-
level design into two categories, independent ap-
proach and conditional approach. The independent
approach is to predict the start and end positions in
the given passage independently (Kundu and Ng,
2018a; Yu et al., 2018). Although the independent
approach has a simple assumption, it works well
when the input features are strong enough, e.g.,
combining with BERT (Devlin et al., 2019), XL-
Net (Yang and Song, 2019), and SpanBERT (Joshi
et al., 2019). Nevertheless, since there is a kind of
dependency relationship between start and end po-
sitions, the conditional approach has advancements
over the independent approach.

A typical work on the conditional approach
comes from Wang and Jiang (2017). They proposed
two different models based on the Pointer Network.
One is the sequence model which produces a se-

quence of answer tokens as the final output, and
another is the boundary model which produces only
the start token and the end token of the answer. The
experimental results demonstrate that the boundary
model (span extraction) is superior to the sequence
model on both EM and F1. The R-NET (Wang
et al., 2017), BiDAF (Seo et al., 2017), S-Net (Tan
et al., 2018), SDNet (Zhu et al., 2018) have the
same output layer and inference phase with the
boundary model in (Wang and Jiang, 2017). Lee
et al. (2016) presented an architecture that builds
fixed length representations of all spans in the pas-
sage with a recurrent network to address the answer
extraction task. The computation cost is decided
by the max-length of the possible span and the se-
quence length. The experimental results show an
improvement on EM compared with the endpoints
prediction that independently predicts the two end-
points of the answer span.

However, previous works related to the condi-
tional approach are always based on a probabil-
ity vector. We investigate another possible matrix-
based conditional approach in this paper. Besides,
a well-matched training strategy is proposed to our
approach, and forward and backward conditional
possibilities are also integrated to improve the per-
formance.

5 Conclusion

In this paper, we first investigate different ap-
proaches of span extraction in MRC. To improve
the current vector-based conditional approach, we
propose a matrix-based conditional approach. More
careful consideration of the dependencies between
the start and end positions of the answer span
can predict their values better. We also propose
a sampling-based training strategy to address the
training process of the matrix-based conditional
approach. The final experimental results on a wide
of datasets demonstrate the effectiveness of our
approach and training strategy.
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