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Abstract

Document alignment aims to identify pairs of
documents in two distinct languages that are
of comparable content or translations of each
other. Such aligned data can be used for a va-
riety of NLP tasks from training cross-lingual
representations to mining parallel data for ma-
chine translation. In this paper we develop an
unsupervised scoring function that leverages
cross-lingual sentence embeddings to compute
the semantic distance between documents in
different languages. These semantic distances
are then used to guide a document alignment
algorithm to properly pair cross-lingual web
documents across a variety of low, mid, and
high-resource language pairs. Recognizing
that our proposed scoring function and other
state of the art methods are computationally
intractable for long web documents, we uti-
lize a more tractable greedy algorithm that per-
forms comparably. We experimentally demon-
strate that our distance metric performs better
alignment than current baselines outperform-
ing them by 7% on high-resource language
pairs, 15% on mid-resource language pairs,
and 22% on low-resource language pairs.

1 Introduction

While the Web provides a large amount of mono-
lingual text, cross-lingual parallel data is more
difficult to obtain. Despite its scarcity, parallel
cross-lingual data plays a crucial role in a variety
of tasks in natural language processing such as
machine translation. Previous works have shown
that training on sentences extracted from parallel
or comparable documents mined from the Web can
improve machine translation models (Munteanu
and Marcu, 2005) or learning word-level transla-
tion lexicons (Fung and Yee, 1998; Rapp, 1999).
Other tasks that leverage these parallel texts include
cross-lingual information retrieval, document clas-
sification, and multilingual representations such as
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Figure 1: Documents in a source and target langauge
in the same web-domain. Solid lines indicate cross-
lingual document pairs.

XLM (Lample and Conneau, 2019). Document
alignment is a method for obtaining cross-lingual
parallel data that seeks to pair documents in dif-
ferent languages such that pairs are translations or
near translations of each other. As seen in Figure 1,
this involves a one-to-one pairing of documents
in a source language with documents in a target
language.

To automate and scale the process of identifying
these documents pairs, we introduce an approach to
accurately mine comparable web documents across
a variety of low, mid, and high-resource language
directions. Previous approaches have been applied
to homogeneous corpora, however mining the Web
involves analyzing a variety of heterogeneous data
sources (Koehn et al., 2002). Other approaches rely
on corpus-specific features such as metadata and
publication date which can be inconsistent and un-
reliable (Munteanu and Marcu, 2005; Abdul-Rauf
and Schwenk, 2009). Related methods utilize docu-
ment structure when calculating document similar-
ity (Resnik and Smith, 2003; Chen and Nie, 2000).
However, when mining large, unstructured collec-
tions of web documents these features are often
missing or unreliable. As such, we introduce an
approach that aligns documents based solely on
semantic distances between their textual content.

For our approach, we first decompose docu-
ments into sentences, and encode each sentence
into a cross-lingual semantic space yielding a bag-
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of-sentences representation. Utilizing the dense,
cross-lingual representation of sentences, we then
compute document distances using a variant of
earth mover’s distance where probability mass is
moved from the source document to the target doc-
ument. We then leverage these document distances
as a guiding metric for identifying cross-lingual
document pairs and demonstrate experimentally
that our proposed method outperforms state-of-the-
art baselines that utilize cross-lingual document
representations.

2 Related Works

Crawling and mining the web for parallel data
has been previously explored by Resnik (1999)
where the focus is on identifying parallel text from
multilingual data obtained from a single source.
For example, parallel corpora were curated from
the United Nations General Assembly Resolu-
tions (Rafalovitch et al., 2009; Ziemski et al., 2016)
and from the European Parliament (Koehn, 2005).
However, curating from homogeneous sources by
deriving domain-specific rules does not generalize
to arbitrary web-domains.

Other approaches rely on metadata for min-
ing parallel documents in unstructured web cor-
pora. Some methods leveraged publication date
and other temporal heuristics to identifying paral-
lel documents (Munteanu and Marcu, 2005, 2006;
Udupa et al., 2009; Do et al., 2009; Abdul-Rauf
and Schwenk, 2009). However, temporal features
are often sparse, noisy, and unreliable. Another
class of alignment methods rely on document struc-
ture (Resnik and Smith, 2003; Chen and Nie, 2000)
yet these structure signals can be sparse and may
not generalize to new domains.

In the WMT-2016 bilingual document alignment
shared task (Buck and Koehn, 2016a), many tech-
niques were proposed to retrieve, score, and align
cross-lingual document pairs. However this shared
task only considered English to French — a high-
resource direction and the proposed techniques
were not readily extendable to more languages.

Several approaches translate the target corpus
into the source language, then apply retrieval and
matching approaches on translated 2-grams and 5-
grams to query, retrieve, and align documents (Dara
and Lin, 2016; Gomes and Lopes, 2016). These
methods rely on high-quality translation systems to
translate, however such models may not exist, es-
pecially for low-resource language directions. Ad-
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ditionally, these methods leverage rare n-grams to
identify likely candidates, yet low-frequency words
and phrases that are likely to be mistranslated by
machine translation systems.

In the shared task, many document similarity
measures were investigated for use in aligning En-
glish to French web documents. One method uti-
lized a phrase table from a phrase-based statistical
machine translation system to compute coverage
scores, based on the ratio of phrase pairs covered by
a document pair (Gomes and Lopes, 2016). Other
methods utilize the translated content of the target
(French) document, and find the source (English)
corresponding document based on n-gram matches
in conjunction with a heuristic document length
ratio (Dara and Lin, 2016; Shchukin et al., 2016).
Other methods translate the target documents into
the source language and apply cosine similarity
between tf/idf weighted vectors on unigrams and
n-grams (Buck and Koehn, 2016b; Medved et al.,
2016; Jakubina and Langlais, 2016). Finally, sev-
eral methods were introduced that score pairs using
metadata in each document such as links to docu-
ments, URLs, digits, and HTML structure (Espla-
Gomis et al., 2016; Papavassiliou et al., 2016).

Recently, the use of neural embedding methods
has been explored for bilingual alignment of text
at the sentence and document level. One method
proposes using hierarchical document embeddings,
constructed from sentence embeddings, for bilin-
gual document alignment (Guo et al., 2019). An-
other method leverages a multilingual sentence en-
coder to embed individual sentences from each
document, then performs a simple vector average
across all sentence embeddings to form a dense doc-
ument representation with cosine similarity guiding
document alignment (El-Kishky et al., 2019).

Word mover’s distance (WMD) is an adaptation
of earth mover’s distance (EMD) (Rubner et al.,
1998) that has been recently used for document
similarity and classification (Kusner et al., 2015;
Huang et al., 2016; Atasu et al., 2017). Other meth-
ods have leveraged the distance for cross-lingual
document retrieval (Balikas et al., 2018). However
these methods treat individual words as the base
semantic unit for comparison which are intractable
for large web-document alignment.

Finally, sentence mover’s similarity has been
proposed for automatically evaluating machine-
generated texts outperforming ROUGE (Clark
et al., 2019). This method is purely monolingual



and sentence representations are constructed by
summing individual word embeddings.

3 Problem Definition

Given a set of source documents, DD; and a set
of target documents Dy, there exist |Ds| X | Dy
potential pairs of documents of the form (ds, d;).
Let P be the set of all candidate pairs (D x Dy).
Then cross-lingual document alignment aims to
find the largest mapping from source documents to
target documents, P’ C P, s.t. given an Dy and Dy
where, without a loss of generality, |Ds| < |Dy/,
the largest injective function mapping between D
and Dy:

Va,b € Dy, (a,c) € P’ A(byc) €P' = a=1b

In other words, each source document and target
document can only be used in at most a single pair.
This can be seen in Figure 1 where within the same
web-domain, given source and target documents,
the task is to match each source document to a
unique target document where possible.

To find the best possible mapping between Dy
and D; we require two components: 1) a similarity
function ¢(ds, d;) which is used to score a set of
candidate document pairs according to their seman-
tic relatedness; and 2) an alignment or matching
algorithm which uses the scores for each of the
pairs in Dy x Dy to produce an alignment of size
min(|Ds|, | D;|) representing the best mapping ac-
cording to ¢(ds, dy).

4 Cross-Lingual Sentence Mover’s
Distance

WMD fails to generalize to our use case for two
reasons: (1) it relies on monolingual word repre-
sentations which fail to capture the semantic dis-
tances between different language documents (2)
intractability due to long web documents or lack
word boundaries in certain languages.

To address this, we introduce cross-lingual sen-
tence mover’s distance (SMD) and show that rep-
resenting each document as a bag-of-sentences
(BOS) and leveraging recent improvements in mul-
tilingual sentence representations, SMD can better
identify cross-lingual document pairs.

4.1 Cross-Lingual Sentence Mover’s Distance

Our proposed SMD solves the same optimization
problem as WMD, but utilizes cross-lingual sen-
tence embeddings instead of word embeddings as
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the base semantic. In particular, we utilize LASER
sentence representations (Artetxe and Schwenk,
2019). LASER learns to simultaneously embed 93
languages covering 23 different alphabets into a
joint embedding space by training a sequence-to-
sequence system on many language pairs at once
using a shared encoder and a shared byte-pair en-
coding (BPE) vocabulary for all languages. Uti-
lizing LASER, each sentence is encoded using an
LSTM encoder into a fixed-length dense represen-
tation.

We adapt EMD to measure the distance between
two documents by comparing the distributions of
sentences within each document. More specifically,
SMD represents each document as a normalized
bag-of-sentences (nBOS) where each sentence has
associated with it some probability mass. As dis-
tances can be computed between dense sentence
embeddings, the overall document distance can
then be computed by examining how close the dis-
tribution of sentences in the source document is to
sentences in the target document. We formulate
this distance as the minimum cost of transforming
one document into the other.

For our basic formulation of SMD, each docu-
ment is represented by the relative frequencies of
sentences, i.e., for the 7;;, sentence in the document,

da; = cent(i)/|A| (D

where | A| is the total number of sentence in doc-
ument A, and d g ; is defined similarly for document
B. Under this assumption, each individual sentence
in a document is equally important and probabil-
ity mass is allocated uniformly to each sentence.
Later, we will investigate alternative schemes to
allocating probability mass to sentences.

Now let the 7;; sentence be represented by a
vector v; € R™. This length-m dense embedding
representation for each sentence allows us to de-
fine distances between the i;;, and j;, sentences.
We denote A(i, j) as the distance between the i,
and 7, sentences and let V' denote the vocabulary
size where the vocabulary is the unique set of sen-
tences within a document pair. We follow previous
works (Kusner et al., 2015) and use the Euclidean
distance, A(, j) = ||v; — vj||. The SMD between
a document pair is then the solution to the linear
program:

SMD(A, B)

iy D ¢ A

- =1 g5=1

7))



subject to:
1%
iy Tij=da
j=1

1%
Vi Ti;=dp;
=1

Where T € RY*V is a nonnegative matrix,
where each T; ; denotes how much of sentence
1 in document A is assigned to sentences j in docu-
ment B, and constraints ensure the flow of a given
sentence cannot exceed its allocated mass. Specif-
ically, SMD ensures the the entire outgoing flow
from sentence ¢ equals d 4 ;, i.e. Zj Tij = day.
Additionally, the amount of incoming flow to sen-
tence j must match dp j,i.e., ) . T; j = dp ;.

4.2 Alternative Sentence Weighting Schemes

In Equation 1, each document is represented as a
normalized bag-of-sentences (nBOS) where sen-
tences are equally weighted. However, we posit
that some sentences may be more semantically im-
portant than others.

Sentence Length Weighting The first insight
we investigate is that documents will naturally be
segmented into sentences of different lengths based
on the language, content, and choice of segmen-
tation. While Equation 1, treats each sentence
equally, we posit that longer sentences should be
assigned larger weighting than shorter sentences.

As such, we weight each sentence by the num-
ber of tokens in the sentence relative to the total
number of tokens in the entire document, i.e., for
the i;;, sentence in the document A, we compute
the weighting SL(i) as follows:

dai = cnt(i)- |i|)Y ent(s)-|s| (3

sEA

where || and |s| indicate the number of tokens in
sentences ¢ and s respectively. As such, longer sen-
tence receive larger probability mass than shorter
sentences.

IDF Weighting The second insight we inves-
tigate is that text segments such as titles and
navigation text is ubiquitous in crawled data yet
less semantically informative. Based on this in-
sight, we apply a variant of inverse document fre-
quency (IDF) — a weighting scheme common in
the information retrieval space — to individual sen-
tences (Robertson, 2004). Under this scheme, the
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more common a sentence is within a webdomain,
the less mass the sentence will be allocated.

For sentence ¢ in a web-domain D, we compute
IDF() as follows:

D]

dai=1+1 -
A +Og\{deD:zed}\

4

where |{d € D : s € d}| is the number of docu-
ments where the sentence s occurs and smoothing
by 1 is performed to prevent 0 IDF.

SLIDF Weighting Finally, we propose combin-
ing both sentence length and inverse document fre-
quency into a joint weighting scheme:

da; = SL(i) - IDF (i) (5)

In this scheme, each sentence is weighted pro-
portionally to the number of tokens it contains as
well as by the IDF of the sentence within the do-
main. This weighting scheme is reminiscent of the
use of tf-idf to determine word relevance (Ramos
et al., 2003), but instead sentence length and idf are
used to determine sentence importance.

4.3 Fast Distance Approximation

While EMD and other variants have demonstrated
superior performance in many retrieval and classi-
fication tasks, they have also been shown to suffer
from high computational complexity O(p> log p),
where p denotes the number of unique semantic
units in a document pair. As such, we investigate
techniques to speed up this computation.

Relaxed SMD Given the scalability challenges
for computing WMD, simplified version of WMD
was proposed that relaxes one of the two constraints
in the original formulation (Kusner et al., 2015).
Applying the same principle to SMD, we formu-
late:

Vv v
SMD(A,B) = 1%1%1227},]- x A(i,7)

= =1 j=1

subject to: Vi Z;/:l T; ; = da;. Analogous to
the relaxed-WMD, this relaxed problem yields a
lower-bound to the SMD as every SMD solution
satisfying both constraints remains a feasible so-
lution if one constraint is removed. The optimal
solution can be found by simply allocating the mass
in each source sentence to the closest sentence in
the target document.



The same computation can be performed in
the reverse direction by removing the second con-
straint: Vj 3.V T, ; = dp_;. Similarly, the opti-
mal solution allocates the mass sentences in the tar-
get document to the closest sentence in the source
document. Both these distances can be calculated
by computing the distance matrix between all pairs
of sentences in O(p?) time. For a tighter estimate
of distance, the maximum of the two resultant dis-
tances can be used.

Greedy Mover’s Distance We introduce an al-
ternative to the relaxed-EMD variant wherein we
keep both constraints in the transportation problem,
but identify an approximate transportation scheme.
This greedy mover’s distance (GMD) finds the clos-
est sentence pair between the source and target and
moves as much mass between the two sentences as
possible; the algorithm moves to the next closest
until all mass has been moved while maintaining
both constraints.

Algorithm 1: Greedy Mover’s Distance

Input: ds, di, ws, wy
Output: A(d,,d:)

1 pairs < {(ss, st) for ss, 8¢ € ds X di }
in ascending order by ||ss — s¢||

2 distance < 0.0

3 for ss, st € pairs do

4 flow < min(ws[ss], we[st])

5 ws[ss] — ws[ss] — flow

6 we[st] < wyi[s¢] — flow

7 distance < distance + ||ss — s¢|| x flow
8 end

9 return total

As seen in Algorithm 1, the algorithm takes
a source document (ds) and a target document
(d;) as well as the probability mass for the sen-
tences in each: respectively w; and w¢. The al-
gorithm first computes the euclidean distance be-
tween each sentence pair from source to target and
sorts these pairs in ascending order by their eu-
clidean distance. The algorithm then iteratively
chooses the closest sentence pair and moves the
mass of the smallest sentence from the source to
the target and subtracting this moved math from
both. The algorithm terminates when all moveable
mass has been moved. Unlike the exact solution to
EMD, the runtime complexity is a more tractable
O(|ds||d¢| % log(|ds||d¢|)) which is dominated by
the cost of sorting all candidate pairs. Unlike the
relaxation, both constraints are satisfied but the
transport is not necessarily optimal. As such, GMD

yields an upper-bound to the exact computation.

We experimentally compare the effect of both
approximation strategies on downstream document
alignment in Section 7.

5 Document Matching Algorithm

In addition to a distance metric (i.e. SMD), we
need a document matching algorithm to determine
the best mapping between documents in two lan-
guages.

In our case, this works as follows: for any given
webdomain, each document in the source docu-
ment set, Dy is paired with each document in the
target set, Dy, yielding |Ds x Dy| scored pairs — a
fully connected bipartite graph representing all can-
didate pairings. Similar to previous works (Buck
and Koehn, 2016b), the expected output assumes
that each webpage in the non-dominant language
has a translated or comparable counterpart. As vi-
sualized in Figure 1, this yields a min(|Ds|, | Dy|)
expected number of aligned pairs.

While an optimal matching maximizing scor-
ing can be solved using the Hungarian algo-
rithm (Munkres, 1957), the complexity of this algo-
rithm is O(max (| Ds||Dy|)?) which is intractable
to even moderately sized web domains. As such,
similar to the work in (Buck and Koehn, 2016b),
a one-to-one matching between English and non-
English documents is enforced by applying, com-
petitive matching, a greedy bipartite matching al-
gorithm.

Algorithm 2: Competitive Matching

Input: P = {(ds,d:)|ds € Ds,d; € D}
Output: P’ = {(ds,i,d:),...} C P

scored < {(p, score(p)) forp € P}
sorted < sort(scored) in ascending order
aligned <— @
Ss <~ @
St — g
for ds, d; € sorted do
ifds ¢ Ss Ad; ¢ S; then
aligned < aligned U {(ds, d:)}
Ss + SsUds
St «— Sy Ud;

R N N S

—
<

end
return aligned

-
R =

In Algorithm 2, the algorithm first scores each
candidate document pair using a distance function
and then sorts pairs from closest to farthest. The
algorithm then iteratively selects the closest doc-
ument pair as long as the ds and d; of each pair
have not been used in a previous (closer) pair. The
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algorithm terminates when min(|Ds|, | Dy|) pairs
have been selected. Unlike the Hungarian algo-
rithm, the runtime complexity is a more tractable
O(|Ds||Dy| x log(|Ds||Dy|)) which is dominated
by the cost of sorting all candidate pairs.

6 Experiments and Results

In this section, we explore the question of whether
SMD can be used as a dissimilarity metric for the
document alignment problem. Moreover, we ex-
plore which sentence weighting schemes yield the
best results.

6.1 Experimental Setup

Dataset We evaluate on the test set from the
URL-Aligned CommonCrawl dataset (El-Kishky
et al., 2019) across 47 language directions.

Baseline Methods For comparison, we imple-
mented two existing and intuitive document scor-
ing baselines from (El-Kishky et al., 2019). The
direct embedding (DE), directly embeds the entire
content of a document using LASER. The second
method sentence averaging (SA) embeds all sen-
tences in a document using LASER and averages
all embeddings to get a document representation.
Cosine similarity on the embedded representation
is used to compare documents.

SMD Weightings We evaluate four weighting
schemes for SMD: (1) vanilla SMD with each
sentence equally weighted(2) weighting by sen-
tence length (SL) where SMD is computed un-
der a scheme where each sentence is weighted by
its length (number of tokens) normalized by the
length of the entire document (3) weighting by in-
verse document frequence (IDF) where SMD is
computed under a scheme where each sentence is
weighted by the idf of the sentence (4) comput-
ing SMD under a scheme where each sentence is
weighted by both sentence length and inverse docu-
ment frequency (SLIDF). Under all these schemes,
all weights are normalized to unit measure.

Distance approximation We use the greedy
mover’s distance approximation for all variants re-
ported. In Section 7 we further explore the perfor-
mance of the full distance computation and relaxed
variants that were described in Section 4.3.

Evaluation Metric for Document Alignment
Because the ground-truth document pairs only re-
flect a high-precision set of web-document pairs
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that are translations or of comparable content, there
may be many other valid cross-lingual document
pairs within each web-domain that are not included
in the ground truth set. As such, we evaluate each
method’s generated document pairs solely on the
recall (i.e. what percentage of the aligned pages in
the test set are found) from the ground truth pairs.

For each scoring method, we score document
pairs from the source and target languages within
the same web-domain using the proposed docu-
ment distance metrics described above. For the
alignment, we report the performance for each dis-
tance metric after applying the competitive match-
ing alignment algorithm as described in Algo-
rithm 2.

6.2 Results

In Table 1, we first notice that constructing docu-
ment representations by directly embedding (DE)
the entire content of each document and computing
document similarity using cosine similarity of the
representation severely under-performs compared
to individually embedding sentences and construct-
ing the document representations by averaging the
individual sentence representations within the docu-
ment (SA). This is intuitive as LASER embeddings
were trained on parallel sentences and embedding
much larger documents directly using LASER re-
sults in poorer representations than by first embed-
ding smaller sentences and combining them into
the final document representation.

Comparing the basic SMD to the best perform-
ing baseline (SA), we see a 4%, 12%, and 20%
improvement across high, mid, and low-resource
directions respectively. This improvement suggests
that summing sentence embeddings into a single
document representation degrades the quality of the
resultant document distances over computing doc-
ument distances by keeping all sentence represen-
tations separate and computing distances between
individual sentence pairs and combining these dis-
tances into a final document distance. This is more
pronounced in lower-resource over higher-resource
pairs which may be due to poorer lower-resource
embeddings due to LASER being trained on fewer
low-resource sentence pairs. As such averaging
is more destructive to these representations while
SMD avoids this degradation.

Further analysis verified the intuition that differ-
ent sentences should be allocated different weight-
ing in SMD. Assigning mass proportional to the



Recall

Recall Recall

Language DE SA SMD SL IDF SLIDF Language

DE SA SMD SL IDF SLIDF Language

DE SA SMD SL IDF SLIDF

French 0.39 0.84 0.81 0.84 0.83 0.85
Spanish 0.34 0.53 0.59 0.63 0.62 0.64
Russian 0.06 0.64 0.69 0.69 0.70 0.71
German 0.52 0.74 0.78 0.76 0.77 0.77
Ttalian 0.22 047 0.55 0.56 0.56 0.59
Portuguese 0.17 0.36 0.39 0.41 0.38 0.40
Dutch 0.28 049 0.54 0.54 0.54 0.56 Croatian 0.16 0.37
Indonesian 0.11 0.47 0.49 0.52 0.51 0.53  Slovak 0.20 0.41
Polish 0.17 0.38 0.45 045 046 046 Thai 0.02 0.19
Turkish 0.12 0.38 0.52 0.56 0.57 0.59 Hebrew 0.05 0.18
Swedish  0.19 0.40 0.44 0.44 046 045 Hindi 0.04 0.27
Danish 0.27 0.62 0.63 0.69 0.65 0.69 Hungarian 0.15 0.49
Czech 0.15 040 0.43 0.44 044 043 Lithuanian 0.11 0.73
Bulgarian 0.07 043 0.52 0.54 0.55 0.52  Slovenian 0.13 0.33
Finnish 0.06 0.47 0.51 0.51 0.54 0.52  Persian 0.06 0.32
Norwegian 0.13 0.33 0.37 0.39 042 041

Romanian  0.15 0.40
Vietnamese 0.06 0.28
Ukrainian  0.05 0.68
Greek 0.05 0.31
Korean 0.06 0.34
Arabic 0.04 0.32

0.44 043 045 043
029 0.29 0.29 0.32
0.67 0.78 0.78 0.82
0.47 048 0.49 0.49
0.60 0.54 0.61 0.60 Urdu 0.06 0.22 0.60 0.60 0.49 0.56

Estonian 0.28 0.52 0.69 0.66 0.74 0.72
Bengali 0.05 0.32 0.78 0.72 0.77 0.79
Albanian ~ 0.23 0.56 0.66 0.65 0.65 0.66
Macedonian 0.02 0.33 0.32 0.36 0.38 0.33

Serbian 0.06 0.59 0.75 0.74 0.74 0.71
Azerbaijani 0.08 0.34 0.74 0.74 0.75 0.74
Armenian  0.02 0.18 0.32 0.35 0.34 0.38
Belarusian  0.07 0.47 0.67 0.69 0.73 0.71
Georgian ~ 0.06 0.24 0.46 0.48 045 045
Tamil 0.02 0.20 0.51 045 0.51 0.53
Marathi 0.02 0.11 043 0.46 0.33 0.39
Kazakh 0.05 0.31 0.44 0.46 045 0.45
Mongolian  0.03 0.13 0.18 0.22 0.21 0.23
Burmese 0.01 0.10 0.26 0.33 0.46 0.46
Bosnian 0.18 0.64 0.61 0.69 0.65 0.72

AVG 0.20 0.50 0.54 0.56 0.56 0.57 AVG 0.09 0.37

0.49 0.50 0.52 052 AVG 0.08 0.33 0.53 0.54 0.54 0.55

(a) High-resource directions.

(b) Mid-resource directions.

(c) Low-resource directions.

Table 1: Alignment recall on URL-aligned CommonCrawl dataset.

number of tokens in the sentence (SL), we see a
2%, 1% and 1% absolute improvement in recall in
high, mid, and low-resource directions over assign-
ing equal probability mass. This supports the claim
that longer sentences should be allocated higher
importance weight over shorter sentences as they
contain more semantic content. The second as-
sumption we investigated is that sentences that are
common within a webdomain have less semantic
importance and should be allocated less probabil-
ity mass when computing SMD. After computing
SMD with each sentence allocated mass according
to inverse document frequency (IDF) and normal-
ized to unit measure, we see a 2%, 3%, and 1%
improvement over SMD for high, mid, and low-
resource directions. Finally, when combining both
sentence length and inverse document frequency
(SLIDF) and normalizing to unit measure, we see
a 3%, 3% and 2% absolute improvement in recall
for high, mid, and low-resource directions. Overall,
our SMD with SLIDF weighting scheme outper-
forms the sentence averaging baseline by 7% on
high-resource directions, 15% on mid-resource di-
rections, and 22% on low-resource directions.

7 Discussion

Although using sentences over words as the base
semantic unit drastically reduces the overall cost of
computing EMD-based metrics, the cubic compu-
tation still prohibits its use as a fast distance metric
for large-scale alignment efforts. As such, in Sec-
tion 4.3 we described two faster approximations to
EMD computation: (1) a relaxation of constraints
resulting in a lower bound and (2) a greedy algo-

rithm for computing assigning transport represent-
ing an upper bound. We first analyze and compare
the distances from each approximation scheme to
the exact SMD computation.

Method Tau Recall MAE Runtime (s)
Exact-SMD 1.00 0.69 0.000 0.402
Relaxed-SMD  0.70 0.58 0.084 0.031
Greedy-SMD  0.98 0.69 0.010 0.107

Table 2: Comparing exact SMD computation to approx-
imation schemes for computing SMD on 10 webdo-
mains.

In Figure 3, we see that the distance computa-
tions for exact SMD and the greedy SMD approx-
imation are highly correlated with small variance,
while the relaxed approximation is less so with
high variance. Additionally, as discussed in Sec-
tion 4.3, the visualizations empirically suggest that
our greedy approximation is a fairly tight upper
bound while the relaxed approximation is a looser
lower bound.

In Table 2, we compare quantitative metrics for
the relaxed and greedy approximations to the exact
solution of SMD on ten webdomains. Our first eval-
uation investigates how the approximate computa-
tion of distances affects the resultant ordering of
document pairs. For the ten selected webdomains,
we sort the document pairs in order by their com-
puted distances and compare the ordering to the
ordering induced by the exact computation of SMD.
We evaluate the orderings using the Kendall-Tau
metric (Kendall, 1938) which measures the agree-
ment between the two rankings; if the agreement
between the two rankings is perfect (i.e., the two
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Figure 3: Exact, relaxed, and greedy-SMD distances
sorted by Exact-SMD for a random selection of docu-
ment pairs.

rankings are the same) the coefficient has value 1
and if the disagreement between the two rankings is
perfect (i.e., one ranking is the reverse of the other)
the coefficient has value -1. Intuitively, we would
like the distances computed by an approximation to
induce a similar ordering to the ordering by the ex-
act distance computation. Comparing the Kendall-
Tau for the relaxed and greedy approximations in
relation to the exact computation shows that the
order induced by the greedy approximation is very
similar to the ordering induced by the exact com-
putation while the relaxed approximation varies
considerably. Additionally, the relaxed approxima-
tion demonstrates fairly high mean absolute error
(MAE) and results in lower document alignment
recall when compared to the exact computation of
SMD, while our greedy approximation performs
comparably and shows insignificant MAE. Finally,
while the runtime of the relaxed computation is the
fastest at 13 times faster than the exact computa-
tion, our greedy algorithm is approximately 4 times
faster while delivering comparable document align-
ment performance to the exact computation and
superior performance to the relaxed computation.

To ensure that the greedy algorithm consistently
outperforms the relaxed algorithm on document
alignment, we investigate the effect of using each

approximation method on the downstream docu-
ment alignment performance across 47 language
pairs of varying resource availability.

Approximation Low Mid High All
Relaxed-SMD 044 043 050 046
Greedy-SMD 054 050 056 054

Table 3: Document alignment performance of fast
methods for approximating the same variant of SMD.

As seen in Figure 2, in 45 of the 47 evaluated
language pairs, our proposed Greedy Mover’s Dis-
tance approximation yielded higher downstream
recall in our alignment task over using the relaxed
distance proposed for use in WMD (Kusner et al.,
2015). In Table 3, we see a 10%, 7%, and 6% im-
provement in downstream recall across low, mid,
and high-resource directions respectively. These
results indicate that relaxing one of the two con-
straints in EMD is too lax for measuring an accurate
distance. We posit this is because there are many
sentences that can be considered “hubs” that are
semantically close to many other sentences. These
sentences can have a lot of probability mass allo-
cated to them, resulting in a lower approximate
EMD. Our greedy approximation ensures that both
constraints are maintained even if the final result
does not reflect the optimal transport.

8 Conclusion

In this paper, we introduce SMD a cross-lingual
sentence mover’s distance metric for automatically
assessing the semantic similarity of two documents
in different languages. We leverage state-of-the-art
multilingual sentence embeddings and apply SMD
to the task of cross-lingual document alignment.
We demonstrate that our new metric outperforms
other unsupervised metrics by a margin, especially
in medium and low-resourced conditions.
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