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Abstract

Many top-performing image captioning mod-
els rely solely on object features computed
with an object detection model to generate
image descriptions. However, recent studies
propose to directly use scene graphs to intro-
duce information about object relations into
captioning, hoping to better describe interac-
tions between objects. In this work, we thor-
oughly investigate the use of scene graphs
in image captioning. We empirically study
whether using additional scene graph encoders
can lead to better image descriptions and pro-
pose a conditional graph attention network (C-
GAT), where the image captioning decoder
state is used to condition the graph updates.
Finally, we determine to what extent noise in
the predicted scene graphs influence caption
quality. Overall, we find no significant dif-
ference between models that use scene graph
features and models that only use object detec-
tion features across different captioning met-
rics, which suggests that existing scene graph
generation models are still too noisy to be use-
ful in image captioning. Moreover, although
the quality of predicted scene graphs is very
low in general, when using high quality scene
graphs we obtain gains of up to 3.3 CIDEr
compared to a strong Bottom-Up Top-Down
baseline.1

1 Introduction

Scene understanding is a complex and intricate ac-
tivity which humans perform effortlessly but that
computational models still struggle with. An impor-
tant backbone of scene understanding is being able
to detect objects and relations between objects in
an image, and scene graphs (Johnson et al., 2015;
Anderson et al., 2016) are a closely related data

1We open source the codebase to reproduce all our ex-
periments in https://github.com/iacercalixto/
butd-image-captioning.

structure that explicitly annotates an image with
its objects and relations in context. Scene graphs
can be used to improve important visual tasks that
require scene understanding, e.g. image indexing
and search (Johnson et al., 2015) or scene construc-
tion and generation (Johnson et al., 2017, 2018),
and there is evidence that they can also be used to
improve image captioning (Yang et al., 2019; Li
and Jiang, 2019). However, the de facto standard
in top-performing image captioning models to date
use strong object features only, e.g. obtained with
a pretrained Faster R-CNN (Ren et al., 2015), and
no explicit relation information (Anderson et al.,
2018; Lu et al., 2018; Yu et al., 2019a).

One possible explanation to this observation is
that by using detected objects we already capture
the more important information that characterises
a scene, and that relation information is already
implicitly learned in such models. Another expla-
nation is that relations are simply not as important
as we hypothesise and that we gain no valuable
extra information by adding them. In this work, we
investigate these empirical observations in more
detail and strive to answer the following research
questions: (i) Can we improve image captioning
by explicitly supervising a model with information
about object relations? (ii) How does the content of
the captions improve when utilising scene graphs?
(iii) How does scene graph quality impact the qual-
ity of the captions?

The most recent best-performing image caption-
ing models make use of the Transformer architec-
ture (Vaswani et al., 2017; Li et al., 2019; Yu et al.,
2019b). However, in this paper we build upon the
influential Bottom-Up Top-Down architecture (An-
derson et al., 2018) which uses LSTMs, and since
we want to measure to what extent scene graphs
are helpful or not, we remove any “extras” to make
model comparison easier, e.g. reinforcement learn-
ing step after cross-entropy training, ensembling at

https://github.com/iacercalixto/butd-image-captioning
https://github.com/iacercalixto/butd-image-captioning
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inference time, etc.
Scene graph generation (SGG) is the task where

given an image a model predicts a graph with its
objects and their relations. We use a pretrained
SGG model (Xu et al., 2017) to obtain and inject
explicit relation information into image captioning,
and investigate different image captioning model
architectures that incorporate object and relation
features, similarly to Li and Jiang (2019); Wang
et al. (2019). We propose an extension to graph
attention networks (Veličković et al., 2018) which
we call conditional graph attention (C-GAT), where
we condition the updates of the scene graph fea-
tures on the current image captioning decoder state.
Finally, we conduct an in-depth analysis of the cap-
tions produced by different models and determine
if scene graphs actually improve the content of the
captions. Our approach is illustrated in Figure 1.

Our main contributions are:
• We investigate different graph-based architec-

tures to fuse object and relation information
derived from scene graph generation models
in the context of image captioning.
• We introduce conditional graph attention net-

works to condition scene graph updates on the
current state of an image captioning decoder
and find that it leads to improvements of up to
0.8 CIDEr.
• We compare the quality of the generated scene

graphs and the quality of the corresponding
captions and find that by using high quality
scene graphs we can improve captions quality
by up to 3.3 CIDEr.
• We systematically analyse captions generated

by standard image captioning models and by
models with access to scene graphs using
SPICE scores for objects and relations (An-
derson et al., 2016) and find that when using
scene graphs there is an increase of 0.4 F1 for
relations and decrease of 0.1 F1 for objects.

2 Background

2.1 Object Detection

Object detection is a task where given an input im-
age the goal is to locate and label all its objects.
The Faster R-CNN, which builds on the R-CNN
and Fast R-CNN (Girshick et al., 2014; Girshick,
2015), is a widely adopted model proposed for ob-
ject detection (Ren et al., 2015). It uses a pretrained
convolutional neural network (CNN) as a backbone
to extract feature maps for an input image. A region

proposal network (RPN) uses these feature maps
to propose a set of regions with a high likelihood
of containing an object. For each region, a feature
vector is generated using the feature map, which
is then passed to an object classification layer. In
our experiments, we use the Faster R-CNN with a
ResNet-101 backbone (He et al., 2016).

2.2 Graph Neural Networks

Graph neural networks (GNNs; Battaglia et al.,
2018) are neural architectures designed to oper-
ate on arbitrarily structured graphs G = (V, E),
where V and E are the set of vertices and edges
in G, respectively. In GNNs, representations for
a vertex v ∈ V are computed by using informa-
tion from neighbouring vertices N (v) which are
defined to include all vertices connected through
an edge. In this work, we use a neighbourhood
N (v1) that contains vertices v2 connected through
incoming edges, i.e. v2 → v1 ∈ E .

Graph Attention Networks Graph attention net-
works (GATs; Veličković et al., 2018) combine fea-
tures from neighbour vertices N (v1) through an
attention mechanism (Bahdanau et al., 2014) to
generate representations for vertex v1. Vertex v1’s
state vt−1

1 at time step t − 1 is used as the query
to soft-select the information from neighbours rele-
vant to its updated state vt

1.

2.3 Scene Graphs

Scene graphs consist of a data structure devised to
annotate an image with its objects and the existing
relations between objects and were first introduced
for image retrieval (Johnson et al., 2015).

We consider scene graphs G for an image with
two types of vertices: objects and relations.2 Ob-
ject vertices describe the different objects in the
image, and relation vertices describe how different
objects interact with each other. This gives us the
following rules for edges E : (i) All existing edges
are between an object vertex and a relation vertex;
(ii) If an object o1 is connected to another object o2
via a relation vertex r3, then vertex r3 has only two
connected edges: one incoming from o1 and one
outgoing to o2. Finally, object (relation) vertices
are also associated to an object (relation) label.

Scene Graph Generation Scene graph genera-
tion (SGG) was introduced by Xu et al. (2017) and

2Attributes are also originally present in scene graphs as
vertices, but we do not use them.
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Figure 1: We use object features from an object detection model and scene graph features from a scene graph
generation model in image captioning. We use conditional graph attention (C-GAT) to encode scene graph features,
and flat vs. hierarchical attention mechanisms are used to incorporate both feature sets into an LSTM decoder.

has since received growing attention (Zellers et al.,
2018; Li et al., 2018; Yang et al., 2018; Knyazev
et al., 2020). One can compare it to object detec-
tion (Section 2.1), where instead of only predicting
objects a model must additionally predict which
objects have relations and what are these relations.
This similarity makes it natural that SGG models
build on object detection architectures. Most SGG
models use a pretrained Faster R-CNN or similar ar-
chitecture to predict objects and have an additional
component to predict relations for pairs of objects.
In addition to the original object loss components
in the Faster R-CNN, they include a mechanism to
update object feature representations using neigh-
bourhood information, and a component to predict
relations and their label.

Iterative Message Passing The Iterative Mes-
sage Passing SGG model (Xu et al., 2017) keeps
two sets of states, i.e. for object vertices and re-
lation vertices. The object vertices are initialised
directly from Faster R-CNN features, while a rela-
tion vertex is computed by the box union of each
of its two objects boxes, which is encoded with the
Faster R-CNN to obtain a relation vector.

Hidden states in each set are updated using an
attention mechanism over neighbour vertices, i.e.
objects are informed by all connected relation ver-
tices, and relations are informed by the two objects
it links. Since there are two sets of states it is easy
to efficiently send messages from one set to the
other by the means of an adjacency matrix. This
procedure is repeated for k iterations, and Xu et al.
(2017) found that k = 2 gives optimal results.

Relation proposal network (RelPN) Xu et al.
(2017) first proposed to build a fully connected
graph connecting all object pairs and scoring rela-
tions between all possible object pairs; however,
this model is expensive and grows exponentially
with the number of objects. Yang et al. (2018) intro-
duced a relation proposal network (RelPN), which
works similarly to an object detection RPN but that
selectively proposes relations between pairs of ob-
jects. In all our experiments, we use the Iterative
Message Passing model trained using a RelPN.

3 Conditional Graph Attention (C-GAT)

Standard graph neural architectures encode infor-
mation about neighbour nodes N (v) into represen-
tations of node v ∈ V . Therefore, these GNNs
are contextual because they encode graph-internal
context.

We propose the conditional graph attention
(C-GAT) architecture, a novel extension for graph
attention networks (Veličković et al., 2018).3 Our
goal is to make these networks conditional in ad-
dition to contextual. By conditional we mean that
a C-GAT layer is conditioned on external context,
e.g. a vector representing knowledge that is not
part of the original input graph.

Our motivation is that when using graph-based
inputs such as a scene graph, a C-GAT layer al-
lows us to condition the message propagation be-
tween connected nodes in the graph on the current
state of the model, e.g. on the decoder state in the

3This architecture is novel to the best of our knowledge.
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Figure 2: C-GAT layer where we illustrate the update
of vertex MAN by combining the features of all incom-
ing relations (and objects) through an attention mecha-
nism. The attention scores are conditioned on the exter-
nal query vector q.

captioning decoder in Figure 1. Whereas a stan-
dard GAT layer contextually updates object hidden
states, it cannot condition on context outside the
scene graph.4 With a C-GAT layer, we provide a
mechanism for the model to learn to update object
hidden states in the context of the current state of
the decoder language model, which we expect to
lead to better contextual features.

In Figure 2, a C-GAT layer is applied to an input
scene graph G and conditioned on a query vector
q, i.e. the decoder state. We illustrate the update
of vertex vman ∈ V using features from its neigh-
bourhoodN (vman). The self-relation is assumed to
always be present and for readability is not shown.
Neighbour nodes’ features are combined with an
MLP attention mechanism (Bahdanau et al., 2014)
and scores are computed using query q.

As described in Section 2.3, neighbours of an
object vertex vi ∈ V in a scene graph only in-
clude relation vertices. To include neighbour ob-
ject features as well as relation features, we col-
lect features for all vj ∈ Nobj(vi), defined as
nodes accessible by all relation vertices vr such
that {vi ← vr, vr ← vj} ∈ E .

4 Model Setup

In this section, we first introduce image captioning
models that do not explicitly use relation features
(Section 4.1) and contrast them with those that use
explicit relation features (Section 4.2).

4.1 Baseline Image Captioning (IC)
Bottom-Up Top-Down (BUTD) The bottom-up
top-down (BUTD; Anderson et al., 2018) model

4This is generally true for standard GNN architectures and
not just GATs.

consists of a Faster R-CNN image encoder (Ren
et al., 2015) that computes object proposal features
for an input image, and a 2-layer LSTM language
model decoder with a MLP attention mechanism
over the object features that generates a caption
for the image (Hochreiter and Schmidhuber, 1997;
Bahdanau et al., 2014). We denote the set of ob-
ject features X ∈ Rn×d, where n is the number
of objects in the image and d the features dimen-
sionality. The 2-layer LSTM is designed so that
the first layer is used to compute an attention over
the image features and the second layer is used to
generate the captions’ tokens. LSTM states at time
step t are denoted as h(t)

1 and h
(t)
2 for layer 1 and

2, respectively. The hidden state of LSTM1 is used
to derive an attention over image features:

x(t) = Att(X,h
(t)
1 ), (1)

where x(t) ∈ Rd is the output of the attention layer
and denotes the image features used at time step t.
Update rules for each LSTM layer are defined by:

h
(t)
1 = LSTM1([h

(t−1)
2 ;w(t−1); X̄], h

(t−1)
1 ),

(2)

h
(t)
2 = LSTM2([h

(t)
1 ;x(t)], h

(t−1)
2 ), (3)

where w(t−1) is the embedding of the previously
generated word, and X̄ ∈ Rd are the mean image
features.

Next word probabilities are computed using a
softmax over the vocabulary and parameterised by
a linear projection of the hidden state of LSTM2:
p(w(t) = k|w(1):(t−1)) ∝ exp(Wh

(t)
2 ).

4.2 Relation-aware Image Captioning (RIC)

We now describe models that incorporate explicit
relation information into image captioning by using
scene graphs as additional inputs.

We use the pretrained Iterative Message Passing
model with a relation proposal network (Xu et al.,
2017; Yang et al., 2018) to obtain scene graph fea-
tures for all images. Scene graph features for an
image are denoted Y ∈ R(o+r)×k, where o is the
number of objects, r the number of relations be-
tween objects, and k is the object/relation feature
dimensionality.

We follow Wang et al. (2019) who have found
that only using scene graph features led to poor
results compared to using Faster R-CNN features
only. Therefore, we propose to integrate scene
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graph features Y and Faster R-CNN object fea-
tures X by experimenting with (i) using Y directly,
applying a GAT layer on Y, or applying a C-GAT
layer on Y prior to feeding scene graph features
into the decoder, and (ii) using a flat attention mech-
anism versus a hierarchical attention mechanism.

GAT over Scene Graphs We propose a model
that encodes the scene graph features Y with a
standard GAT layer prior to using them in LSTM2

in the decoder.

C-GAT over Scene Graphs In this setup, we
apply a C-GAT layer on scene graph features Y

using the current decoder state h
(t)
1 from LSTM1

as the external context, and use the output of the
C-GAT layer in LSTM2 in the decoder.

Flat Attention The flat attention (FA) consists
of two separate attention heads, one over scene
graph features Y and the other over Faster R-CNN
features X. We use two standard MLP attention
mechanisms (Bahdanau et al., 2014), each using
the hidden state from LSTM1 as the query:

x(t) = Attx(X,h
(t)
1 ),

y(t) = Atty(Y,h
(t)
1 ).

Each LSTM layer is now defined as follows:

h
(t)
1 = LSTM1([h

(t−1)
2 ;w(t−1); X̄; Ȳ],h

(t−1)
1 ),

h
(t)
2 = LSTM2([h

(t)
1 ;x(t);y(t)], h

(t−1)
2 ), (4)

where x(t) and y(t) are computed by the two at-
tention heads Attx and Atty, respectively, and Ȳ
denote the mean scene graph features.

Hierarchical Attention In a hierarchical atten-
tion (HA) mechanism the output of the first atten-
tion head is used as input to derive the attention of
the second head. We again have two sets of inputs,
scene graph features Y and Faster R-CNN object
features X. We experiment first using Y as input
to the first head, and its output y(t) as additional
input to the second head:

y(t) = Atty(Y,h
(t)
1 ),

x(t) = Attx(X, [h
(t)
1 ;y(t)]). (5)

This setup is similar to the cascade attention
from Wang et al. (2019). We also try using X

as input to the first head, and the first head’s output
x(t) as additional input to the second head:

x(t) = Attx(X,h
(t)
1 ).

y(t) = Atty(Y, [h
(t)
1 ;x(t)]). (6)

In both cases, the hidden states for LSTM1 and
LSTM2 are computed as in Equation 4.

5 Experimental Setup and Results

We compare our models with the following exter-
nal baselines with no access to scene graphs: (1)
the adaptive attention model Add-Att which de-
termines at each decoder time step how much of
the visual features should be used (Lu et al., 2017);
(2) the Neural Baby Talk model NBT generates
a sentence with gaps and fills the gaps using de-
tected object labels (Lu et al., 2018); (3) and the
BUTD model (Anderson et al., 2018) described in
Section 4.1.

We also compare with the following baselines
that use scene graphs: (1) The “Know more, say
less” model KMSL extracts features for objects
and relations based on the scene graph, which are
passed through two attention heads and finally com-
bined using a flat attention head (Li and Jiang,
2019); and (2) the Cascade model (Wang et al.,
2019) which is similar to our hierarchical attention
model with a GAT layer, but that instead uses a rela-
tional graph convolutional network (Marcheggiani
et al., 2017).

We do not discuss model variants/results that are
trained with an additional reinforcement learning
step (Rennie et al., 2017; Yang et al., 2019) and
only compare single model results, since training
and performing inference with such models is very
costly and orthogonal to our research questions.

Our proposed models are: flat attention (FA), hi-
erarchical attention with scene graph first (HA-SG)
following Equation 5, hierarchical attention with
objects detected first (HA-IM) following Equa-
tion 6, HA-SG with graph attention network (HA-
SG+GAT), and HA-SG with conditional graph at-
tention (HA-SG+C-GAT). We choose the last two
variants to extend HA-SG following the setup used
by (Wang et al., 2019).

We evaluate captions generated by different mod-
els by investigating their SPICE scores (Anderson
et al., 2016), i.e. an F1 based semantic captioning
evaluation metric computed over scene graphs. It
uses the semantic structure of the scene graph to
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B4 C R S

Add-Att∗† 33.2 108.5 — —
NBT† 34.7 107.2 — 20.1
BUTD† 36.2 113.5 56.4 20.3
BUTD 34.8 109.2 55.7 20.0

Cascade† 34.1 108.6 55.9 20.3
KMSL† 33.8 110.3 54.9 19.8
FA 33.7 102.5 54.7 18.8
HA-IM 35.7 109.9 55.9 19.9
HA-SG 35.0 109.1 55.7 19.8
+ GAT 34.7 106.4 55.4 19.4
+ C-GAT 35.5 109.9 56.0 19.8

Table 1: Results on the MSCOCO test set, with models
selected on the validation set (karpathy splits). Mod-
els in the upper section do not use scene graphs, while
those in the bottom section do. All models are trained
to convergence for a maximum of 50 epochs. Metrics
reported are: BLEU-4 (B4), CIDEr (C), ROUGE-L (R),
and SPICE (S). See Section 5 for details on all mod-
els and acronyms. We bold-face the best and under-
score the second-best scores per metric (models that
use scene graph). ∗ Model uses features from last con-
volutional layer in CNN, i.e. no Faster R-CNN features.
† Results reported in the authors’ original papers.

compute scores over several dimensions (object,
relation, attribute, colour, count, and size).

We use the MSCOCO karpathy split (Lin et al.,
2014; Karpathy and Fei-Fei, 2015) which has 5k
images each in validation and test sets, and we use
the remaining 113k images for training. We build a
vocabulary based on all words in the train split that
occur at least 5 times. We use MSCOCO evaluation
scripts (Lin et al., 2014) and report BLEU4 (B4;
Papineni et al., 2002), CIDEr (C; Vedantam et al.,
2015), ROUGE-L (R; Lin, 2004), and SPICE (S;
Anderson et al., 2016). See Appendix A for extra
information on our implementation and training
procedures.

5.1 Image Captioning without Relational
Features

Our re-implementation of the BUTD baseline
scores slightly worse compared to the results re-
ported by Anderson et al. (2018). This difference
can be attributed to the Faster R-CNN features used,
i.e. we always use 36 objects per image whereas
Anderson et al. (2018) use a variable number of
objects per image (i.e. 10 to 100), and there are
other smaller differences in their training procedure.

Since all our models use these settings, in further
experiments we compare to our implementation of
the BUTD baseline.

5.2 Image Captioning with relational
features

We notice that the KMSL model by Li and Jiang
(2019) slightly outperforms the other models ac-
cording to CIDEr, while it performs worse in all
other metrics. Li and Jiang (2019) found perfor-
mance increases when restricting the number of
relations and report scores using this restriction,
whereas we decided to use the full set of relations
to test the effect of scene graph quality (see Sec-
tion 5.4). Furthermore, the features used in the
KMSL model are not directly extracted from the
SGG model as is the case for the other models, but
an additional architecture is used for computing
stronger features.

Flat vs. Hierarchical attention According to
Table 1, FA performs worse not only compared to
HA models, but also compared to other baselines.

The HA model using Faster R-CNN object fea-
tures in the first head, i.e. HA-IM setup, performs
better than using the scene graph features first, i.e.
HA-SG setup. We hypothesise that this difference
comes from the additional guidance from x(t) help-
ing with a better attention selection over possibly
more noisy features present in Y.

Additional GNN updates Directly using a GAT
layer over scene graph features negatively impacts
model performance. Comparing these results to
the related Cascade model from Wang et al. (2019),
we hypothesise that the R-GCN architecture works
better in this setting, although compared to other
models it still has lower scores according to most
metrics. The reason may be that the Cascade model
by Wang et al. (2019) was undertrained or could
have used better hyperparameters, as indicated by
our BUTD baseline performing comparably or bet-
ter than their strongest model.5

Combining a C-GAT layer on the decoder im-
proves overall results according to most metrics,
though by a small margin. This suggests that using
additional GNNs in the context of image captioning
have a positive effect. Furthermore, graph features
learned using C-GAT always outperform standard
GAT, which coincides with our intuition that taking

5Our BUTD baseline scores 109.2 CIDEr, whereas their
best model achieves 108.6 CIDEr.
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All Obj Rel

BUTD 19.8 36.0 5.2

FA 18.5 34.7 5.0
HA-IM 19.5 35.9 5.2
HA-SG 19.5 35.9 5.3
+ GAT 19.2 35.5 5.6
+ C-GAT 19.4 35.8 5.3

Table 2: Breakdown of overall SPICE scores (All) into
object (Obj) and relation (Rel) F1 scores. See Section 5
for details on all models and acronyms. We bold-face
the best overall scores and underline the best scores ob-
tained by our models.

the current decoder hidden context into considera-
tion can improve graph features.

5.3 SPICE breakdown

In our analysis, in addition to the overall SPICE F1
score for an entire caption, we break it down into
scores over objects and over relations.6 This allows
us to investigate how models are better or worse
on describing objects and relations independently.
These results, computed for the validation split, are
shown in Table 2.

When we look at individual scores for objects
and relations, we notice a small and consistent gain
in relation F1 by using scene graphs independently
of the attention architecture or other design choices,
but also observe lower object F1 scores with respect
to the BUTD baseline. When object and relation
scores are combined into a single F1 measure, it
results in worse overall scores suggesting that the
small increase in the relation scores is not sufficient
to have a positive impact on captioning insofar.

5.4 Scene Graph Quality

Since scene graph features are generated with a pre-
trained SGG model, we expect them to introduce
a considerable amount of noise into the model. In
this section, we investigate the effect that the qual-
ity of the scene graph has on the quality of captions.

VG-COCO In this set of experiments, we need
images with both captions and scene graph annota-
tions. Thus, we use a subset of MSCOCO which
overlaps with Visual Genome (Krishna et al., 2017),
using captions from the former and scene graphs

6The SPICE score also includes the components attribute,
colour, count, and size, but we do not report them directly.

Figure 3: Distribution of the scores for the scene graphs
in the validation split of the VG-COCO dataset.

from the latter. We refer to this dataset as VG-
COCO, as similarly done by Li and Jiang (2019).
We compute scores for each scene graph predicted
by the Iterative Message Passing model using the
common SGDet recall@100 as defined by Yang
et al. (2018). SGDet recall@100 is computed by
using the 100 highest scoring triplets among all
triplets predicted by the model,7 and reporting the
percentage of gold-standard triplets. The distribu-
tion of scores across images (Figure 3) shows that
most scene graphs have extremely low scores close
to zero, thus containing a lot of noise.

We separate images in the VG-COCO valida-
tion set in three groups: low (R < 33%), aver-
age (33% ≤ R < 67%), and high scoring graphs
(67% ≤ R), where R is SGDet recall@100. For
each set of images in each of these groups, we com-
pute captioning metrics and also report a SPICE
breakdown in Table 3.

Effect of scene graph quality Due to the imbal-
ance in scene graph quality, the low, average, and
high quality subsets have around 1000, 500, and
200 images, respectively. By reporting results for
the BUTD baseline, we show the performance a
strong baseline obtains on the same set of images.

In Table 3b, scores across all metrics are similar
and only model FA performs clearly worse than
others. Though the BUTD baseline never performs
best, it is often not more than a point behind the
best performing model (except for CIDEr where it
is 2.5 points lower compared to HA-IM).

When comparing Table 3b to Table 3c, we ob-
serve that all models tend to increase scores, and
that BUTD tends to perform best overall. In Ta-
ble 3d, we see an increase in the difference between

7A triplet is an object-predicate-subject phrase.
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SPICE Captioning

All Obj Rel B4 C R

BUTD 19.8 36.0 5.0 35.4 109.8 56.0
FA 18.5 34.9 4.8 33.2 103.6 54.8
HA-IM 19.6 36.0 5.2 35.0 110.8 55.7
HA-SG 19.8 36.2 5.5 35.7 111.0 56.0
+ GAT 19.4 35.5 5.6 35.0 108.3 55.6
+ C-GAT 19.5 35.8 5.2 35.7 110.4 56.0

(a) Full VG-COCO dataset

SPICE Captioning

All Obj Rel B4 C R

19.5 35.6 4.7 34.0 109.2 55.2
18.2 34.9 4.4 32.4 102.7 54.3
19.5 36.0 5.2 34.3 111.7 55.5
19.6 36.0 5.0 34.6 110.3 55.4
19.5 35.7 5.7 34.8 109.5 55.4
19.5 35.7 5.1 34.8 109.9 55.7

(b) Low VG-COCO dataset

SPICE Captioning

All Obj Rel B4 C R

BUTD 20.5 37.0 5.5 38.4 117.5 57.1
FA 18.8 35.0 5.3 34.6 111.1 55.1
HA-IM 19.8 36.2 5.3 36.2 115.1 55.3
HA-SG 19.6 35.9 5.4 37.0 114.4 56.3
+ GAT 19.4 35.8 5.7 36.2 112.7 56.0
+ C-GAT 19.5 36.0 5.1 37.6 116.4 56.1

(c) Average VG-COCO dataset

SPICE Captioning

All Obj Rel B4 C R

20.9 36.8 5.1 37.2 126.5 57.0
19.8 35.3 5.6 35.9 117.4 56.6
20.3 36.2 5.8 36.2 124.1 56.8
20.9 37.1 6.0 38.1 129.8 57.6
19.7 35.3 5.9 36.2 123.6 57.1
20.8 36.6 6.0 37.2 127.3 56.9

(d) High VG-COCO dataset

Table 3: SPICE breakdown and captioning metrics for images in VG-COCO validation split. Results for the full
VG-COCO, and for subsets of images collected according to the quality of their corresponding predicted scene
graphs: low, average, and high. See Sections 5 for details on all models and acronyms. Metrics reported are:
overall SPICE F1 score (All), object (Obj) and relation (Rel) F1 score components, BLEU-4 (B4), CIDEr (C), and
ROUGE-L (R). We bold-face the best and underline the second-best overall scores per metric and per data subset.

the baseline and our best models according to all
metrics. All these gains are very promising and sug-
gest that when we have high quality scene graphs,
we can expect a consistent positive transfer into
image captioning models. However, the overall
SPICE score is the highest for both BUTD and
HA-SG, while BUTD has lower scores for objects
and relations F-measure. That suggests that other
components part of SPICE were worsened with the
addition of scene graphs. Since this is not the focus
of this paper, we did not investigate this further and
leave that for future work.

Overall, these results show that indiscriminately
using scene graphs from pretrained SGG models
downstream on image captioning can be harmful
because of the amount of noise present in these
scene graphs. However, when this noise is smaller
and the scene graphs of higher quality, our findings
together suggest that scene graphs can be useful in
image captioning models.

Ground-truth graphs Finally, we also conduct
a small-scale experiment using ground-truth scene

graphs and evaluate how using these instead of
predicted scene graphs at inference time impacts
models, which can be found in Appendix B.

Qualitative Results Here, we try to determine if
there is a clear difference in the difficulty in cap-
tioning images in low, average, and high quality
sets, which might help explain the result in Table 3.
In Figures 4 and 5 we show some images for the
low and high scoring graphs, respectively. At a
first glance, images from both sets appear equally
cluttered with objects (i.e., which we hypothesise
should correlate with the image being harder to
describe). Furthermore, for both low and high scor-
ing scene graphs, the average number of objects
and relations is 23 and 22 respectively. However,
we note that even scene graphs in the high quality
set often include tiny objects and details, e.g. the
image in the right of Figure 4 shows a single air-
craft, but there are 17 annotated objects describing
components such as wings, windows, etc.



512

Figure 4: Images, captions and ground-truth number of objects and relations for high scoring scene graph.

Figure 5: Images, captions and ground-truth number of objects and relations for low scoring scene graph.

6 Conclusions and Future Work

In this work, we investigate the impact scene graphs
have on image captioning. We introduced condi-
tional graph attention (C-GAT) networks and ap-
plied it to image captioning, and report promising
results (Table 1). Overall, we found that improve-
ments in captioning when using scene graphs gener-
ated with publicly available SGG models are minor.
We observe a very small increase in the ability to
describe relations as measured by relation SPICE
F-scores, however, this is associated with models
producing worse overall descriptions and produc-
ing lower object SPICE F-scores.

In an in-depth analysis, we found that the pre-
dicted scene graphs contain a large amount of noise
which harms the captioning process. When this
noise is reduced, large gains can be achieved across
all image captioning metrics, e.g. 3.3 CIDEr points
in the high VG-COCO split (Table 3d). This indi-
cates that with further research and improved scene
graph generation models, we will likely be able to
observe consistent gains in image captioning and
possibly other tasks by leveraging silver-standard
scene graphs.

Future work In further research, we will con-
duct an in-depth analysis of our proposed condi-

tional graph attention to determine what tasks other
than image captioning we can apply it to. We en-
vision using it for visual question-answering also
with generated scene graphs, and on syntax-aware
neural machine translation (Bastings et al., 2017),
fake news detection (Monti et al., 2019), and ques-
tion answering (Zhang et al., 2018).

In a focused qualitative analysis, we found that
the scene graphs represent objects and relations in
images sometimes with great detail. We plan to
investigate how to account for such highly detailed
objects/relations in the context of image captioning.
Finally, we will look into a method to use pre-
dicted scene graphs selectively according to their
estimated quality, possibly selecting the best graph
between those generated by different SGG models.
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A Implementation Details

All our models are trained until convergence using
early stopping with a patience of 20 epochs and
a maximum of 50 epochs. We use the Adamax
optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.002, which we decay with a fac-
tor of 0.8 after 8 epochs without improvements
on the validation set. Dropout regularisation with
a probability of 50% is applied on word embed-
dings and on the hidden state of the second LSTM
layer h(t)2 before it is projected to compute the next
word probabilities. We use a beam size of 5 during
evaluation. All hidden layers and embedding sizes
are set to 1024. Models are all trained on a single
12GB NVIDIA GPU.

We use a fixed number of n = 36 objects ex-
tracted with our pretrained Faster R-CNN. The
number of objects and relations extracted with the
pretrained Iterative Message Passing model varies
according to the input image, i.e. a maximum of
o = 100 objects and of r = 2500 relations.

B Using Ground-Truth Graphs

SPICE Captioning

All Obj Rel B4 C R

FA 18.3 34.3 5.3 30.5 95.8 53.1
HA-IM 19.0 35.2 4.8 33.5 106.0 54.8
HA-SG 18.8 34.7 4.9 32.9 104.5 54.3
+ GAT 18.6 34.7 5.2 32.5 100.9 53.9
+ C-GAT 18.9 34.8 5.1 33.6 104.3 54.5

Table 4: Results for the full VG-COCO validation set
using features extracted for ground-truth scene graphs.
Models and acronyms are described in Sections 5. Met-
rics reported are: the overall SPICE F1 score (All)
and its object (Obj) and relation (Rel) F1 score compo-
nents, BLEU-4 (B4), CIDEr (C), and ROUGE-L (R).
We bold-face the best and underline the second-best
overall scores per metric.

In this small-scale experiment, we generate fea-
tures for ground-truth scene graphs to determine if
more a positive transfer can be achieved on image
captioning models. For the VG-COCO dataset, we
take all the ground-truth object and relation boxes
and pass these through the pretrained Iterative Mes-
sage Passing (IMP) model, instead of the RPN and
RelPN proposed boxes. This is the same pretrained
(IMP) model used in the other experiments.

Wang et al. (2019) also did a similar experiment,

however, they also trained their models using fea-
tures from gold-standard scene graphs, whereas
we only use them to evaluate models previously
trained on predicted scene graph features. In Ta-
ble 4 we show that when using ground-truth scene
graphs results are worse than those obtained using
predicted ones (Table 3a). One obvious explana-
tion is the mismatch between training and testing
data, with regards to quality and number of fea-
tures. Models are trained on the predicted scene
graphs, which have an average of 34 object and
48 relation features per image (probably noisy, as
seen in Section 5.4), whereas ground-truth graphs
have an average of 21 objects and 18 relations per
image.


