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RESUME
Explorer I’informativité d’une phrase

Nous présentons ici une exploration préliminaire du concept d’informativité —la quantité d’information
qu’une phrase fournit sur ’un des mots qui le compose— et ses usages potentiels pour I’apprentissage
de plongements de mots robustes a partir de données en faible quantité. Une mesure d’informativité
est prédite a partir d’algorithmes de classification de phrases, que nous comparons a une série de
phrases annotées manuellement. Nous concluons que ces deux mesures correspondent a des notions
différentes d’informativité. Néanmoins, nos expériences montrent que la prédiction extraite de la
classification a un impact sur la qualité des plongements de mots lors de I’apprentissage.

ABSTRACT
This study is a preliminary exploration of the concept of informativeness —how much information
a sentence gives about a word it contains— and its potential benefits to building quality word repre-
sentations from scarce data. We propose several sentence-level classifiers to predict informativeness,
and we perform a manual annotation on a set of sentences. We conclude that these two measures
correspond to different notions of informativeness. However, our experiments show that using the
classifiers’ predictions to train word embeddings has an impact on embedding quality.
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1 Introduction

Building robust and high-quality word representations is a key step for most NLP tasks. The quality
mostly relies on the training corpus (its size and relevance), along with the training criterion and
strategy. Some noisy sentences might for instance damage the quality of embeddings, while many
sentences do not contribute significantly in improving the representation of a word’s meaning (see
Table 1 for an example). Therefore, it is advised to estimate embeddings on corpora as large as
possible, but this induces many drawbacks : such corpora are difficult to collect for many domains or
languages, and the training time increases linearly with the corpus size. Many pre-trained embeddings
do exist, built on huge corpora, but they cannot be used in domain-specific tasks.

Consequently, a criterion for sentence selection could be of great help in the context of low-quality
or low-volume corpora. The concept at stake is the informativeness of a sentence towards a word.
This criterion can be defined as follows : a sentence is informative with respect to one of its words



if a person ignoring this word can correctly infer its meaning from this sentence to some extent.
The sentences from the training corpora can be selected depending on their informativeness during
embeddings’ training. To this end, the informativeness of a sentence needs to be defined and modelled.

The contribution of this paper is threefold. First, we propose a method to automatically get an artificial
informativeness measure of any sentence towards a target word, using sentence classification. Then,
we design a labelling process in terms of informativeness scores to evaluate our models’ results.
Finally, we give preliminary results on the use of the artificial informativeness measure for the training
of word embeddings.

A : I went to the *** C : It was good *** in those terms.
B : I went to the *** to withdraw money | D : The aquarium did a blood ***
to determine their gender.

TABLE 1 — Examples of informativeness disparity between two sentences with respect to a common
word. A and B are made-up examples; C and D are Gigaword (Napoles et al., 2012) sentences with
the word zest.

2 Related work

While dealing with low-resource languages and specific domains has received much attention in the
NLP community, to the best of our knowledge, this is the first attempt to investigate the potential
impact of the notion of informativeness on building meaning representations from limited data. Several
attempts at improving or adapting word embeddings to restricted tasks and languages involve making
use of morphological information (Luong et al., 2013); fine-tuning pre-trained, global-purpose
embeddings on a restricted domain (Komiya & Shinnou, 2018; Newman-Griffis & Zirikly, 2018);
refining them with the help of semantic resources (Faruqui et al., 2015), known as retrofitting ; or
using attention mechanisms on contexts to better represent rare words (Schick & Schiitze, 2019).

Lai et al. (2016) show that, when training word embeddings, using an in-domain corpus specialized in
a task 1s better than having a large, mixed-domain corpus, which can lead to a decrease in performance.

The closest study to the present one is that of Herbelot & Baroni (2017). The authors argue that just
as humans do not need many examples to learn the meaning of a word, the word2vec architecture
can be adapted to learn a competitive representation of a word from 2-6 occurrences only. This can
be critical to build an embedding for rare words or in situations of scarce data. Their experiments
involve both Wikipedia definitions —in principle, maximally informative from a human perspective—
and naturally-occurring sentences. Given the better performance of the former, they observe that
accounting for the informativeness of a sentence can be useful to learn good representations.

A line of work related to informativeness concerns the automatic extraction of sentence examples
for lexicographic resources or knowledge bases. Kilgarriff er al. (2008) restrict their search with
different linguistic criteria designed to help a reader grasp the meaning of a word more easily, such
as sentence length and the presence or abscence of rare words, pronouns, or typical collocations.
Another approach for finding knowledge-rich contexts, as coined by Meyer (2001), consists in finding
sentences with knowledge patterns, that is, linguistic expressions that describe the semantic relations
of a word, such as "is a kind of" to denote hypernymy (Barricre, 2004).



3 Sentence classification for informativeness prediction

According to our definition, if a sentence is very informative with respect to one of its words, a
reader who does not know that word can infer its meaning from the sentential context. Intuitively,
in such a sentence, a person who knows the word should be able to predict it with high accuracy.
We create a task based on this intuition : for a given target word, a model gets as input sentences
with a blank at the target position. The model must learn to distinguish sentences that originally
contained the target word from those which did not. For instance in Table 1, a model that distinguishes
bank sentences from non-bank sentences should have a higher confidence that the more informative
sentence B is a bank-sentence. For each sentence, the classifier outputs a probability of belonging to
the bank-sentences class. Our hypothesis is that this probability is an indicator of the informativeness
of the sentence with respect to the word bank.

3.1 Selection of distractors

In order to make the classification task challenging enough for the models to be effective, we introduce
distractors : words that share contexts with the target word and could therefore deceive the model.
In the first example of Table 1, a good distractor would be a word that, like bank, indicates a place
(supermarket, for example).

For each target word, 10 distractors are selected following Hill & Simha (2016)’s work. First, we
collect 3, 4 and 5-grams which include the target word ! from the 1 million most frequent n-grams
in the Corpus of Contemporary American English (COCA).? We then search, in the COCA corpus,
for words that appear in the extracted n-grams with the same part of speech and position. From this
list of potential distractors, words that are synonyms, hyponyms or hypernyms of the target word
according to WordNet (Fellbaum, 1998) are removed. Finally, only candidates that have the same or
higher frequency than the target word are kept, as calculated from Google unigrams (Brants & Franz,
2006). Ten of the remaining words are randomly chosen to be the target word’s distractors.

3.2 Classification algorithms

The first classifier relies on a context2vec (c2v) model (Melamud et al., 2016) pre-trained on the
ukWaC corpus (Baroni et al., 2009). c2v embeddings are trained with a slot-filling objective and can
compute comparable embedding representations of sentential contexts with a blank slot as well as of
individual words, where context vectors have a high similarity with those of appropriate fillers. We
experiment with logistic regression and a feed-forward neural network with two hidden layers using
as input c2v context vectors with a slot at the target word’s position.

We compare this to a logistic regression classifier that relies on 3 linguistic-based features to discrimi-
nate sentences. Concretely, we use a 3-gram language model * and the aforementioned c2v model.
For the language model feature, the blank slot is successively replaced with each distractor of a target
word. Then, the probability of every resulting sentence is computed. The feature used is the proportion
of distractors that, according to the language model, have a higher probability than the target word of

1. With a minimum frequency of 40, 20 and 5 for 3, 4 and 5-grams, respectively.
2. Available at https://www.ngrams.info/
3. Available at http://www.keithv.com/software/giga/ (NVP, 64K words)



filling the slot. The c2v features are the cosine similarity between the target word and the context
representation, and the average cosine similarity of every distractor with the context representation.

Several other classification algorithms from the literature were also tested. One with a high accuracy
and very low computation time is the FastText classifier (Joulin et al., 2017). It relies on logistic
regression ; the sentences are represented with averaging the bag-of-ngrams representation of their
words. We put a "TARGET" token in place of the target word, a "NUMBER" token in place of a
number, and —as in the previous models— keep stop words.

4 Labelling data

Given a sentence, the classification algorithm outputs a probability of belonging to the class of the
target word. According to our hypothesis, this method gives us a measure of informativeness for each
pair [sentence, target word]. In order to evaluate this measure, two annotators label a set of sentences.
Then, we perform an inter-annotator agreement study to select the best methodology and scoring
scale.

For a first agreement, the two annotators both label 150 sentences randomly extracted from a portion
of the Annotated English Gigaword corpus * (Napoles et al., 2012). In each sentence, a target word is
randomly masked. It has to be a noun, verb, adjective or adverb, excluding proper nouns and auxiliary
verbs. The annotators give two scores to each sentence : ¢n fol before seeing the masked word (from
1 to 10, indicating how much they can guess about the target word given the sentence) and in f 02
after seeing this word (from 1 to 10, expressing to what extent they expected seeing the true word).
The Spearman correlations between both annotators’ scores are relatively low (mean correlation =
0.29 for in fol and 0.37 for in f02), especially for adverbs (correlation = 0.12 for in f02). Overall,
the annotators’ remarks show that these measures are very subjective.

Consequently a second labelling agreement is designed, relying on a more explicit measure : in fo3.
The range of scores is reduced to be from 1 to 5, and precise scoring guidelines are designed to ensure
a common interpretation of scores across annotators. The ¢n f o3 measure answers the question : How
much information does this sentence give about the meaning of the target word ?

1. The sentence gives no clue about the target word (e.g I have a ...)
2. The sentence has at least one element (e.g. I went to the ....)

3. The sentence gives some clues about the concept but not very specific (I went to the ... to
speak with the manager.)

4. The sentence gives a lot of information about the word, but not enough to define it. (I went to
the ... to open a savings account.)

5. From the sentence, I would be able to write a definition of the word, or this is the only word
that could fit here. (I went to the ... to withdraw money, exchange dollars and ask for a loan.)

Adverbs are excluded due to their low inter-annotator agreement. Two sentences for each of 50
selected target words are extracted from the same corpus, and manually annotated the same way as
for in fo2 : the annotators know which word is the target during labeling.

The global Spearman correlation is 0.331. The annotators rarely disagree on extreme scores, rather on

4. Released by the Linguistic Data Consortium, see https://catalog.ldc.upenn.edu/LDC2012T21



medium scores (between 2 and 4). However, the correlation is very low for adjectives (0.080).

To sum up, the second labelling agreement gives a more objective scale, making the annotators usually
have close scores, and agreeing on extreme scores. Thus, we keep this process for the rest of the
labeling. 20 words are selected out of the 50, excluding adjectives : call, go, range, carry, charge,
coach, hold, return, check, investigator, shot, education, paper, side, figure, post, tell, fire, put, test.
The annotators label together five more sentences for each of the target words, among which we
include definitions from WordNet and the online Cambridge Dictionary > to ensure the presence of
highly informative sentences in the manual annotations. The final evaluation corpus consists of 7
sentences for each of these 20 target words.

S Experiments on test and annotated data

We extract 20,000 sentences for each of the selected target words : 10,000 containing the target word
and 1,000 for each of its 10 distractors. 80% are used for training, 10% for development and 10% for
testing. We use a different portion of Gigaword than the one used for the manual annotation.

We compare our methods to a simple c2v-based baseline. Given a sentence with a target word, we
calculate the similarity between the vectors of all distractors, as well as of the target word, with the
c2v context vector of the sentence. The potential fillers are sorted by similarity and the rank of the
target word 1s used as an indicator of informativeness (the more similar, the more informative).

The classifiers described in Section 3.2 are trained on the extracted sentences for each selected target
word. Results on the test set are found in Table 2 (first column). The c2v neural model gets the highest
accuracy among all classifiers, while the FastText classifier has the lowest. They are then used to make
predictions on the manually annotated data. We measure the correlation between the probability of
belonging to the target word class and the in f o3 score. Results of this correlation are found in Table
2 (second column). The mean correlation for each classification algorithm is close to zero. Moreover,
correlations vary a lot depending on the target word. We conclude that the informativeness measure
represented by in fo3 score is not related to the way our classifiers select the most representative
sentences for a target word.

Examples of sentences for the target word fell can be found in Table 3. The first two are definitions,
assigned high informativeness scores by the annotators ; however, the classifier does not recognize the
first one as a highly informative sentence. The last sentence is instead classified as a rell-sentence
with a very high probability even though humans did not find it informative.

Classifier Accuracy on test data | Spearman’s r on manual data
Linguistic-based 0.890 -0.195
FastText 0.868 0.101
c2v Logistic regression 0.927 -0.179
c2v feed-forward NN 0.946 -0.162
c2v baseline 0.759 -0.070

TABLE 2 — Classifiers’ results. The first column shows the average accuracy across words on the
classification test set. The second one indicates the Spearman correlation of each classifier’s prediction
with informativeness annotations.

5. Available at https://dictionary.cambridge.org/



Sentence Human score | Classifier score
To tell is to let something be known. 4 0.62
To tell means express something in words. 5 0.91
What can I tell him? 1 0.96

TABLE 3 — FastText classifier’s probability to belong to the target word’s class compared with human
annotation for a set of sentences. The target word is the verb "tell".

6 Experiments on word embeddings training

We concluded in the previous section that the classifiers output a different kind of informativeness
than the human annotations. In this section, we test the effect of the classifiers’ informativeness
on word embeddings training. We use the probabilities outputted by the Fasttext classifier for this
task. Independently of the correlations with the human annotation, this classifier’s distribution of
outputted probability is the least skewed. The others assign very high probabilities for a large portion
of sentences, preventing a clear discrimination between informative and not informative sentences.

Following Herbelot & Baroni (2017), for each target word, we sort the sentences of the test set by
probability of belonging to the class of the target word according to the classifier. We select the 250
sentences with lowest and highest probability, and make also a random selection. The target word is
replaced by a new token "target_word_new" in all sentences. We initialize all weights of a word2vec
model (Mikolov et al., 2013) using pre-trained word embeddings. ® Unknown words are initialized
randomly. We fine-tune the pre-trained embeddings on each set of sentences. Then, we compute the
similarities between the vector of "target_word_new" and the pre-trained embedding of the target
word (gold standard).

Table 4 shows the results of this experiment. sim-inf, stm-uninf and sim-random are the si-
milarities computed on the sets of 250 most informative sentences, 250 least informative and 250
random, respectively ; sim-in f&uninf includes the 250 most informative sentences and 250 least
informative. Looking at the mean differences of each column with sim-in f, we conclude that a low
informativeness score of a sentence towards a target word indicates it is less suitable to learn a word
embedding ; however, sentences with high probability are not necessarily more helpful than the rest.
Moreover, training embeddings on a set of 500 good and bad sentences gives almost the same quality
of embeddings as training on a set of only 250 good sentences.

The second part of Table 4 compares the similarities of vectors when trained on 200 random sentences
(stm-random200), and when augmenting them with 50 "uninformative" sentences (sim-random-
unin f). The former is usually lower when the sim-unin f value is low, showing that removing these
sentences can improve word representations. However, for words with a high value of sim-uninf,
the value sim-random-uninf is still higher than sim-random?200. Thus, the mean difference is
close to zero.

We investigate the reason behind the large disparities among words for this task. We consider two
indicators for each word : its frequency in Google Unigrams (Brants & Franz, 2006) and its polysemy
in WordNet (Fellbaum, 1998). The Spearman correlation between the word frequency and the
difference between sim-inf and sim-random is high and negative (-0.6) with a p-value < 0.05.
Thus, for frequent words, the difference in similarity is low between highly informative sentences

6. Available at https://code.google.com/archive/p/word2vec/



and random sentences. On the contrary, in the case of infrequent words, the informative sentences
provide better embeddings than the random ones. The correlations with the other columns of Table 4
are not significant. For polysemy, we divide the words into two classes according to the median : the
words with less than 11 different senses in WordNet and the words with 11 or more. No significant
correlation is observed with the similarity values.

sim-inf | sim-uninf | sim-inf&uninf | sim-rand250 sim-rand200 | sim-rand&uninf
mean 0.567 0.393 0.611 0.578 0.574 0.580
diff with ; 0.174 -0.044 20.011 ; 0.006
1st col

TABLE 4 — The table on the left shows the mean similarity (for the 20 target words) between the
pre-trained vector of the target words and the vector trained from selecting only 250 sentences with
highest and lowest probability as well as 250 random sentences according to the Fasttext classifier’s
output. The second table shows the effect that adding 50 low probability sentences to 200 random
sentences has on the mean similarity.

7 Discussion and future work

In this study, we have introduced the notion of informativeness and proposed an automatic method
to predict it for a given set of words. We have performed a manual annotation of informativeness
and used it to evaluate our models. Despite their efficiency in classifying sentences, classifiers do
not perform well on the manual dataset, suggesting that what the models are learning is different
from our definition of informativeness. However, when using the informative and uninformative
sentences predicted by the classifier on the task of word embeddings training, we observe that training
on uninformative sentences leads in general to lower quality embeddings. Moreover, the average
informativeness score of sentences varies a lot depending on the target word : for infrequent target
words, informative sentences usually provide a higher gain compared to random sentences.

While not allowing for strong claims about the impact of informativeness on word representations,
we believe the results of the present study put forward several interesting questions worth of further
research. First of all, it remains to be seen whether the human concept of informativeness can be
of help to NLP applications. Several modifications can be introduced to our algorithms, such as the
number of distractors or a variety of source corpora; and annotating a bigger dataset could possibly
allow for supervised learning of informativeness.

Another open question is whether embeddings might benefit more from an alternative concept of
informativeness. For instance, although definitions are —or should be— informative for humans, they
are not very common in most corpora. For this reason, language representations trained on common
corpora, like the ones our classifiers rely on, may find them atypical.

With a better understanding of informativeness and automatic predictors, we believe that a study of
the features that make a sentence informative for a word would be of great theoretical as well as
practical interest, possibly allowing to build target-word-independent predictors. Such features could
involve context words sharing a topic with the target, or the degree of polysemy of context words.
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