
Predicting the Semantic Textual Similarity
with Siamese CNN and LSTM

Elvys Linhares Pontes1 Stéphane Huet1 Andréa Carneiro Linhares2

Juan-Manuel Torres-Moreno1,3

(1) LIA, Université d’Avignon et des Pays de Vaucluse, Avignon, 84000 France
(2) Universidade Federal do Ceará, Sobral, Ceará Brazil
(3) École Polytechnique de Montréal, Montréal, Canada

{elvys.linhares-pontes, juan-manuel.torres,
stephane.huet}@univ-avignon.fr

andrea.linhares@ufc.br

RÉSUMÉ
La Similarité Textuelle Sémantique (STS) est la base de nombreuses applications dans le Traitement
Automatique du Langage Naturel (TALN). Notre système combine des réseaux neuronaux convolutifs
et récurrents pour mesurer la similarité sémantique des phrases. Il utilise un réseau convolutif pour
tenir compte du contexte local des mots et un LSTM pour prendre en considération le contexte
global d’une phrase. Cette combinaison des réseaux préserve mieux les informations significatives
des phrases et améliore le calcul de la similarité entre les phrases. Notre modèle a obtenu de bons
résultats et est compétitif avec les meilleurs systèmes de l’état de l’art.

ABSTRACT
Semantic Textual Similarity (STS) is the basis of many applications in Natural Language Processing
(NLP). Our system combines convolution and recurrent neural networks to measure the semantic
similarity of sentences. It uses a convolution network to take account of the local context of words and
an LSTM to consider the global context of sentences. This combination of networks helps to preserve
the relevant information of sentences and improves the calculation of the similarity between sentences.
Our model has achieved good results and is competitive with the best state-of-the-art systems.
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1 Introduction

Semantic Text Similarity (STS) is an important task in Natural Language Processing (NLP) appli-
cations such as information retrieval, classification, extraction, question answering, and plagiarism
detection. The STS task measures the degree of similarity between two texts and can be expressed
as follows: given two sentences, a system returns a continuous score on a scale from 1 to 5, with 1
indicating that the semantics of the sentences are completely independent and 5 meaning that there is
a semantic equivalence.

STS is a difficult issue since languages have numerous ambiguities and synonymous expressions,
while sentences may have variable lengths and complex structures. Therefore basic models, e.g.



bag-of-words or TF-IDF models, are constrained by their specificities that put aside the role played by
the word order and ignore syntactic as well as semantic relationships. Recent successes in sentence
similarity have been obtained using Neural Networks (RNNs: Recurrent Neural Networks (Mueller &
Thyagarajan, 2016; Kiros et al., 2015; Tai et al., 2015) and CNNs: Convolutional Neural Networks
(He et al., 2015)). Neural Networks (NNs) use a deep analysis of sentences and words to take
better into account both the semantics and the structure of sentences in order to predict the sentence
similarity.

In this paper, we describe our technique based on NNs to measure similarity. First, we use a Siamese
CNN to analyze the local context of words in a sentence and to generate a representation of the
relevance of a word and its neighborhood. Then, we use a Siamese LSTM to analyze the entire
sentence based on its words and its local contexts. At last, we predict the semantic similarity of pairs
of sentences using the Manhattan distance.

We applied our framework on the SemEval information for STS assignment and we acquired compet-
itive outcomes demonstrating that our model can give helpful information to enhance the sentence
analysis.

This paper is organized as follows: we make an overview of relevant work for STS in Section 2. Next,
we detail our approach in Section 3. The experimental setup and results are presented in Sections 4
and 5, respectively. Finally, we give our conclusion and some last remarks in Section 6.

2 Related Work

To deal with the STS task, previous studies have resorted to various features (e.g. word overlap,
synonym/antonym), linguistic resources (e.g. WordNet and pre-trained word embeddings) and a
wide assortment of learning algorithms (e.g. Support Vector Regression (SVR), regression functions
and NNs). Among these works, several techniques extract multiple features of sentences and apply
regression functions to estimate these similarity scores (Lai & Hockenmaier, 2014; Zhao et al., 2014;
Bjerva et al., 2014; Severyn et al., 2013). Lai & Hockenmaier (2014) analyzed distinctive word
relations (e.g. synonyms, antonyms, and hyperonyms) with features based on counts of co-occurences
with other words and similarities between captions of images. Zhao et al. (2014) predicted the
sentence similarity from syntactic relationship, distinctive content similitudes, length and string
features. Bjerva et al. (2014) also utilized a regression algorithm to foresee the STS from different
features (WordNet, word overlap, and so forth). Finally, Severyn et al. (2013) combined relational
syntactic structures with SVR.

The development of NNs has improved the results of many NLP applications and especially the STS
task (He et al., 2015; Mueller & Thyagarajan, 2016; Tsubaki et al., 2016; Rychalska et al., 2016).
Architectures such as RNNs and CNNs further improve the semantic analysis and the prediction of
sentence relatedness.

RNNs differ from other NN models in their ability to process sequential information. They update
a memory cell to make sense of data read in a sentence over time. Rychalska et al. (2016) used a
Recursive AutoEncoder (RAE) and a WordNet grant framework to produce sentence embeddings.
They consolidated these embeddings with a Support Vector Machine (SVM) classifier to compute
a semantic relatedness score. Long Short Term Memory (LSTM) enhances RNNs to handle long-
term dependencies (Mueller & Thyagarajan, 2016; Greff et al., 2015; Tai et al., 2015). The LSTM
engineering is made out of a memory cell and non-direct gating units that update its state over time



and manage the data stream into/out the cell. Mueller & Thyagarajan (2016) used a Siamese LSTM to
encode sentences using pre-trained word embedding vectors. Siamese LSTMs used the same weights
to encode sentences and to produce comparable sentence representations for similar sentences. Then,
they predicted the closeness of pair of sentences using the Manhattan distance between the sentence
representations. Tai et al. (2015) introduced the Tree-LSTM that is a generalization of LSTM for
tree-structured network topologies. They utilized this Tree-LSTM to encode a couple of sentences
and to predict their closeness with a NN that analyzes the distance and the angle between the sentence
embeddings.

CNNs have accomplished excellent outcomes in classification (Kim, 2014) and other NLP tasks
(Collobert et al., 2011). He et al. (2015) generated sentence embedding using a Siamese CNN
architecture with various convolution and pooling operations to extract distinctive granularities of
information. Their convolution uses filters that analyze entire word embeddings and each dimension
of word embeddings with multiple window sizes. For output of the convolution operation, they
applied several pooling types (max, mean, and min). Finally, they predicted the sentence similarity
from numerous measurements (horizontal and vertical comparison) to compare local regions of
sentence representation.

In this work, we join the ideas examined in (Mueller & Thyagarajan, 2016) and (Kim, 2014) to
produce more accurate semantic sentence embeddings. The next section presents our model and its
characteristics w.r.t. previous work.

3 Our model

A sentence is composed of words which can form phrases and clauses. Examining a sentence and its
components helps us to comprehend its meaning. NNs are structures that can inspect relationships
between words from multiple points of view. On the one hand, LSTMs can recognize and process the
semantics of a sentence by investigating the words through time. They update their state to get the gist
of the sentence (global context) in the order of words. In this procedure, LSTMs filter unimportant
data by retaining just the main information. On the other hand, CNNs use layers with convolution
filters that are connected to local features (Kim, 2014). They enable the analysis of a sentence from
multiple perspectives (filters). This type of NNs does not have the same concern with the sentence
length as LSTMs since CNNs examine all the words of the sentence together. Nonetheless, CNNs
do not consider the order of words in their analysis, so these structures cannot investigate sequence
relationships in the sentence.

Differently from (Mueller & Thyagarajan, 2016) that only analyze the general context of words
and from (He et al., 2015) that do not consider the order of words in the sentences, we analyze the
words in two perspectives: general and local contexts. Words are considered through time from the
general information of a word (word embedding) and its specific semantic and syntactic features
(local context) based on its previous and its following words. We apply a CNN to investigate the local
context for each word in a sentence. The CNN analyzes together all the words of the local context and
generates their representation as a unique structure. Then, we utilize an LSTM to examine the words
of the sentence one by one (Figure 1). Our NN has a Siamese structure (Mueller & Thyagarajan,
2016; He et al., 2015), i.e. our CNNA and our LSTMA are equal to our CNNB and our LSTMB ,
respectively. The following subsection describes our CNN, our LSTM, and our similarity metrics to
predict the sentence similarity.



FIGURE 1 – Siamese CNN+LSTM to calculate the similarity of a pair of sentences.

3.1 Neural Network Architecture

Kim trained a simple CNN on top of pre-trained word vectors for the sentence classification task
(Kim, 2014). His simple model composed of one layer of convolution achieved excellent results on
multiple benchmarks. Inspired by the good results of CNNs in the sentence classification (Kim, 2014),
we use a Siamese CNN to generate local contexts for each word in a sentence from its previous and
following words. We utilize pre-trained word embeddings 1 to represent these words. Let wei ∈ Rk

be the k-dimensional word vector corresponding to the i-th word in a sentence. A local context of
length l (e.g. l = 5) is represented as:

xli = xi−2 ⊕ xi−1 ⊕ xi ⊕ xi+1 ⊕ xi+2 (1)

where ⊕ is the concatenation operator. Our convolution operation involves a filter w ∈ Rlk, which is
applied to a window of l words to produce a local context. In more details, our CNN generates the
local context of word i by:

lci = f(w · xli + b) (2)

where b is a bias term and f is the hyperbolic tangent function. This filter is connected to every
sequence of words in a sentence to deliver a local context for all words.

In order to analyze the general and the local contexts of the word i, we concatenate its pre-trained
word embeddings wei (general semantic and syntactic features that were learned on a large corpus)
and its local context lci. Our LSTM updates its state ci and produces an output hi at time step i in
a sentence using the equations described in (Mueller & Thyagarajan, 2016). The last output of our
LSTM hn represents the meaning of a sentence.

Diverse similarity metrics (cosine, Euclidean and Manhattan distances) were tested and we acquired
the best outcome with the Manhattan distance exp(−||seA − seB ||) ∈ [0, 1]. Since these scores are
not optimized for the similarity metric range (1-5), we apply in a post-processing step a regression
method using local regression and bandwidth to project our predictions in the correct scale, similarly
to (Li & Racine, 2003).

1. Publicly available at: code.google.com/p/word2vec



4 Experimental Setup

We use the SICK dataset to analyze and to test the performance of our system. This dataset con-
tains 9,927 sentence pairs (Marelli et al., 2014) and we split it in 4,927/2,000/3,000 for train-
ing/validation/test. Each sentence pair is annotated with a relatedness label ∈ [1, 5] corresponding
to the average relatedness judged by 10 different individuals. The gold scores for relatedness are
composed of: 923 pairs within the [1,2) range, 1,373 pairs within the [2,3) range, 3,872 pairs within
the [3,4) range, and 3,672 pairs within the [4,5] range.

We initialize our CNN and our LSTM weights with small random Gaussian entries. Our CNN
has filters R300 and our LSTM has 50-dimensional hidden representations ht and memory cells ct.
We use a forget bias of 2.5 to model long-range dependencies, Adadelta method to optimize the
parameters, and a learning rate of 0.01. We did not identify any improvement with deep LSTMs
because of the small amount of data. Like (Mueller & Thyagarajan, 2016), we also augmented our
training dataset and we pre-trained our network using the dataset of SemEval 2013 STS task.

5 Results

In order to understand the relevance of the local context for the sentence similarity, we investigated
the original Siamese LSTM without local context and compared it with our method using various
lengths for the local context: 3, 5, 7, and 9 (Table 1). The original Siamese LSTM analyzes a sentence
considering only the general context of words. As expected, the analysis of general and local contexts
of words improved the sentence analysis, according to the Pearson’s and Pearman’s correlation
coefficients and the Mean Squared Error (MSE) scores. Short or long local contexts did not generate
the best results, which shows that short local context (3 words) did not get enough information about
the neighborhood of words and long local context (7 words) includes irrelevant information.

Method r ρ MSE
Siamese LSTM (Mueller & Thyagarajan, 2016) 0.8822 0.8345 0.2286
Siamese LSTM (publicly available version) 2 0.8500 0.7860 0.3017
Siamese #local context: 3 + Siamese LSTM 0.8536 0.7909 0.2915
Siamese #local context: 5 + Siamese LSTM 0.8549 0.7933 0.2898
Siamese #local context: 7 + Siamese LSTM 0.8540 0.7922 0.2911
Siamese #local context: 9 + Siamese LSTM 0.8533 0.7890 0.2923
Non-Linear Similarity (Tsubaki et al., 2016) 0.8480 0.7968 0.2904
Constituency Tree LSTM (Tai et al., 2015) 0.8582 0.7966 0.2734
Skip-thought+COCO (Kiros et al. 2015) 0.8655 0.7995 0.2561
Dependency Tree LSTM (Tai et al., 2015) 0.8676 0.8083 0.2532
ConvNets (He et al., 2015) 0.8686 0.8047 0.2606

TABLE 1 – Pearson (r) and Spearman (ρ) correlation coefficients, and Mean Squared Error for the
test set of STS task.

2. We used the public version of Siamese LSTM (Mueller & Thyagarajan, 2016) available at https://github.com/
aditya1503/Siamese-LSTM, however, we did not get the same results as the ones described in their paper.



The bottom part of Table 1 compares the results of our system and the best state-of-the-art systems.
Although our method did not generate the best results, our system is among the top systems and the
results were improved with respect to the publicly available version of the original Siamese LSTM.

In order to illustrate how our local context acts on sentence analysis, Table 2 shows at the word
level the similarity a pair of paraphrases: “Her life spanned years of incredible change for women.”
and “Mary lived through an era of liberating reform for women.” For each pair of words taken in
both sentences, the similarity measured as a cosine distance 3 is computed either from general word
embeddings (table a) or local contexts of length 5 (table b). The first things to notice is that the two
tables have different ranges of values because they each represent a different dimensional space;
this means that values must be compared inside each table. Analyzing Table 2a shows that word
embeddings preserve general semantic and syntactic relationships of words. In this case, the words
are more similar to the words that have similar semantics (1-"Her", 2-"Mary" and 2-"women"; 1-"life"
and 2-"lived"; 1-"change" and 2-"reform") and/or have similar syntactic roles (1-"of" and 2-"for").
Table 2b highlights that the local context of a word has its semantic and syntactic features based on
the words in its window; e.g. the nearest contexts to 1-"life" are 2-"Mary", 2-"lived", 2-through and
2-"women" since these local contexts have directly (2-"lived") and indirectly (2-"Mary", 2-"through"
and 2-"women") similar semantics. This analysis is similar to the syntactic features for the local
contexts, e.g. the nearest local context of 1-"for" are 2-"lived", 2-"of", 2-"for" and 2-"woman". The
relevance of local context is strengthened when we analyze phrasal verbs or multi-word expressions
in which meaning depends strongly on their previous and their following words.

Mary lived through an era of liberating reform for women
Her 0.77 0.93 0.90 0.81 1.04 0.92 0.95 0.91 0.80 0.80
life 0.91 0.70 0.89 0.90 0.82 1.00 0.71 0.86 0.88 0.86
spanned 0.88 0.76 0.81 1.01 0.80 0.85 0.92 1.00 0.89 0.93
years 0.88 0.70 0.94 0.88 0.72 0.86 0.92 0.93 0.81 0.86
of 0.93 0.96 0.96 1.09 0.91 0.00 0.99 1.02 0.82 0.91
incredible 0.94 0.89 0.83 0.94 0.84 0.95 0.74 1.04 0.83 0.97
change 0.97 0.90 0.93 0.92 0.85 0.99 0.80 0.67 0.83 0.92
for 0.96 0.97 0.67 0.79 0.89 0.82 0.88 0.92 0.00 0.89
women 0.81 0.96 0.99 0.93 0.92 0.91 0.79 0.88 0.89 0.00

a. Cosine distance between word embeddings.
Mary lived through an era of liberating reform for women

Her 0.06 0.08 0.09 0.11 0.16 0.12 0.13 0.13 0.09 0.08
life 0.10 0.08 0.09 0.12 0.11 0.13 0.13 0.14 0.10 0.10
spanned 0.15 0.14 0.11 0.11 0.18 0.14 0.14 0.16 0.13 0.12
years 0.13 0.11 0.08 0.13 0.10 0.12 0.11 0.16 0.09 0.09
of 0.12 0.11 0.10 0.12 0.11 0.09 0.12 0.14 0.13 0.11
incredible 0.12 0.12 0.13 0.14 0.19 0.13 0.03 0.16 0.14 0.09
change 0.14 0.13 0.18 0.15 0.18 0.15 0.16 0.02 0.15 0.13
for 0.10 0.09 0.10 0.11 0.12 0.08 0.11 0.12 0.04 0.08
women 0.09 0.07 0.09 0.11 0.11 0.08 0.09 0.14 0.07 0.01

b. Cosine distance between local contexts of length 5.

TABLE 2 – Cosine distance measured between word embeddings (a.) and between the local contexts
of length 5 (b.) for each pair of words of two paraphrases.

3. The cosine distance between two vectors u and v is defined by 1− u·v
||u||2||v||2 .



Table 3 shows four examples of STS scores for multiple levels of similarities. The first pair of
sentences describes an example of active and passive voice, with the same meaning (4.9 golden
score). The second case is an example of positive and negative sentences (3.3 golden score). The
third example is composed of sentences that do not share the same meaning, having 1.0 golden
score. Finally, our method helps to determine the semantic relationship of the phrasal verb "wipe off "
and the verb "clean" in the last example. Our approach improves the Siamese LSTM analysis by
generating better scores. The local context helps to better identify not only similar sentences but also
the negation and sentences with different meanings. This local information provides LSTM with a
smoother analysis of words and how they connect in a sentence.

Pair of sentences Golden score Siamese LSTM Our approach
Fish is being cooked by a woman. 4.9 3.84 4.05
A woman is cooking fish.
The bearded man is not sitting on a train. 3.3 3.49 3.35
The bearded man is sitting on a train.
Someone is playing with a toad. 1.0 1.51 1.46
The trumpet is being played by a man.
I will wash up if you wipe off the table. 5.0 3.67 4.08
I will wash up if you clean the table.

TABLE 3 – Examples of semantic textual similarities using Siamese LSTM and our approach (Siamese
#local context: 5 + Siamese LSTM).

To sum up, the local context of words refined the general context analysis. Our approach identified
more details about the words and their local as well as general contexts, which usually leads to
improved STS scores.

6 Conclusion

STS is an important task for various NLP applications, e.g. Automatic Text Summarization (ATS),
Question-Answering, Information Retrieval, etc. Our system combines CNN and LSTM structures
to analyze, to identify and to preserve the relevant information in each part of sentences and in the
whole sentences. The local context turned out to be useful to get complement information about
a word in a sentence and to improve the sentence analysis. In our experiments, the local context
improved the prediction of the sentence similarity, by reducing the mean squared error and increasing
the correlation scores.

We plan to test other methods to analyze the local context (Ermakova & Mothe, 2016; Zhu et al.,
2017). Unfortunately, the dataset we used for the experiments is of a modest size and we did not
find larger annotated corpora for this task. Therefore, we also want to lead extrinsic evaluations by
measuring how STS acts on ATS systems, depending on whether the original or the modified Siamese
LSTM model is used.
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