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Abstract 

In this paper, we describe a sentiment analysis system implemented for the 

semantic-evaluation task of message polarity classification for English on Twitter. 

Our system contains modules of data pre-processing, word embedding, and 

sentiment classification. In order to decrease the data complexity and increase the 

coverage of the word vector model for better learning, we perform a series of data 

pre-processing tasks, including emoticon normalization, specific suffix splitting, 

and hashtag segmentation. In word embedding, we utilize the pre-trained word 

vector provided by GloVe. We believe that emojis in tweets are important 

characteristics for Twitter sentiment classification, but most pre-trained sets of 

word vectors contain few or no emoji representations. Thus, we propose 

embedding emojis into the vector space by neural network models. We train the 

emoji vector with relevant words that contain descriptions and contexts of emojis. 

The models of long short-term memory (LSTM) and convolutional neural network 

(CNN) are used as our sentiment classifiers. The proposed emoji embedding is 

evaluated on the SemEval 2017 tasks. Using emoji embedding, we achieved recall 

rates of 0.652 with the LSTM classifier and 0.640 with the CNN classifier. 

Keywords: Sentiment Analysis, Polarity Classification, Machine Learning, Neural 
Network, Word Embedding. 

1. Introduction 

There has been huge growth in the use of social networks, such as Twitter, in recent years. 

Many messages are created every day, including various topics, users’ comments and views, 

or current emotions. Sentiment analysis, which predicts the polarity of a message, is one of the 

research directions on Twitter. A message on Twitter is called a tweet and is allowed to be 140 

characters or less. Tweets are highly colloquial. Due to the length constraint, a tweet often 

                                                       
 Department of Computer Science and Engineering, National Sun Yat-sen University, Taiwan 

 E-mail: cpchen@cse.nsysu.edu.tw; fb74123698@gmail.com; kr60903@gmail.com 



 

 

2                                                       Chia-Ping Chen et al. 

contains unofficial abbreviations, as well as emoticons and emojis. Figure 1 shows examples 

of tweets. 

Figure 1. Examples of tweets. Tweets tend to have informal words and syntax. 

In the above examples, we can see that emojis are used frequently in Tweets. Some 

emojis (like  ) can be considered the natural evolution of emoticons, such as :-) and :D. In 

addition to facial expressions, emojis can be used for food, flags, animals, etc. 

Unofficial abbreviations and emojis without corresponding word vectors in tweets can 

make the sentiment classification task difficult. In this work, we find sentiment features for 

these unorthodox tokens to get better results in sentiment classification. 

Artificial neural networks for machine learning are mathematical models inspired by 

biological neural systems. Deep learning, which is neural network models based on deep 

neural networks, has been a very successful method and achieves state-of-the-art performance 

in many tasks, such as NIST handwritten digit recognition (LeCun, Bottou, Bengio, & Haffner, 

1998) and ImageNet image classification (Krizhevsky, Sutskever, & Hinton, 2012). It 

performs well in natural language processing tasks, such as machine translation (Sutskever, 

Vinyals, & Le, 2014) and handwriting recognition (Graves et al., 2009). 

For sentiment analysis, deep learning-based approaches have performed well in recent 

years. For example, convolution neural networks (CNN) with word embedding have been 

implemented for text classification (Kim, 2014), and they have achieved state-of-the-art 

results in SemEval 2015 (Severyn & Moschitti, 2015). SemEval 2017 Task 4 is sentiment 

analysis in Twitter, which is further divided into five subtasks: message polarity classification 

(Subtask A), topic-based message polarity classification (Subtasks B-C), and tweet 
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quantification (Subtasks D-E). 

Most of the participants in SemEval who adopt deep learning collect millions of tweets to 

train word-embedding models. The top system of SemEval 2017, which achieved 0.681 of 

average recall, used 100 million unlabeled tweets to pre-train word-embedding models (Cliché, 

2017). In contrast, our goal in this work is to achieve sound performance without a large 

amount of external data. 

In this paper, we describe our system for SemEval 2017 Task 4 (Subtask A) for message 

polarity classification (Rosenthal, Farra, & Nakov, 2017). Given a message, the system 

decides whether the message is of positive, negative, or neutral sentiment. We extend our 

previous work on SemEval 2017 (Yang, Tseng, & Chen, 2017). Our system consists of data 

pre-processing, word embedding, and classifiers. Data pre-processing includes normalization 

and hashtag segmentation. We consider the importance of emojis for sentiment analysis. In 

addition to using pre-trained word vectors, we train the emoji vector by the neural network. 

For the classifiers, we choose RNN-based and CNN models. We have achieved average recall 

rates of 0.652 with the LSTM-based classifier, and 0.640 with the CNN-based classifier. 

Our contributions are described as follows. 

　 We propose neural network models for emoji embedding and investigate the effects of 

using emoji vectors in the classifiers. Through experiments, we find that emoji vectors can 

improve the accuracy of prediction for the positive and negative classes. 

  Besides adding emoji vectors in the system, data pre-processing is critical to the 

improvement of the average recall rate from 0.610 to 0.652 with the LSTM classifier. Data 

pre-processing is important for Twitter sentiment analysis because textual data on Twitter is 

informal. In particular, the effect of hashtag segmentation is the most significant. 

This paper is organized as follows. In Section 2, we describe our system, consisting of 

data pre-processing, word embedding, emoji embedding, and classifiers. In Section 3, we 

introduce data in experiments, network settings, and tools. In Section 4, we present the 

evaluation results, along with our comments. In Section 5, we conclude and discuss future 

works. 

2. Related Work 

There has been considerable research in the field of sentiment analysis. Past research mostly 

has focused on long text. Pang, Lee and Vaithyanathan (2002) analyzed the performance on 

movie reviews using machine learning algorithms and used star ratings as polarity signals in 

their training data. In recent years, there have been many research projects of sentiment 

analysis on social networks like Twitter. Go, Bhayani and Huang (2009) used distant learning 

to acquire more sentiment data. Their training data consisted of tweets with emoticons, which 
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can be used as noisy labels. They constructed models with Naïve Bayes, Maximum Entropy, 

and Support Vector Machines (SVM), and they concluded that SVM outperforms the other 

models. 

Deep learning has gained much attention in classification of Twitter text data, due to its 

huge success in speech recognition and computer vision. Among the top systems of SemEval, 

Severyn and Moschitti (2015) proposed a parameter initialization method for CNN. They used 

an unsupervised neural language model to initialize word embeddings that were fine-tuned by 

a distant supervised corpus. The pre-trained parameters were used to initialize the CNN model. 

Deriu, Gonzenbach, Uzdilli, Lucchi, De Luca and Jaggi (2016) utilized large amounts of data 

with distant supervision to train an ensemble of two-layer convolutional neural networks 

whose predictions were combined using a random forest classifier. Cliché (2017) used CNN 

models and bi-directional LSTM models. They pre-trained word embedding and fine-tuned it 

using distant supervision. They trained their models on Twitter data where embedding was 

fine-tuned again and finally combined several CNNs and LSTMs to get better performance. 

Emojis are an important feature in tweets. Many studies have analyzed and trained 

emojis, such as Zhao, Dong, Wu and Xu (2012) and Barbieri, Ronzano and Saggion (2016). 

Zhao et al. (2012) built a system, which was the first system for sentiment analysis of Chinese 

tweets in Weibo. They mapped 95 emojis into four categories of sentiment. Their system 

employs the emojis for the generation of sentiment labels for tweets and builds an incremental 

learning Naïve Bayes classifier for the categorization of four types of sentiments. Barbieri et 

al. (2016) studied Twitter emojis with embedding models. They retrieved ten million tweets 

posted by USA users, and they made vector models of both words and emojis using several 

skip-gram word-embedding models. 

3. Method 

The system we implement for sentiment classification is shown in Figure 2. In data 

pre-processing, we normalize data sets to decrease the data complexity and increase the 

coverage of the word vector inventory. In word embedding, we utilize pre-trained word 

vectors provided by GloVe (Pennington, Socher, & Manning, 2014) and we train emoji 

embedding by neural networks. The models of LSTM and CNN are used as our sentiment 

classifiers. 
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Figure 2. Our Sentiment System. We propose to add embedded emoji vectors for 
better sentiment classification. 

3.1 Data Pre-processing 

All the data used for training the emoji embedding and for training the sentiment classification 

models undergo a series of data pre-processing. First, we use a tokenizer to split a tweet into 

words, emoticons, and punctuation marks. Happytokenizer1 is the tokenizer we use for text 

processing. Then, we replace URLs and USERs with normalization patterns <URL> and 

<USER>, respectively. All uppercase letters are converted into lowercase letters. The above 

pre-processing is called basic pre-processing. Next, we perform further data pre-processing 

based on basic pre-processing. The further data pre-processing is described as follows. 

3.1.1 Emoticon Normalization 

Tweets often contain a variety of emoticons, and some emoticons do not correspond to any 

pre-trained word vector. To reduce complexity, we normalize similar emoticons to the same 

token, as described in Table 1. 

Table 1. Examples of emoticon normalization. We normalize similar emoticons into 
four categories, which are <smile>, <sadface>, <neutralface>, and <heart>, 
respectively. 

Emoticon Normalization

:), (:, :-), (-:, :D, :-D, ;), =), (=, =D <smile> 

:(, ):, :’(, )’:, =(, )=, :-(, )-: <sadface> 

:|, |:, =|, |: <neutralface> 

<3 <heart>

For example, in the case of <neutralface> category, we find :|, |:, =|, |:, and then replace them 

by the token <neutralface>. Thus, the emoticons are replaced by four normalized categories. 

1 http://sentiment.christopherpotts.net/tokenizing.html 
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3.1.2 Specific Suffix Splitting 

There are many specific suffixes in English words, such as children's and Amazon's. These 

words may not have any corresponding word vectors and their presence increases the 

vocabulary size. So, we split the specific suffixes, including 's, n't, 'll, 're, 've, 'd and 'm, to 

decrease vocabulary. Moreover, the words resulted from splittingy do have corresponding 

word vectors (Nabil, Atyia, & Aly, 2016). 

3.1.3 Hashtag Segmentation 

Hashtag often is composed of multiple words and includes emotional words. We try two ways 

to split hashtags. Table 2 shows the examples of hashtag segmentation. 

 Maximum Matching Segmentation 

We use the vocabulary of GloVe as our dictionary containing approximately 570,000 words, 

and define a regular expression for numbers and punctuation. From the beginning of a hashtag, 

we split it according to the dictionary as much as possible until segmentation is finished. 

 Unigram-based Segmentation 

We train a unigram model with 0.6M tweets obtained from Twitter API. We do statistics of 

different words in these tweets and remove Except for the letter “a” and the letter “i”, single 

letters letters are removed from the unigram dictionary to avoid over-segmentation. All results 

of hashtag segmentation will be split according to the dictionary, so a hashtag may have 

multiple results. Then, we calculate sum of log probability of each word from each result as 

segmentation score. Finally, we take the highest score as the final segmentation result. 

Table 2. Examples of hashtag segmentation. A hashtag is converted to a word 
sequence. 

Hashtag Maximum matching Unigram-based 

#windows10fail windows 10 fail windows 10 fail 

#sportshalloweencostume sports Halloween costume sports Halloween costume 

#thisisnotajoketweet thisis notajoke tweet this is not a joke tweet 

3.2 Embedding 

Since training word embedding requires a lot of time, we use the pre-trained word vector 

provided by GloVe. Nevertheless, many pre-trained sets of word vectors contain few or no 

emoji representations. Therefore, Barbieri et al. built skip-gram word embedding models by 

mapping both words and emojis in the same vector space (Barbieri et al., 2016). Note that we 

only consider emojis and do not include emoticons because emoticons already are normalized 

to the normalization tokens during the data pre-processing phase. We train emoji vectors by 
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neural networks. Figure 3 shows the model architecture. In Figure 3, U is the weight matrix 

from the input layer to the hidden layer and V is the weight matrix from the hidden layer to the 

output layer. When the embedding training is finished, the weight matrix from the input layer 

to the hidden layer U consists of the emoji vectors. We use pairs of an emoji and its relevant 

words, including the descriptive words and the contextual words, as training examples. The 

steps are described as follows. 

 
Figure 3. The model of emoji embedding. Similar to word embedding, an emoji 
vector is trained to predict neighboring word vectors. 

3.2.1 Description Words 

We crawled emojis and their descriptions from Unicode emoji standard,2 resulting in 9,244 

description words for 2,623 emojis. Every training example consists of an emoji and a 

sequence of words ݓଵ,ݓଶ, …  ௡ describing that emoji. We tried two methods of producingݓ,

the training target, described as follows. Table 3 shows examples of emojis and their 

descriptions. 

Table 3. Examples of emojis and their description. 

Emoji Description 

Grinning face 

Beaming face with smiling eyes 

Woman running: medium skin tone 

Sweat droplets 

Cat face 

                                                       
2 http://www.unicode.org/emoji/charts/full-emoji-list.html 
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 Sum of the vectors of the description words 

We take the sum of the individual vectors of description words as a training target, where the 

word vector can be found in GloVe. The description words ݓଵ:௡ correspond to pre-trained 

word vectors ࢜ଵ:௡  where ࢜௜  is a ݀ -dimensional word vector. The training target is 

ൌ ∑ ௜࢜
௡
௜ୀଵ  . In this way, the number of training samples is 2,623. 

 Description word splitting 

We divide the description words into ݊ training examples. For example, the description of 

 is grinning face, so the training examples are ( , grinning) and ( , face). These 

description words have corresponding pre-trained word vectors. In this way, the number of 

training examples is 9,244. 

The size of the input layer is equal to the number of different emojis, as emojis are 

represented by one-hot vectors. The size of the output layer is equal to the size of word vector, 

which is 100. 

3.2.2 Contextual Words 

We selected tweets with emojis from the aforementioned 0.6M tweets, resulting in a set of 

approximately 50K tweets. A tweet is ݓଵ,ݓଶ, … , ݁, …  ௡, where ݁ is an emoji. The networkݓ,

input is emoji ݁ as a one-hot vector, and the network output targets are the contextual words 

of ݁, which is ݓଵ,ݓଶ, … ,ଵሻݓ,௡. Training examples are ሺ݁ݓ, ሺ݁, ,ଶሻݓ … , ሺ݁,  ௡ሻ. We collectedݓ

about 1.7M training samples. 

For the output target, we tried two kinds of representations. A sparse target 

representation uses a one-hot vector, while a distributed target representation uses a word 

vector. 

3.3 Sentiment Classification 

3.3.1 LSTM Classifier 

Figure 4 shows the architecture of our RNN-based classifier, which contains an input layer, 

embedding layer, hidden layer, and soft-max layer. 
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Figure 4. The architecture of the implemented classifier based on recurrent neural 
network with long short-term memory (LSTM) cells in the hidden layer. 

In the input layer, each tweet is treated as a sequence of words and each word is input 

into the model at every time step. In the embedding layer, each word is converted to a word 

vector, where word vectors are stored in an embedding matrix provided by GloVe. In the 

hidden layer, we use LSTM memory cells (Hochreiter & Schmidhuber, 1997) for the 

long-range dependency. Different from the original recurrent unit, the LSTM cell contains 

gates to control states. The hidden states of the first word to the second to last word in a tweet 

connect to the hidden state of the next word. Only the hidden state of the last word connects to 

the next (output) layer. In the soft-max layer, output values are processed by soft-max function 

to get probabilities for classification. 
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3.3.2 CNN Classifier 

 
Figure 5. The architecture of the implemented classifier based on convolutional 
neural network (CNN). 

The CNN model we use for classification is the architecture used by Kim (2014). Figure 5 

shows the CNN architecture, which consists of a convolutional layer, max-pooling layer, 

hidden layer, and soft-max layer. 

The model input is a tweet, consisting of sequence of words ݓଵ:௡ ∈ ࣬௏, where ܸ is the 

vocabulary size. In order to fix the length of the tweet, we pad input text with zeros into length 

݊. Each tweet ݓଵ:௡ is represented by the corresponding word vector ݔଵ:௡, where ݔ௜ is the 

݀ -dimension word vector of the ݅ -th word. Input words are embedded into dense 

representation through word embedding and fed into the convolutional layer. A word without 

an embedding vector is represented by a zero vector. After word embedding, an input tweet is 

mapped to an input matrix ܵ ∈ ࣬௡ൈௗ. 

In the convolutional layer, kernel ܭ ∈ ࣬ௗൈ௠ slides over the input matrix with stride 

ݏ ൌ 1 and creates features ܿ௜. 

 ܿ௜ ൌ ݂ሺܭ ∗ ௜ܵ:௜ା௠ିଵ ൅ ܾ௖௢௡௩ሻ                                               (1) 

where ܾ௖௢௡௩ is the bias at the convolutional layer, * denotes the convolution operation, and ݂ 

is a nonlinear function. The feature map ݕ௖௢௡௩ ∈ ࣬௡ି௠ାଵ is created by 

  ௖௢௡௩ݕ ൌ ሾܿଵ, ܿଶ, … , ܿ௡ି௠ାଵሿ                                                 (2) 

We use ݇ kernels to create ݇ feature maps, which are denoted by ௖ܻ௢௡௩ ∈ ࣬௞ൈሺ௡ି௠ାଵሻ. 

Then, we apply the max-pooling operation over each feature map in order to capture important 

information, i.e. 
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௣௢௢௟,௜ݕ  ൌ max௝ ௖ܻ௢௡௩,௜,௝                                                     (3) 

where ݕ௣௢௢௟,௜ ∈ ࣬௞ is the output after the max-pooling operation. 

After the max-pooling layer, we use dropout to drop some activations for regularization 

randomly in order to prevent the model from over-fitting. Finally, we use a fully connected 

layer of size ݄ followed by a dense layer with soft-max function for classification. 

4. Results 

4.1 Data 

We used the SemEval 2017 data provided by the task organizers. These data are tweets in 

Twitter, which are labelled with three types of sentiment: positive, neutral, and negative. The 

training data were the tweets from SemEval 2013 to SemEval 2016, excluding SemEval 2016 

testing data. The development data were the tweets from SemEval 2016 testing data. The test 

data were the tweets provided by the organizer of SemEval 2017. Table 4 summarizes the 

statistics of the data. 

Table 4. Statistics of SemEval 2017: the number of tweets in datasets. 

Data Pos. Neu. Neg. Total 

Train 12,844 12,249 4,609 29,702 

Dev  7,059 10,342 3,231 20,632 

Test  2,375  5,937 3,972 12,284 

4.2 Settings 

We used the pre-trained word vectors provided by GloVe, which are trained with Twitter data. 

The dimension of word vectors can be 50, 100, or 200. We evaluated these dimensions with 

the SemEval 2016 dataset. The 100 and 200-dimension word vectors achieved better results, 

so we used 100-dimension word vectors for the SemEval 2017 tasks. We noticed that the 

performance is not very sensitive to the hyper-parameter of word vector size and the number 

of hidden layer units. For the CNN model, the number of filters ݇ was 50. The kernel size 

was 3 ൈ 100 with stride ݏ ൌ 1 over the input matrix. Max-pooling was applied over each 

feature map. After pooling, we dropped activations randomly with the probability of ݌ ൌ 0.2 

and fed to the hidden layer with size ݄ ൌ 20. The hyperbolic tangent function was used as the 

activation function after convolution and pooling. For the LSTM model, input size ݅ was 

equal to the size of word list and the size of hidden ݄ was 50. We dropped input units for 

input gates and recurrent connections with the same probability of ݌ ൌ 0.2. 

Next, we explain the settings of emoji embedding training. The size of input layer was 

equal to the number of emojis. For training with descriptive words, the size of the input layer 
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was 2,623, the size of the hidden layer was 100, and the size of the output layer was 100. Both 

hidden-layer outputs and output-layer outputs went through hyperbolic tangent function, and 

the loss is the mean square error. 

For training with contextual words, the size of the input layer was 1,023 and the size of 

the hidden layer was 100. The size of the output layer was 42,670 if the target was represented 

by one-hot vector and was 100 if the target was represented by word vector. Output values 

went through the soft-max function. Both hidden-layer outputs and output-layer outputs went 

through the hyperbolic tangent function, and the loss is the mean square error. 

All the models we used in our experiments were implemented using Keras3 with 

Tensorflow4 backend. 

4.3 Baseline 

We participated in SemEval 2017 task 4, which is sentiment classification in Twitter (Yang et 

al., 2017). There are three evaluation measures in the task, which are average recall of three 

classes, average F-measure of positive and negative classes, and accuracy. The organizer 

chose average recall as the primary measure because it is more robust to class imbalance 

(Rosenthal et al., 2017), so we focus on this performance measure. The results of each setting 

are obtained from an average of five runs of experiments. In each run, we trained our models 

with the same usage of data sets, instead of the cross-validation or leave-one-out scheme. 

Table 5 shows our results of SemEval 2017. We interpolated the LSTM and CNN models 

to get the interpolated model for the final submission, which achieved 0.618 for average recall. 

Also, we list the evaluation of LSTM and CNN model. We will take this performance as our 

baseline. 

Table 5. Results of baseline. Interpolation-baseline is the result of participating in 
SemEval 2017. It is an interpolation of an LSTM model and a CNN model. The result 
of LSTM-baseline and the result of CNN-baseline are obtained from an average of 
five runs of experiments. 

Model Avg. Recall Avg. F1 Accuracy 

LSTM-baseline 0.610 0.575 0.615 

CNN-baseline 0.584 0.548 0.583 

Interpolation-baseline 0.618 0.587 0.616 

 

                                                       
3 https://keras.io 
4 https://www.tensorflow.org 
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4.4 Comparison of Data Pre-processing 

In this part, we show the classification results using different data pre-processing. We 

summarize different statistics of pre-processed data, including vocabulary size, the number of 

tokens in data, and coverage on word vector. Here, coverage on word vector is the proportion 

of tokens with found word vectors. The word list we used was extracted from the words in the 

training data, and it is equal to vocabulary size. If the word vector of a word in the word list 

could not be found in GloVe, we used the zero vector for the word. Words in the testing data 

but not in the word list were removed. Each LSTM or CNN model was trained with 50 epochs. 

Table 6 shows the results of data pre-processing. 

Table 6. Statistics of pre-processed data and results. In each pre-processing stage, we 
base on basic pre-processing. “emoticon” means emoticon normalization. “suffix” 
means specific suffix splitting. “hashtag*” means hashtag segmentation, where 
hashtag1 is maximum matching segmentation and hashstag2 is unigram-based 
segmentation. 

Pre- 
processing 

# Vocab.
# Tokens Coverage Avg. Recall 

Train Test Train Test LSTM CNN 

Basic 38,353 691,261 218,821 0.914 0.886 0.610 0.584 

Basic + 
emoticon 

38,316 686,565 217,321 0.916 0.886 0.615 0.584 

Basic + 
suffix 

37,506 700,736 222,435 0.928 0.904 0.614 0.584 

Basic + 
hashtag1 

36,429 695,654 224,562 0.924 0.932 0.622 0.590 

Basic + 
hashtag2 

34,327 700,954 232,322 0.924 0.933 0.616 0.593 

Basic + 
emoticon + 

suffix + 
hashtag1 

35,542 700,410 226,621 0.940 0.948 0.625 0.594 

It can be seen that the vocabulary size decreased and the coverage on word vector 

increased after data pre-processing. For the LSTM model, average recall of all pre-processed 

data was higher than the basic pre-processed data, especially data with hashtag segmentation. 

For the CNN model, average recall also was improved by data with hashtag segmentation. 

Although hashtag with unigram-based segmentation can attain better results, its average recall 

was lower than hashtag with maximum matching segmentation in the LSTM model. We think 

that the segmentation dictionary we used in maximum matching was the vocabulary of GloVe, 

so most words after hashtag segmentation had corresponding vectors. We combined all data 

pre-processing steps finally and achieved 0.625 for the LSTM model and 0.594 for the CNN 

model. 



 

 

14                                                       Chia-Ping Chen et al. 

4.5 Evaluation of Emoji Vector 

In this part, we explore the effect of adding the emoji vector. In order to have more 

corresponding vectors in testing data, the word list we used in this experiment was the 

vocabulary of GloVe. Words in the training and testing data but not in the word list were 

removed. If emoji vectors were added, we added the emoji to the word list. 

In order to prevent the model from over-training, we used an early stopping mechanism. 

We added the development dataset as validation data during model training. If there was no 

improvement in accuracy of validation data, the model stopped training. With early stopping, 

each model was trained about 5-10 epochs. 

The results of emoji embedding are shown in Table 7. ‘No emoji’ means that the emoji 

vector was not added. ‘desc_sum’ means that the sum of the description word vectors of emoji 

is the emoji vector. For training the emoji vector with description words, the sum of the 

individual word vectors of description words as a training target and dividing description 

words into multiple training targets are denoted as ‘desc_sum_nn’ and ‘desc_sp_nn,’ 

respectively. For training the emoji vector with contextual words, the training target using 

one-hot vector and word vector are denoted by ‘skip gram_1H’ and ‘skip gram_vec,’ 

respectively. 

Table 7. Results of emoji embedding. Note that the refined system with 0.652 would 
have ranked 7th in SemEval 2017. 

Pre-processing Basic All 

Model 
Early stopping 

LSTM CNN LSTM CNN 

vgܴܣ ଵ௉ேܨ Acc. ଵ௉ேܨ vgܴܣ Acc. vgܴܣ ଵ௉ேܨ Acc.  .ଵ௉ே Accܨ vgܴܣ

No emoji 0.634 0.601 0.627 0.624 0.594 0.618 0.651 0.630 0.639 0.629 0.599 0.612 

desc_sum 0.635 0.606 0.632 0.628 0.601 0.620 0.651 0.626 0.638 0.630 0.605 0.622 

desc_sum_nn 0.639 0.611 0.633 0.626 0.592 0.608 0.645 0.615 0.628 0.631 0.601 0.617 

desc_sp_nn 0.638 0.607 0.623 0.626 0.596 0.615 0.652 0.628 0.632 0.638 0.618 0.623 

skip gram_1H 0.639 0.613 0.633 0.622 0.593 0.617 0.642 0.614 0.633 0.640 0.618 0.620 

skip gram_vec 0.639 0.616 0.635 0.620 0.586 0.610 0.646 0.619 0.626 0.633 0.604 0.614 

By adding the emoji vector in systems with basic pre-processing, the average recall of 

the two models was mostly better than with no emoji. With all of the pre-processing, there was 

no significant improvement in the LSTM model. In CNN models with all of the 

pre-processing, the performance of adding emoji vectors was still better than without the 
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emoji vector. 

We know that only tweets in test data have emoji, and there were 731 tweets with emoji, 

which made about 5.9% of the test data. Furthermore, models did not learn emoji 

characteristics directly during training because there were no tweets with emoji in the training 

data. These are possible reasons there was no significant improvement in some cases. 

In order to more clearly observe the effect of adding emoji vectors for model 

classification, we only evaluated the test data with emojis in previous LSTM and CNN models. 

Table 8 shows the statistics of tweets with emoji. Table 9 shows the evaluation of tweets with 

emoji. 

Table 8. Statistics of tweets with emoji. In our data set, only tweets in test data had 
emoji. 

Tweet with emoji Pos. Neu. Neg. Total 

Test 310 248 173 731 

 

Table 9. Evaluation of tweets with emoji. 

Pre-processing Basic All 

Model 
Early stopping 

LSTM CNN LSTM CNN 

Avgܴ ଵ௉ேܨ Acc. ଵ௉ேܨ vgܴܣ Acc. vgܴܣ ଵ௉ேܨ Acc.  .ଵ௉ே Accܨ vgܴܣ

No emoji 0.621 0.665 0.638 0.621 0.661 0.630 0.644 0.696 0.656 0.624 0.679 0.637 

desc_sum 0.636 0.682 0.639 0.611 0.651 0.605 0.648 0.701 0.651 0.615 0.661 0.617 

desc_sum_nn 0.629 0.665 0.637 0.601 0.640 0.616 0.633 0.679 0.650 0.617 0.669 0.635 

desc_sp_nn 0.599 0.639 0.614 0.606 0.647 0.617 0.630 0.682 0.645 0.624 0.683 0.635 

skip gram_1H 0.632 0.666 0.636 0.604 0.641 0.612 0.638 0.685 0.648 0.634 0.692 0.643 

skip gram_vec 0.611 0.637 0.624 0.591 0.622 0.608 0.627 0.670 0.649 0.619 0.665 0.636 

The results show that the effect of adding emoji is not obvious. From our observation on 

the performance of the three classes, the addition of emoji vectors decreases the prediction of 

neutral class dramatically, but increases the prediction of positive and negative classes. 

Besides, we found that emoji vectors are more similar to each other than to the word vectors in 

the embedding space. Thus, they can contribute supplementary information for sentiment 

analysis. 
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5. Conclusion 

We implemented our sentiment analysis system for sentiment analysis of Twitter data 

organized in SemEval 2017. This system consists of data pre-processing, word and emoji 

embedding, and classifier. From our observation, the data complexity decreases after data 

pre-processing with improved performance on classification, especially with hashtag 

segmentation. We found that adding emoji vectors can improve the performance on 

classification, especially for CNN models, and model training with an early stopping 

mechanism can prevent the model from over-training. 

In data pre-processing, we process data with basic pre-processing and all pre-processing, 

including emoticon normalization, specific suffix splitting, and hashtag segmentation. In word 

embedding, we train emoji embedding with the descriptive words or the contextual words of 

emojis. For our models, we set the vocabulary of GloVe as the word list of models instead of 

the vocabulary in training data and validation data. In addition, we used an early stopping 

mechanism to train our models. Our system achieved 0.652 for LSTM model and 0.640 for 

CNN model, which would have ranked 7th in SemEval 2017. 

Regarding future works, we hope to get closer in performance to the leaders on the task 

leader-board. As mentioned in Section 4.5, the models did not learn emoji characteristics 

directly during training. Thus, we want to collect tweets with emojis for training and do 

further evaluation on our models. We also will try the fine-tuned word vector and make it 

suitable for sentiment classification. 
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