SMT vs NMT: A Comparison over Hindi & Bengali Simple Sentences

Sainik Kumar Mahata', Soumil Mandal?, Dipankar Das?, Sivaji Bandyopadhyay*
134Jadavpur University, Kolkata
2SRM University, Chennai

I'sainik.mahata @ gmail.com,

2

soumil.mandal @ gmail.com,

3dipankar.dipnil2005 @ gmail.com, *sivaji_cse_ju@yahoo.com

Abstract

In this article, we identified the qualita-
tive differences between Statistical Ma-
chine Translation (SMT) and Neural Ma-
chine Translation (NMT) outputs. We
have tried to answer two important ques-
tions: 1. Does NMT perform equivalently
well with respect to SMT and 2. Does
using simple sentences as training units,
add extra flavor in improving the qual-
ity of Machine Translation output. In or-
der to obtain insights, we have developed
three core models viz., SMT model based
on Moses toolkit, followed by character
and word level NMT models. All of the
systems use English-Hindi and English-
Bengali language pairs containing simple
sentences as well as sentences of other
complexity. In order to preserve the trans-
lations semantics with respect to the tar-
get words of a sentence, we have em-
ployed soft-attention into our word level
NMT model. We have further evaluated all
the systems with respect to the scenarios
where they succeed and fail. Finally, the
quality of translation has been validated
using BLEU and TER metrics along with
manual parameters like fluency, adequacy
etc. We observed that NMT outperforms
SMT in case of simple sentences whereas
SMT outperforms in case of all sentence

types.
1 Introduction

Machine Translation (MT) refers to automated
translation. It is the process by which computer
software is used to translate a text from one natu-
ral language (such as English) into another (such

task for humans, and hence, is more challenging
for computers. High quality translation requires a
thorough understanding of syntax and semantical
properties of both the source and target languages.

The importance of studying and developing bet-
ter MT systems has gained popularity in the re-
cent past due to rapid globalization, where people
from multiple backgrounds having varying lan-
guage knowledge are working together. Primar-
ily two paradigms are currently followed for build-
ing MT systems. One is based on statistical tech-
niques, while the other employs artificial neural
networks.

The statistical model, commonly referred to as
Statistical Machine Translation (SMT) (Weaver,
1955), addresses this challenge by creating statis-
tical models, whose input parameters are derived
from the analysis of parallel bilingual text corpora
(Mahata et al., 2017). Some of the notable works
on SMT are (Al-Onaizan et al., 1999; Lopez,
2008; Koehn, 2009), where the authors have dived
deep into the challenges, working principles and
possible improvements. SMT has shown good re-
sults for many language pairs and is responsible
for the recent surge in the popularity of MT among
general public .

On the other hand, despite being relatively new,
Neural Machine Translation (NMT) (Bahdanau
et al., 2014) has already shown promising results
(Mahata et al., 2016; Wu et al., 2016) and hence
has gained substantial attention and interest. Con-
tinuous recurrent models for translation, which do
not depend on alignment or phrasal translation
units, was introduced by Kalchbrenner and Blun-
som (2013). The problem of rare word occurrence
was addressed by Luong et al. (2014) and the ef-
fectiveness of global and local approach was ex-
plored by Luong et al. (2015). He et al. (2016)
demonstrated a log-linear framework incorporat-

as Spanish). Translation itself is a challengilllg5 ing SMT features combined with NMT which ad-

Proc. of ICON-2018, Patiala, India. December 2018 (©2018 NLPAI, pages 175-182

dresses out of vocabulary and inadequate trans-
lation. The properties of these architecture was
discussed in detail in (Cho et al., 2014). This
approach generally creates much more accurate
translation than SMT given sufficient amount of
training data (Vaswani et al., 2013; Liu et al.,
2014; Doherty et al., 2010).

In the current work, we have tested the perfor-
mance of SMT and NMT on simple sentences (see
Section 2) extracted from English-Hindi (En-Hn)
and English-Bengali (En-Bn) parallel corpus pro-
vided by TDIL!. These experiments were done to
dive into the scenarios where NMT and SMT out-
perform each other. Moreover, they would also
help us in evaluating the question that whether us-
age of simple sentences, when training the MT
models, creates any difference in the quality of the
MT output.

We have constrained our language domain to
Hindi and Bengali as these languages are used pri-
marily in the Indian sub-continent. Number of na-
tive speakers of Hindi in India is 41.1% while that
of Bengali is 8.11%. Hindi is written in Devana-
gari 2 script and Bengali is written in Eastern Na-
gari > script.

To test the effectiveness of the case study, SMT
and NMT systems were also trained for the whole
corpus, which consists of sentences with mixed
complexity. For both simple sentence corpus and
the whole corpus, BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and manual evaluation
metrics like fluency and adequecy were calculated
to validate the observed results.

The paper has been organized as follows. Sec-
tion 2 describes the extraction of simple sentences
from the parallel corpus given by TDIL. Section 3
and Section 4, describes the methodology for the
training of the SMT and the NMT models respec-
tively. Later, Section 5 and Section 6 describes the
evaluation and conclusion, respectively.

2 Extraction of Simple Sentence Pairs

Since we wanted to analyze and compare both the
models, SMT and NMT, with respect to how they
perform on simple sentences, we first needed to
extract such instances from our dataset that had
data of varying complexity.

A simple sentence in this context is defined

"http://www.tdil. meity.gov.in/
Zhttps://en.wikipedia.org/wiki/Devanagari
3https://en.wikipedia.org/wiki/Eastern_Nagari_script

176

as a sentence which contains only one indepen-
dent clause and has no dependent clauses. Gen-
erally, whenever two or more clauses are joined
by conjunctions (coordinating and subordinating),
it becomes a complex or a compound sentence
accordingly. So, to get a hold on handling the
conjunctions, we used the Stanford Dependency
Parser * library to chunk the English sentences
into phrases. (viz. NP (Noun Phrase), VP (Verb
Phrase), PP (Preposition Phrase), ADJP (Adjec-
tive Phrase) and ADVP (Adverb Phrase)).

!
A
VB NP ADVP

A

Clean PRP$ NNS RB

A

your teeth properly

Figure 1: Extraction of phrase chunks.

We noticed that, simple sentences have an
unique phrase structure that consists of combina-
tions of NP, VP and PP. In conjunction with this
theory, we applied two methods (viz. rule based
approach and deep learning based approach) to ex-
tract simple sentences from the English corpus.
The approaches are discussed in Section 2.1 and
Section 2.2, respectively.

2.1 Rule Based Approach

We subjected 3046 simple sentences, extracted
from various websites, to chunking using Stan-
ford Dependency Parser (Manning et al., 2014),
and extracted the unique phrase structures, which
became the rules by which we further mined for
simple sentences from the English corpus.

We extracted 205 unique rules, the surface
forms of which, along with its Confidence Score,
are shown in Table 1. The confidence score of the
rules were calculated using

Con fidenceScore =

No.OfSentencesPertainingToARule

TotalNo.O fSentencesInTheTestData

We tested our system on 2876 sentences (1438
simple sentences and 1438 complex/compound
sentences) and got an accuracy of 89.22%. Table

*https://stanfordnlp.github.io/CoreNLP/

2 shows the various validation metrics. Using this
system, 10,349 simple sentences from the TDIL
English corpus was extracted, as shown in Table
4.

at 128. The training data consisted phrases of
2876 sentences (1438 simple sentences and 1438
other complex/compound sentences). The trained
model was subjected to 10 fold cross validation
and it yielded an accuracy figure of 92.11%. Ta-

Table 1: Surface forms of the extracted rules. ”*”
means one or more occurrence of item.

Other | Simple | Prec. | Kappa
Other 1275 90
Simple | 220 1291 93.41% 0.78
Recall 85.28%
Acc. 89.22%
F1 89.16%

Table 2: Confusion matrix for the rule based
approach.

2.2 Deep Learning Based Approach

We preferred Deep Learning approach over tra-
ditional Machine Learning (ML) approach as be-
cause in the ML approach we could only extract
syntactic features, which was already exploited
in the rule based approach discussed in Section
2.1. On the other hand, a deep learning technique
learn categories incrementally through its hidden
layer architecture. We wanted the deep learning
framework to learn from the POS tags itself as
it automatically clusters similar data into separate
spaces.

For the deep learning model, we trained a multi-
layer feed-forward neural network with stochas-
tic gradient descent (Bottou, 2010) as optimizer
with back-propagation. The network contained
two hidden layers of sizes 50 and 50 respectively.
The activation function used was tanh and loss
function used was Mean Squared Error. Learn-
ing Rate was kept at 0.001 and number of epochs
were fixed at 100. The batch size was kept’

Rules Confidence ble 3 shows the other important validation metric
PP NP* PP VP NP* 8.40 measures.

PP NP* VP PP NP* 9.49

ADVP NP* VP* ADVP NP* 9.36 Other | Simple | Prec. | Kappa
NP VP PP NP PP NP 12.15 Other | 1287 | 76 |) 5rq

NP ADVP VP* NP* 11.69 f;:;::f 15192 110‘;62 0.84
NP* VP NP* 11.69 Acc, ' 9 11%

NP* PP NP VP* NP 11.46 F1 92.16%

NP VP PP NP* 11.23

VP* NP* PRP* ADVP* 4.92 Table 3: Confusion matrix for deep learning
NP VP* NP* PP* ADJP* ADVP* 9.62 based approach.

The TDIL English corpus was fed to this model
and it yielded 14,976 simple sentences as shown
in Table 4.

of sentences 49999
of other sentences | RL | 39650
of simple sentences | RL | 10349
of other sentences | DL | 35023
of simple sentences | DL | 14976

Table 4: Simple Sentence Count

The deep learning based approach was pre-
ferred as it resulted in better accuracy. The Bengali
and Hindi counterparts of these sentences were ex-
tracted to build a parallel corpus comprising of
simple sentences only. The next step was to build
MT models using this data, as well as the data
from the whole corpus, and compare their respec-
tive results.

3 Statistical Machine Translation

Moses (Koehn et al., 2007) is a statistical ma-
chine translation system that allows us to automat-
ically train translation models for any language
pair, making use of a large collection of translated
texts (parallel corpus). Once the model has been
trained, an efficient beam search algorithm quickly
finds the highest probability translation among the
exponential number of choices.

For training the SMT model, we used English
as the source language and Bengali and Hindi as
the target languages. To prepare the data for train-
ing the SMT system, we performed the following
steps.

3.1 Preprocessing

The following steps were employed to preprocess
the Source and the Target texts.

e Tokenization: Given a character sequence
and a defined document unit, tokenization is
the task of chopping it up into pieces, called
tokens. In our case, these tokens were words,
punctuation marks, numbers.

e Truecasing: This refers to the process of
restoring case information to badly-cased or
non-cased text (Lita et al., 2003). Truecasing
helps in reducing data sparsity.

e Cleaning: Long sentences (# of tokens > 80)
were removed.

3.2 Language Model

Post these steps a Language Model (LM) was
built using the target language, Bengali and Hindi,
in our case, to ensure fluent output. KenLM
(Heafield, 2011), which comes bundled with the
Moses toolkit, was used for building this model.

3.3 Word Alignment and Phrase Table
Generation

For word alignment in the translation model,
GIZA++ (Och and Ney, 2003) was used. Finally,
the phrase table was created and probability scores
were calculated. Training the Moses statistical MT
system resulted in the generation of two models,
one is a Phrase Model and the other is a Transla-
tion Model. Moses scores the phrase in the phrase
table with respect to a given source sentence and
produces best scored phrases as output.

The results of this system when trained and
tested on the simple sentence corpus and the gen-
eral corpus, for both En-Bn and En-Hn language
pairs. The results and evaluation of the systems
are shown in Sec 5, Table 5 and Table 6.

4 Neural Machine Translation

Neural machine translation (NMT) is an approach
to machine translation that uses neural networks
to predict the likelihood of a sequence of words,
typically modeling entire sentences in a single in-
tegrated model. NMT departs from traditional
phrase-based statistical approaches in that uses
separately engineered subcomponents like Lan-
guage Model generation, Word Alignment and
Phrase Table generation. The main functional-
ity of NMT is based on the sequence to sequen»lsz8

(seq2seq) architecture, which is described in Sec-
tion 4.1.

4.1 Seq2Seq Model

The sequence to sequence model is a relatively
new idea for sequence learning using neural net-
works. It has gained quite some popularity since it
achieved state of the art results in machine trans-
lation task. Essentially, the model takes as input a
sequence

X ={z1,22,...,2n}

and tries to generate the target sequence as output

Y ={y1,y2, s Ym}

where x; and y; are the input and target symbols
respectively. The architecture of seq2seq model
comprises of two parts, the encoder and decoder.
We experimented with two types of NMT mod-
els (word and character level), with both using the
seq2seq architecture, the difference being in the
inputs to its encoder and decoder. They are dis-
cussed in the sections 3 and 4 below. The working
of seq2seq architecture at the word level is shown
in Fig. 2. We implemented both the models using
the Keras (Chollet et al., 2015) library.

4.1.1 Word Level NMT

To build our world level NMT model, we used the
seq2seq with attention mechanism. This architec-
ture has recently shown to achieve state of the art
quality translation across many different language
pairs. The details of the seq2seq model along with
the training details are given below.

Encoder The encoder takes a variable length se-
quence as input and encodes it into a fixed length
vector, which is supposed to summarize it’s mean-
ing and taking into account it’s context as well. A
Long Short Term Memory (LSTM) cell was used
to achieve this. The directional encoder reads the
sequence from one end to the other (left to right in
our case),

Et = J?enc(EX(mt)? Ht—l)

Here, Ex is the input embedding lookup table
(dictionary), fenc are the transfer function for the
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) recurrent unit. A con-
tiguous sequence of encodings C is constructed
which is then passed on to the decoder.

encocder decoder
cell cell
ENCODER

[HHHH}

embeddmg source

i S S S ——

() () (5 (=) O

TIMESTEP ——>»

ZO—HzZm44>»

DECODER

(2] () () (=) (=)

softmax

HHHHJ

—J

embedd[ng target

i f

=) (=) B (=) (=)

S S S S
c—»[

-

[

TIMESTEP ———>»

Figure 2: NMT with attention architecture.

Decoder The decoder takes as input, the context
vector C from the encoder, and computes the hid-
den state at time t as,

St = fdec(E

Subsequently, a parametric function outy returns
the conditional probability using the next target
symbol k.

y(yt—1)7 St-1, Ct)

(p=kly<tX)=
Z is the normalizing constant,

3 seaplouti(By(y: — 1), 51,)

The entire model can be trained end-to-end by
minimizing the log likelihood which is defined as

N Ty"

:——Zzlogp (e =y, ", X")

n=1 t=1

where N is the number of sentence pairs, and X"
and y" are the input sentence and the t-th target
symbol in the n-th pair respectively.

Training For training our model, we used the
seq2seq with attention architecture with LSTM
cell. We used two LSTM cells, stacked upon each
other, where one acts as the encoder and the other
as the decoder. We trained our model on 14976
data (for simple sentence corpus), 49999 sentences
(for Bengali and Hindi general corpus), batch size
at 256, number of epochs at 100 and learning rate
at 0.001. The activation function used was soft-
max, optimizer used was rmsprop and the loss cal-
culation at each step was done using categorical
cross-entropy. 179

Attention Neural processes involving attention
(Vaswani et al., 2017) has been largely studied in
computational neuro-science. This concept is very
loosely based on visual attention mechanism in
humans. With attention mechanism, the need to
encode the full source sentence into a fixed length
vector is omitted. Rather we allow the decoder to
attend different parts of the source sentence at each
time step of the output generation. Essentially, we
let the model learn what to attent to based on the

Eexp (outic(Ey(ye—1), s, 1)) input sequence and what is predicted so far.

Mathematically, it computes the context vector
c¢ at each time step t as a weighted sum of the
source hidden states,

Tx
Ct:E =1 ol

Each attention weight o represents how much rel-
evant the t-th source token x; is to the t-th target
token y; and is computed as :

1

o = Eeacp(score(Ey(yt - 1)» St-15 ht))

where

Z = Zk=1TX€$p(SCOT€(Ey(yt —1),8¢1, hy))
Z is the normalization constant. score() is a feed
forward neural network with a single hidden layer
that scores how well the source symbol x4 and the
target symbol y, match. Ey is the target embedding
lookup table and s; is the target hidden state at time
te

The results and evaluation of the systems are
shown in Sec 5.

4.1.2 Character Level NMT

Character level NMT (CNMT) performs better
than Word Level NMT due to the following rea-
sons

1. It does not suffer from out-of-vocabulary is-
sues

2. It is able to model different, rare morpholog-
ical variants of a word

3. It does not require segmentation (Chung
et al., 2016).

Generally, CNMT works best when majority of al-
phabets, in the source and target language, overlap
i.e both the languages share a common or similar
script. Still, we tried to find out its performance
on the simple sentence and whole corpus, though
in our case Nagari script and Roman script utilizes
completely different alphabets. The model has two
parts (encoder and decoder) as discussed below.

Encoder For building the encoder we used
LSTM cells. The input of the cell was one hot ten-
sor of English sentences (embeddings at charac-
ter level). From the encoder, the internal states of
each cell were preserved and the outputs were dis-
carded. The purpose of this is to preserve the in-
formation at context level. These states were then
passed on to the decoder cell as initial states.

Decoder For building the decoder, again an
LSTM cell was used with initial states as the hid-
den states from encoder. It was designed to re-
turn both sequences and states. The input to the
decoder was one hot tensor (embeddings at char-
acter level) of Bengali and Hindi sentences while
the target data was identical, but with an offset of
one time-step ahead. The information for gener-
ation is gathered from the initial states passed on
by the encoder. Thus, the decoder learns to gen-
erate target data [t+1,...] given targets [..., t] con-
ditioned on the input sequence. It essentially pre-
dicts the output sequence, one character per output
time step.

Training For training the model, batch size was
set to 64, number of epochs was set to 100, activa-
tion function was soffmax, optimizer chosen was
rmsprop and loss function used was categorical
cross-entropy. Learning rate was set to 0.001.

The results and evaluation of the systems are
shown in Sec 5. 180

S Evaluation and Analysis

All of our translation systems were evaluated in
two ways, automatic and manual, depiction s of
which are discussed in the section below.

5.1 Automatic Evaluation

Automatic evaluation was done by scoring the
translations using BLEU and TER metrics. The
results are shown in Table 5 and 6. In the tables,
”Bn” and "Hn” means Bengali and Hindi respec-
tively. "CNMT” and "WNMT” means character
and word level NMT models respectively. Pres-
ence of Attention mechanism in the model is de-
noted using ”A” and the contrary is denoted using
NA”

Model Simple Sent. Whole Corp.
(Bn) BLEU | TER | BLEU | TER
SMT 0 117.67 | 159 | 85.26
CNMT (NA) 8.69 91.87 4.19 | 88.22
WNMT (NA) | 9.68 86.84 3.61 | 98.03
WNMT (A) 9.95 85.66 3.77 | 96.72

Table 5: Automatic evaluation metrics for En-Bn

Model.
Model Simple Sent. Whole Corp.
(Hn) BLEU TER BLEU | TER
SMT 398 | 101.945 | 12.86 | 95.092
CNMT (NA) 7.98 92.85 5.96 85.18
WNMT (NA) | 10.01 90.28 4.87 96.97
WNMT (A) 10.54 90.26 5.21 94.20

Table 6: Automatic evaluation metrics for En-Hn
Model.

5.2 Manual Evaluation

Translation quality was judged by four linguists.
Two had Bengali mother tongue (evaluated Bn
model), while the other two had Hindi mother
tongue (evaluated Hn model). The evaluation cri-
terion were Adequacy and Fluency. Adequacy
means how much of the meaning expressed in the
target translation. Fluency means to what extent
the translation is well-formed grammatically, con-
tains correct spellings and intuitively acceptable
and can be sensibly interpreted by a native speaker.
The speakers were asked to rate the translation in
range of 1-5, where ’1’ is the lowest and ’5’ is
the highest. The manual evaluation measures for
English-Bengali and English-Hindi language pair

Model (Bn) SMT CNMT WNMT (NA) WNMT(A)
Corpus Simple | Whole | Simple | Whole | Simple | Whole | Simple | Whole
Adequecy 1 0 2.15 1.98 1.54 202 | 144 2.15 1.47
Fluency 1 0 1.87 2.27 1.98 2.36 1.86 1.98 | 2.02
Adequecy 2 0 2.24 1.87 1.66 1.96 1.57 2.01 1.69
Fluency 2 0 1.92 2.05 1.86 2.21 1.77 2.26 1.93
Avg. Adequecy 0 2.195 1.925 1.6 1.99 1.505 2.08 1.58
Avg. Fluency 0 1.895 2.16 1.92 2.285 | 1.815 2.12 1.975

Table 7: Depiction of Manual Evaluation conducted by Bengali language speaking experts.

Model (Hn) SMT CNMT WNMT(NA) WNMT(A)
Corpus Simple | Whole | Simple | Whole | Simple | Whole | Simple | Whole
Adequecy 1 0.8 2.06 1.96 1.69 2.36 1.47 2.26 1.49
Fluency 1 0.5 1.72 2.04 2.08 2.27 1.92 2 2.22
Adequecy 2 1.02 2.18 1.79 1.71 2.02 1.63 2.18 1.9
Fluency 2 0.65 1.98 2.1 1.94 2.39 1.83 2.33 1.87
Avg. Adequecy | 0.91 2.12 1.875 1.7 2.19 1.55 2.22 1.695
Avg. Fluency 0.575 1.85 2.07 2.01 2.33 1.875 | 2.165 2.045

Table 8: Depiction of Manual Evaluation conducted by Hindi language speaking experts.

is given in Table 7 and Table 8 respectively. In
the tables, presence of Attention mechanism in the
model is denoted using ”A” and the contrary is de-
noted using "NA”.

5.3 Analysis

We can clearly see in the results, that a NMT
model, when trained using simple sentences, per-
forms better than a SMT model, when trained us-
ing the same sentence pairs.

But, at the same time, SMT outperforms NMT,
when trained using the whole corpus. This is due
to the fact that NMT doesn’t quite work well with
less amount of data and highly complex sentences.

Similarly, we also see that character based NMT
works better than word based NMT, when deal-
ing with less amount of data. But again, we have
to keep in mind that for a character based NMT
to work well, we have to train it using a Source-
Target language pair, who share a common script.

Further, word based NMT with attention per-
form relatively better than a character based NMT.
We didn’t use attention in the Character NMT, as
attention won’t be able to attent to individual char-
acters.

6 Conclusion and Future Work

In this work, we have tried to analyze the scenarios
where SMT performs better than NMT and vice-
versa. Also, we have tried to find out whether M1

models give better outputs when trained with sim-
ple sentences rather than when trained using sen-
tences of various complexities.

As a future prospect, we would like to take the
“other” (Complex+Compound) sentence pairs and
simplify it, so that the whole MT models can be
trained using more simple sentences. Also, we
would like to increase the number of LSTM en-
coding and decoding layers as well as include em-
beddings like ConceptNet’ in our future works.

Acknowledgments

This work is supported by Media Lab Asia, MeitY,
Government of India, under the Visvesvaraya PhD
Scheme for Electronics & IT.

References

Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin
Knight, John Lafferty, Dan Melamed, Franz-Josef
Och, David Purdy, Noah A Smith, and David
Yarowsky. 1999. Statistical machine translation. In
Final Report, JHU Summer Workshop, volume 30.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT 2010, pages 177-186. Springer.

Shttps://github.com/commonsense/conceptnet-
numberbatch

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Frangois Chollet et al. 2015. Keras.

keras.io.

https://

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
CoRR, abs/1603.06147.

Stephen Doherty, Sharon O?Brien, and Michael Carl.
2010. Eye tracking as an mt evaluation technique.
Machine translation, 24(1):1-13.

Wei He, Zhongjun He, Hua Wu, and Haifeng Wang.
2016. Improved neural machine translation with smt
features. In AAAI pages 151-157.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187-197. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In EMNLP, vol-
ume 3, page 413.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177-180. Association for Computational Linguis-
tics.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. Truecasing. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics-Volume 1, pages 152—
159. Association for Computational Linguistics.

Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. 2014.
A recursive recurrent neural network for statistical
machine translation.

Adam Lopez. 2008. Statistical machine translation.
ACM Computing Surveys (CSUR), 40(3):8.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv prepriné‘
arXiv:1508.04025. 182

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206.

Sainik Mahata, Dipankar Das, and Santanu Pal. 2016.
Wmt2016: A hybrid approach to bilingual document
alignment. In WMT, pages 724-727.

Sainik Kumar Mahata, Dipankar Das, and Sivaji
Bandyopadhyay. 2017. Bucc2017: A hybrid ap-
proach for identifying parallel sentences in compa-
rable corpora. ACL 2017, page 56.

Sainik Kumar Mahata, Dipankar Das, and Sivaji
Bandyopadhyay. 2018. Mtil2017: Machine trans-
lation using recurrent neural network on statistical
machine translation. Journal of Intelligent Systems,
pages 1-7.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics: system demonstrations, pages 55—60.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. pages 311-318.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas, pages 223-231.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000-6010.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale
neural language models improves translation. In
EMNLP, pages 1387-1392.

Warren Weaver. 1955. Translation. Machine transla-
tion of languages, 14:15-23.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

