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 Abstract 

The paper presents a methodology for the 
development and task-based evaluation 
of phonological models, which improve 
the accuracy of cognate terminology 
identification, but may potentially be 
used for other applications, such as trans-
literation or improving character-based 
NMT. Terminology translation remains a 
bottleneck for MT, especially for under-
resourced languages and domains, and 
automated identification of cognate terms 
addresses this problem. The proposed 
phonological models explicitly represent 
distinctive phonological features for each 
character, such as acoustic types (e.g., 
vowel/ consonant, voiced/ unvoiced/ so-
nant), place and manner of articulation 
(closed/open, front/back vowel; plosive, 
fricative, or labial, dental, glottal conso-
nant). The advantage of such representa-
tions is that they explicate information 
about characters’ internal structure rather 
than treat them as elementary atomic 
units of comparison, placing graphemes 
into a feature space that provides addi-
tional information about their articulatory 
(pronunciation-based) or acoustic (sound-
based) distances and similarity. The arti-
cle presents experimental results of using 
the proposed phonological models for ex-
tracting cognate terminology with the 
phonologically aware Levenshtein edit 
distance, which for Top-1 cognate rank-
ing metric outperforms the baseline char-
acter-based Levenshtein by 16.5%. Pro-
ject resources are released on:  
https://github.com/bogdanbabych/cognates-phonology 

                                                             
 © 2018 The authors. This article is licensed under a Crea-
tive Commons 3.0 licence, no derivative works, attribution, 
CC-BY-ND. 

 

1 Introduction: development of phonologi-
cal models for cognate terminology iden-
tification 

This paper presents a methodology for the 
development and automated evaluation of 
linguistic phonological features sets that can 
extend traditional methods of cognate 
terminology identification, such as Levenshtein 
edit distance. 

Cognate identification is important for a range 
of applications. This paper evaluates its use for 
assisting MT developers in creating cognate term 
banks used in rule-based and hybrid MT, as well 
as in computer-assisted translation, development 
of dictionaries and between closely related lan-
guages (e.g., Ukrainian (Uk) and Russian (Ru), 
Portuguese (Pt) and Spanish (Es), Dutch (Nl) and 
German (De)). For many of such language pairs 
one of the languages can be under-resourced, 
therefore no electronic dictionaries are available, 
and only small parallel corpora with limited lexi-
cal coverage can be collected. Typically these 
parallel corpora can provide translations for fre-
quently used general words, but miss the ‘long 
tail’ of less frequent, often topic-specific or ter-
minological words. However, in closely related 
languages these words are often cognates, which 
creates a possibility to rapidly extend bilingual 
lexicons in semi-automated way using non-
parallel, comparable corpora and automated cog-
nate identification techniques. In this task, cog-
nate candidates are generated from word lists 
created from large monolingual comparable cor-
pora in both languages The assumption is that the 
developers have good linguistic intuition of both 
languages and work through lists of cognate can-
didates, checking which pairs can be added to the 
bilingual dictionary. Their productivity depends 
on whether cognates are presented high up in the 
list of candidates, ideally at the top of the list, or 
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at least in the top N items, where N should be 
relatively small, e.g., the number of lines which 
fit on a single screen. 

Other uses of cognates for terminology identi-
fication include term extraction from parallel 
corpora. If multiword source terms are known, 
the task is to identify the boundaries of the corre-
sponding multiword target terms in the aligned 
target sentences, where component words or 
stems of compound words within the target terms 
may not be necessarily cognate with the corre-
sponding source, so correctly identified cognates 
can facilitate adding adjacent non-cognate words 
according to part-of-speech and word order pat-
terns, e.g., En: ‘information requirements’ ~ Uk: 
‘інформаційні потреби’ (‘informatsijni potre-
by’); or splitting and extending compounds 
which have cognate parts, e.g., En: ‘multina-
tional’ ~ Uk: ‘багатонаціональний’-
(‘bahatonatsionalnyj’).  

Yet another application of cognate 
identification is sentence alignment of parallel 
corpora, where statistical alignment methods are 
more accurate if cognates are used as an 
additional data source (Lamraoui and Langlais, 
2013:2). Inaccuracies in cognate identification, 
which are due to orthographic differences, often 
create unnecessary bottlenecks for this task 
(Varga et al., 2015: 249). In this scenario 
identified cognates are not necessarily terms, but 
they contribute to a more accurate alignment and 
extraction of non-cognate terminology, produced 
from word alignment and monolingual 
terminology detection. 

An additional complication for the 
multilingual terminology extraction scenarios 
that rely on cognate identification is the use of 
different writing systems in the source and target 
(e.g., Cyrillic or Georgian vs. Latin script), 
which requires transliteration between those 
languages.  

Transliteration is often non-trivial, because of 
differences in pronounciation of the same letters, 
the lack of direct graphemic equivalents across 
languages, contextual dependencies in 
transliteration rules, different historical 
conventions for different words (e.g., En/De “h” 
à Ru “х” (hockey ~ хоккей, since borrowed 
directly from En), or “г” (hermeneutics ~ 
герменевтика, since borrowed via Ukrainian, 
where En: h à Uk: г [ɣ] à Ru: г [g]). Also, 
even if languages use the same alphabet, 
pronounciation of letters and corresponding 
transliteration rules may differ (e.g., Cyrillic 
letter “и” = [i] in Ru and [y] in Uk, Latin letter 

“g” = [g] in En/De, and [ɣ] in Nl), so new trans-
literation mappings need to be created for each 
translation direction, each with their potential 
language-specific problems.  

As a result, the complexity of transliteration in 
some cases is comparable to the complexity of 
MT, and it is often addressed not via simple 
character mappings, but via fully developed 
character-based MT models that require an 
aligned training corpus for each translation direc-
tion, and which are used in MT applications to 
cover out-of-vocabulary words, such as com-
pounds, morphologically complex words, named 
entities and cognate terminology (Senrich et al., 
2016: 1716) 

Transliteration problem resembles a traditional 
“direct translation” bottleneck in MT: this ap-
proach cannot reuse any of the previously created 
mappings between languages if a new language 
pair or translation direction need to be covered. 
A more principled approach to the transliteration 
problem in the context of automated cognate 
identification, developed in this paper, is map-
ping characters for each language into a lan-
guage-independent (“interlingual”) phonological 
feature space. 

2 Related work 

The use of phonological features for cognate 
identification has been initially proposed in the 
context of dialectological studies (Nerbonne & 
Heeringa, 1997) and diachronic phonology 
(Kondrak, 2000: 288), (Kondrak, 2009). Some 
limitations of these approaches for MT-related 
tasks have been discussed in (Babych, 2016), 
such as the need for phonological transcription of 
orthographic words and the absence of reliable 
evaluation for different ways of organising the 
complex phonological feature space and compu-
ting similarity between phonological segments. 
For instance (Kondrak, 2000: 290-293) acknowl-
edges that different phonological features make 
unequal contribution in computing similarity be-
tween segments. To address this problem, in the 
ALINE phonetic aligner an introspective set of 
weights for each of the features is adopted from 
(Ladefoged, 1995). Machine-learning algorithms 
based on learning phonetic mappings from bilin-
gual texts (Kondrak, and Sherif, 2006) outper-
form the introspective linguistic model based on 
weighted phonological features. 

However, the most important difference be-
tween identification of cognates for dialectologi-
cal or historical studies of language vs. for MT-
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oriented tasks of cognate term identification is 
the range of the compared candidate cognates 
and therefore the need of the metric to be opti-
mised for both recall and precision on the large 
dictionary data sets. Addition of phonological 
features on such tasks often results in overgener-
ation, so additional features have to be used, such 
as semantic similarity of terms, WordNet-based 
and semantic features, clustering (Kondrak, 
2009, St Arnaud et al., 2017). 

On the large scale for cognate identification 
for MT, where datasets are not limited only to 
candidate cognate pairs, a character-based Le-
venshtein edit distance (Levenshtein, 1966) is 
typically used, without additional linguistic fea-
tures. Levenshtein metric calculates the number 
of insertions, deletions and substitutions between 
compared word pairs from different languages 
and determines if they pass a threshold to be con-
sidered cognate candidates. For example, if cog-
nate candidates are extracted from a non-aligned 
or non-parallel corpus, the Levenshtein distance 
is computed for every pair of words in the two 
word lists created for each language (the Carte-
sian product of the lists), the search space may be 
restricted to comparing words with the same 
part-of-speech (PoS) codes, if PoS annotation is 
available for the corpus. 

However the problem with the character-based 
Levenshtein metric is that all characters in com-
parison are treated as atomic units that do not 
have any internal structure and therefore, can be 
substituted only as a whole character. Because of 
this the Levenshtein metric does not distinguish 
between the substitutions of characters that cor-
respond to acoustically/articulatory similar 
sounds vs. the substitution of phonologically dis-
tant letters. As a result, words that are intuitively 
close may receive a large distance score, e.g.,  

Uk “жовтий” (zhovtyj)=‘yellow’ 
Ru “жёлтый” (zheltyj) = ‘yellow’  

(Lev distance = 3),  
where, for historical reasons, articulatory similar 
sounds are represented by different characters: 
the sound [o] – by ‘о’ in Uk and ‘ё’ in Ru, the 
sound [y] – by ‘и’ in Uk and ‘ы’ in Ru. On the 
other hand, words that are not cognates and are 
phonologically and intuitively far apart, still re-
ceive the same distance scores, such as:  

Uk “жовтий” (zhovtyj) = ‘yellow’ and  
Ru “жуткий” (zhutkij) = ‘dismal’ (Lev = 3). 
For example, here no distinction is made be-

tween, on the one hand, the substitution “о” (o) 
à “ё” (io) of phonologically similar sounds 
(which differ only in a peripheral feature – trig-

gering palatalization of the preceding consonant 
(Uk: -- Ru: +; in addition, this feature is neutral-
ised after the sibilant “ж” (zh)), and on the other 
hand – the substitution “о” (o) à “у” (u), where 
sounds differ in core articulatory features of the 
place of vowel articulation (Uk: middle; Ru: 
close/high). 

Some existing modifications and extensions of 
the Levenshtein metric introduce weightings for 
different character mapping, but these weights 
need to be set or empirically determined for each 
specific mapping: compared characters still do 
not have internal structure and there is no way to 
predict the weights in advance for any possible 
pair in a principled way. 

This paper presents an automated task-based 
evaluation framework for an extension to the 
Levenshtein edit distance metric, which explicit-
ly represents linguistic phonological features of 
compared characters, so the metric can use in-
formation about characters’ internal feature 
structure rather than treat them as elementary 
atomic units of comparison. Similar sets of dis-
tinctive features have been used for comparing 
transcriptions of spoken words in modeling dia-
lectological variation and historical changes in 
languages (Nerbonne and Heeringa, 1997). In the 
proposed approach, phonological feature repre-
sentations are applied to cognate identification 
and terminology extraction tasks, transliteration, 
and as well as modeling morphological variation. 
Previously it has been shown that there are mul-
tiple ways of identifying, representing, structural-
ly arranging and comparing these features in a 
phonological feature space (Babych, 2016), so 
there is a need for a methodology for evaluating 
alternative feature configurations. The results of 
the previously reported pilot experiment, using a 
small-scale manual evaluation, indicated the 
need to use hierarchical phonological feature 
structures for consonants rather than flat feature 
vectors previously used in dialectological re-
search.  

Manual evaluation methods in previous pilot 
experiment cannot be used for systematically 
testing and optimising weights or alternative 
phonological feature representations used in the 
Levenshtein phonological metric.  

For instance, a serious problem for the pro-
posed phonologically aware metric has been 
overestimation of its insertion and deletion costs, 
which is mainly due to the relatively smaller av-
erage substitution cost, and no corresponding 
reduction in the average insertion or deletion 
costs. E.g., for non-cognates a replacement of a 
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consonant with another phonologically unrelated 
consonant produces a substitution distance of 
0.8, because one feature – “type:consonant” does 
not have to be rewritten (phonological structure 
of consonants in the proposed models has 5 fea-
tures). If insertion and deletion costs remain =1, 
this leads to disproportional under-generation of 
cognates that contain inserted or deleted charac-
ters. Even though the need of adjusting inser-
tion/deletion distances has been highlighted in 
the pilot stage, manual evaluation methods used 
then did not allow us to test and optimise multi-
ple parameter settings for the phonological met-
ric, such as a range of different insertion and de-
letion costs. Their values have to be determined 
experimentally using an automated evaluation 
methodology. 

This paper develops an automated framework 
for evaluating different arrangements of phono-
logical features and parameters using the task of 
cognate identification, which enables us to exper-
imentally find optimal setup of a metric for a 
given task. Apart from practical applications 
mentioned above, this methodology creates a 
framework for feature engineering for phonolog-
ically aware character-based models for a wider 
range of machine translation and machine learn-
ing methods and tools, to design and calibrate 
phonological feature structures in a systematic 
way tuned for optimal the performance on specif-
ic tasks. 

The proposed automated evaluation frame-
work uses standard automatically computed 
evaluation metrics, such as number of cognates 
in top-N candidates and an average rank of a cor-
rect cognate in an ordered candidate list. Evalua-
tion is performed on a larger data set of candidate 
cognate lists generated from large Ukrainian and 
Russian corpora on a high-performance compu-
ting cluster. The evaluation results show the set-
tings where phonological Levenshtein metrics 
achieves best performance on the cognate identi-
fication task and allow us to rule out some un-
productive modifications. 

3 Phonological distinctive features and 
their application for cognate identifica-
tion 

A theory of phonological distinctive features, 
which was first proposed by Roman Jacobson 
(Jakobson and Halle, 1956: 46; Anderson, 1995: 
116), associates each phoneme (an elementary 
segmental unit of speech that distinguishes 
meanings and is intentionally produced by 

speakers) with its unique set of values for 
categories, which apply to classes of sounds. For 
example, the phoneme [t] has the following 
values for its associated phonological categories: 

‘type’: consonant 
‘voice’: unvoiced 
‘maner of articulation’: plosive; 
‘active articulation organ’: front of the tongue 
‘passive articulation organ’: alveolar 

Phoneme [d] has the same set of articulatory fea-
tures apart from one: it is pronounced with vocal 
cords vibrating, while organs and manner of ar-
ticulation remain the same, so it differs only in 
the value of one distinctive feature,  

‘voice’: voiced. 
In historical development of languages and in 

morphological variation within a language the 
phonological changes more often apply only to 
values of certain distinctive features within char-
acters, but much less often extend to the whole 
category-value system, e.g.: De: “Tag” = Nl 
“dag” (‘day); De: “machen” = Nl “maken” 
(‘make’). Therefore, for languages where the 
writing system is at least partially motivated by 
pronunciation, for certain character based mod-
els, e.g., modelling morphological variation or 
cognates in different languages, it would be use-
ful to represent phonological distinctive features 
of characters, in order to differentiate between 
varying degrees of closeness for their different 
classes, e.g., vowels, sonants and consonants, or 
sounds with identical or similar articulation. 
Greater closeness between characters in terms of 
their phonological features has important linguis-
tic and technical applications, such as modelling 
dialectal variation, historical change, morpholog-
ical and derivational changes in words, e.g., stem 
alternations in inflected forms.  

(1) In past research (Babych, 2016: 123) 
phonological distinctive features have been inte-
grated into the Levenshtein distance metric in the 
following way:  e.g., to substitute [t] with [d] in 
Nl: “tag” → De: “dag” there is a need to re-write 
only one feature out of 5, so the distance is 0.2 
rather than 1. However, in the general case dif-
ferent classes of characters use different numbers 
of features, so substitution distance Subst is cal-
culated as: 

Subst = 1 – F-score,  
where F-measure is the harmonic mean of Preci-
sion and Recall of the overlap between sets of 
their phonological features. This allows the met-
ric to calculate the distance for characters with 
different numbers of features remaining symmet-
ric. 
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(2) The order of matching the distinctive 
features was found to be important. The experi-
ment described in Section 4 compares two differ-
ent arrangements of features: as flat feature vec-
tors and as feature hierarchies. In the hierarchies 
the higher level features need to be matched as a 
pre-condition for attempting to match lower level 
features. Hierarchical organization consistently 
achieves better performance compared to flat 
feature vectors. Intuitively this means that not all 
feature categories should be treated equally; 
some are more central, have higher priority, and 
license comparison of lower level features on the 
periphery of the phonological feature system.  

(3) Insertion and deletion costs have been 
calibrated for the range between 0.2 and 1 using 
the proposed evaluation framework, described in 
this paper in Section 4. Optimal performance on 
cognate identification was achieved for cost of 
insertion = deletion = 0.8. 

For the task of cognate identification, the in-
troduction of these features distinguishes differ-
ent types of character substitutions and gives 
more accurate prediction of the degree of close-
ness between compared characters and words, 
e.g., for the word pairs discussed above, where 
the baseline Levenshtein distance =3 for both 
(matching features, which do not need to be re-
written, are highlighted in bold): 

 
Graphemic-Phonological (graphonological) fea-
ture Uk: “жовтий” (zhovtyj) = ‘yellow’ 
 
ж (zh) 'type:consonant', 'voice:ff-voiced',  

'maner:ff-fricative', 'active:ff-fronttongue',  
'passive:ff-palatal' 

о (o) 'type:vowel', 'backness:back',  
'height:mid', 'roundedness:rounded',  
'palate:nonpalatalizing' 

в (v) 'type:consonant', 'voice:fl-voiced',  
'maner:fl-fricative', 'active:fl-labial',  
'passive:fl-bilabial' 

т (t) 'type:consonant', 'voice:pf-unvoiced',  
'maner:pf-plosive', 'active:pf-fronttongue',  
'passive:pf-alveolar' 

и (y) 'type:vowel', 'backness:front',  
'height:closemid','roundedness:unrounded'
, 'palate:nonpalatalizing' 

й (j) 'type:consonant', 'voice:xm-sonorant',  
'maner:xm-approximant','active:xm-
midtongue', 'passive:am-palatal' 

 
Feature representations for corresponding char-
acters in Ru: “жёлтый” (zheltyj) = ‘yellow’. 
 

ё  (io)  'type:vowel', 'backness:back',  
'height:mid', 'roundedness:rounded',  
'palate:palatalizing' 

л   (l) 'type:consonant', 'voice:lf-sonorant', ' 
maner:lf-lateral', 'active:lf-fronttongue', 

 'passive:lf-alveolar' 
… 
ы  (y) 'type:vowel', 'backness:central',  

'height:closemid','roundedness:unrounded
’, 'palate:nonpalatalizing' 

 
It can be seen from the examples above, why for 
the task of cognate identification it is important 
that character substitution in the graphonological 
Levenshtein metric only touches some distinctive 
feature in a characters’ feature sets. Such feature 
substitution at the sub-character level still unam-
biguously changes one character into another, 
since there is a one-to-one correspondence be-
tween a new set of phonological features and the 
corresponding sound or character: according to 
Jacobson’s distinctive features model (imple-
mented in the proposed phonological representa-
tions), there cannot be two sounds in a language 
that share exactly the same set of values for their 
phonological categories.  

If only some sub-character features are 
changed, the substitution cost is < 1, and normal-
ly reflects the proportion of phonological fea-
tures which need to be rewritten. 
Calculation of the Graphonological Levenshtein 
metric for Uk “жовтий” (zhovtyj) = ‘yellow’ 
and (Ru) “жёлтый” (zheltyi) = ‘yellow’: 
 

 0.0  1.0  2.0  3.0  4.0  5.0  6.0  
 1.0  0.0  1.0  2.0  3.0  4.0  5.0  
 2.0  1.0  0.2  1.2  2.2  3.2  4.2  
 3.0  2.0  1.2  1.0  2.0  3.0  4.0  
 4.0  3.0  2.2  2.0  1.0  2.0  3.0  
 5.0  4.0  3.2  3.0  2.0  1.2  2.2  
 6.0  5.0  4.2  4.0  3.0  2.2  1.2 
 

cf.: Metric calculated for Uk “жовтий” 
(zhovtyj) = ‘yellow’ with Ru “жуткий” (zhutkij) 
‘dismal’: 

 0.0  1.0  2.0  3.0  4.0  5.0  6.0  
 1.0  0.0  1.0  2.0  3.0  4.0  5.0  
 2.0  1.0  0.2  1.2  2.2  3.2  4.2  
 3.0  2.0  1.2  1.0  1.2  2.2  3.2  
 4.0  3.0  2.2  2.0  1.8  2.2  3.0  
 5.0  4.0  3.2  3.0  2.8  2.0  3.0  
 6.0  5.0  4.2  4.0  3.8  3.0  2.0 
 
While the baseline Levenshtein distance 

Lev=2 for both pairs shown above, the phonolog-
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ically-aware distance, GLev = 2.0 for non-
cognates, which is > 1.2 for cognates. 

 
An additional advantage of using of phonolog-

ical feature representations for graphemes is a 
more natural “interlingual” transliteration be-
tween different scripts and languages. The pho-
nological models, presented in this paper, map 
characters from any given language into a uni-
versal space of acoustic and articulatory phono-
logical features, which is independent of any 
specific writing system or a language-pair. This 
space can be seen as a phonological “interlin-
gua”, which shares some advantages with the 
idea of interlingual MT: graphonological map-
pings enable implicit cross-lingual transliteration, 
where mappings from individual languages into 
the common phonological feature space can be 
reused when new translation directions are add-
ed. 

4 Set-up and results of the evaluation ex-
periment 

This section presents a methodology for 
automated performance-based evaluation that is 
used in testing different settings of phonological 
categories and values for the extended 
Levenshtein metric. The experiment is set up in 
the following way: 

(1) Small freely available electronic dictionar-
ies for Ukrainian–Russian and Russian–
Ukrainian directions were used to develop a 
gold-standard translation glossary of 11000 
Ukrainian words, each having one or more Rus-
sian translation equivalents. All source words 
and their translation equivalents were used as 
they appear in the dictionaries (for the Russian–
Ukrainian dictionary the translation direction was 
reversed and the translation equivalents missing 
from the original Ukrainian–Russian list were 
added to it. Cognates were not specifically se-
lected or annotated in any way, so the gold 
standard evaluation set represented a standard 
introductory size bilingual glossary, such that 
similar resources could be found or compiled for 
many other language pairs. 

 (2) For identification of cognates two large 
monolingual corpora of Ukrainian and Russian 
news were used (250 million words each) with a 
standard morphological annotation of parts-of-
speech (PoS) and lemmas. For each language 
frequency lists of lemmas and PoS codes were 
generated from these morphologically annotated 
corpora. After this the source and target words 

from the Ukrainian—Russian glossary have been 
intersected with the Russian and Ukrainian word 
lists compiled from PoS-tagged corpora for cor-
responding languages. The resulting Ukrainian 
evaluation set with corresponding gold-standard 
Russian dictionary equivalents included only 
those entries that were found both on the source 
and target sides in the glossary and both in the 
Ukrainian and Russian monolingual word lists. 
As a result, the evaluation set contained only the 
entries that could in principle be found by the 
cognate identification tool in the word lists and 
evaluated using the glossary. 

 (3) An additional requirement has been intro-
duced that in both word lists the cognates should 
be tagged with the same part-of-speech. This re-
duces the search space for cognates and compu-
ting time needed to calculate phonological Le-
venshtein distances. 

(4) Candidate cognate lists were generated for 
809 randomly selected entries from the Ukraini-
an evaluation set in the following way. For each 
Ukrainian word in the evaluation set different 
variants of the Levenshtein edit distances were 
calculated to each word in the large Russian 
monolingual word list from the news corpus 
(around 106.000 unique lemmas, further filtered 
by their of speech codes). This process is compu-
tationally intensive and required parallel pro-
cessing of the Ukrainian test entries on a high-
performance computing cluster. Even though 
calculation of the baseline traditional Le-
venshtein distance is relatively fast, calculation 
of the phonological variant of this metric is much 
more computationally demanding, as it requires 
generating and comparing phonological feature 
sets for each of the compared characters in a 
large number of strings. For the current imple-
mentation, sequential generation of the phono-
logical Levenshtein edit distances between a test 
Ukrainian entry and each of the 106.000 entries 
in the Russian monolingual word list takes about 
4 minutes of computing time (54 hours of se-
quential computation for the whole evaluation set 
of 809 Ukrainian words).  

In future, for the task of a large-scale induc-
tion of cognates between languages phonological 
feature representations will be optimised for 
speed and other techniques such as hashing of 
phonological features for the searched target en-
tries will be implemented, which is expected to 
make the developed metric more usable for gen-
eration of wide-coverage translation resources. 

(5) Candidate cognate lists were ranked ac-
cording to distance scores produced by the fol-
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lowing edit distance metrics: the Baseline Le-
venshtein edit distance, the phonological Le-
venshtein distance that used flat feature vectors, 
and by five variants of the phonological Le-
venshtein distance metric that used hierarchical 
phonological feature representations and one of 
the five possible weights for insertions/deletions: 
0.2, 0.4, 0.6, 0.8 and 1. 

For each Ukrainian word from the evaluation 
set, its Russian translation equivalents from the 
gold standard dictionary translations were auto-
matically searched in the ranked cognate lists 
generated for that word by different variants of 
the Levenshtein metric. The position of the top 
dictionary translation equivalent was recorded in 
each of the ranked cognate lists.  

(6) Even though dictionary equivalents were 
not necessarily cognates in the evaluation set, the 
experiment produced meaningful results, because 
non-cognate equivalents were simply not found 
and disregarded for the consideration. In this way 
the experimental set-up automatically focussed 
on the quality of cognate identification. Im-
portantly, this allows us to avoid expensive man-
ual selection or annotation of cognates: as the 
evolution methodology is automatic, all transla-
tion equivalents available in the gold standard are 
treated equally: in this stage no distinction is 
made between cognates and non-cognate equiva-
lents. This removes the need for the manual fil-
tering of the gold standard and also naturally co-
vers ‘near-cognates’ or words with cognate mor-
phemes where only parts of words match. Since 
the baseline and the modified Levenshtein metric 
are evaluated on the same gold standard, perfor-
mance figures are relative and show the differ-
ence in finding translation equivalents for any 
degree of ‘cognateness’. 

(7) Different variants of the metric are com-
pared by the following parameters: Median top-
N number for the metric; In top-1, top-5, top-10 
and top-25. 

(8) The following settings were compared:  
(a) Baseline Levenshtein edit distance; 
(b) Levenshtein distance extended with phono-

logical features with flat feature vectors; 
(c) Levenshtein distance extended with hierar-

chical phonological features (where manner and 
active place of articulation are treated as top-
level features, which need to be matched in order 
for other features to match; 

(d) Variants of the (b) and (c) metric with dif-
ferent insertion / deletion values – between 0.2 
and 0.8. 

The results of the evaluation experiment are 
presented in Table 1, where: 

BaseL Lev = baseline Levenshtein metric 
Phon Lev H = Phonological extension to Le-

venshtein metric with feature hierarchy 
Phon Lev V = Phonological extension to Le-

venshtein metric with flat feature vectors 
PhonLevi=0.X = Phonological extension to 

Levenshtein metric with modified insertion / de-
letion cost: i0.2 = the cost of insertion deletion is 
set to 0.2, i0.8 = is set to 0.8 (it is set to 1 in the 
Phon Lev metrics. 

5 Discussion of the results, conclusion 

It can be seen from Table 1 that:  
(1) Hierarchical phonological Levenshtein 

metric outperforms the baseline on the Top 1 and 
Top 2 measures, the median rank improvements 
is +5% 

(2) Flat phonological feature vector metric on 
all measures performs worse than the baseline. 
This can be interpreted as the need to take into 
account the order of matching higher-level fea-
tures. Match of low-level features is not mean-
ingful if higher-level features are not matched. 

(3) The Hierarchical metric with insertion / de-
letion cost set to 0.8 outperforms both the base-
line and the Levenshtein metric with the inser-
tion/deletion cost = 1, especially on the Median 

Top N, Top 1 and Top5 measures. This can be 
interpreted as the need to scale down insertion 
cost moderately, since the average substitution 
cost is down. 

The results show that phonological extension 
to the Levenshtein edit distance metric on the 
task of cognate identification outperforms the 
character-based baseline. The proposed frame-

Experiment  Med-
ian 
topN 

Top 1 Top 
5 

Top 
10 

Top 
25 

BaseL Lev 50 206 328 360 382 
Phon Lev V 87.5 215 289 319 349 
DiffBase L -75% +4.4% -10% -11% -9% 
PhLev 
Hierarchy:      

PhLev i=0.2 125.5 216 291 315 342 
PhLev i=0.4 54.5 230 307 334 367 
PhLev i=0.6 48 235 328 354 385 
PhLev i=0.8 40 240 337 359 391 
Ph Lev i=1.0 47.5 240 334 359 385 
      
Best  BaseL 
Improv  

+20% +16.5% +3% 0% 2% 

Table 1:  Automated evaluation of metric settings. 
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work also allows accurate calibration of the fea-
ture arrangement and other parameter settings of 
the metric.  

The modified Levenshtein metrics, phonologi-
cal features sets for several alphabets and sample 
input files are released as an open-source soft-
ware on the github repository (Babych, 2018). 

Future work will include systematic evaluation 
of different possible feature hierarchies and 
costs, and metrics application to other tasks, such 
as transliteration. 
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