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Abstract

We address the issues arising when a neu-
ral machine translation engine trained on
generic data receives requests from a new
domain that contains many specific tech-
nical terms. Given training data of the
new domain, we consider two alterna-
tive methods to adapt the generic system:
corpus-based and instance-based adapta-
tion. While the first approach is compu-
tationally more intensive in generating a
domain-customized network, the latter op-
erates more efficiently at translation time
and can handle on-the-fly adaptation to
multiple domains. Besides evaluating the
generic and the adapted networks with
conventional translation quality metrics, in
this paper we focus on their ability to prop-
erly handle domain-specific terms. We
show that instance-based adaptation, by
fine-tuning the model on-the-fly, is capable
to significantly boost the accuracy of trans-
lated terms, producing translations of qual-
ity comparable to the expensive corpus-
based method.

1 Introduction

When deployed in production lines, machine trans-
lation (MT) systems need to serve requests from
various domains (e.g. legal, medical, finance,
sports, etc.) with a variety of structural and lexi-
cal differences. Considering that technical transla-
tion (e.g. user guides, medical reports, etc.) rep-
resents the largest share in the translation indus-
try (Kingscott, 2002) and that a significant part
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of it deals with domain-specific terms, it is im-
portant that machine translation delivers not only
generic quality but also accurate translations of
terms. The possibility of bearing different mean-
ings in different contexts increases the difficulty
of translating terms, making it an interesting and
challenging topic in MT. Table 1 shows two ex-
amples in which Google Translate1 (GT) and Bing
translator2 (BT) wrongly translate domain termi-
nology. In the first example, the English word ap-
ple is wrongly recognized and translated as a term
of the computer domain (apple) while it actually
refers to the fruit type (mele). In the second ex-
ample, on the contrary, Bing fails to recognize the
multi-word term broken Windows by producing in-
stead a literal translation that departs from the orig-
inal sense. These examples show that existing MT
systems still have difficulties in handling domain-
specific terms, which calls for solutions to improve
this aspect of MT.

Ideal solutions for this real-world multi-domain
translation scenario should be scalable enough to
enable the industrial deployment at a reasonable
cost, while guaranteeing a high level of flexibility
in delivering good-quality translations for all (or
most of) the domains. This is of higher impor-
tance for the neural approach, where building the
systems usually requires expensive GPU machines
trained for several days to weeks on large amounts
of parallel data.

In this paper we analyze the ability of instance-
based adaptation strategy in handling domain ter-
minology (technical terms) and compare its per-
formance with a non-adaptive generic neural MT
(NMT) system trained on a large pool of parallel
data, and a corpus-based adaptive NMT system as
1https://translate.google.com
2https://www.bing.com/translator
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Src. Composition and nutritive value of apple products.
GT Composizione e valore nutritivo dei prodotti apple.
Ref. Composizione e valore nutritivo dei prodotti a base di mele.
Src. It also contains system recovery tools you can use to repair broken Windows.
BT Esso contiene anche gli strumenti di ripristino del sistema possibile utilizzare per riparare le finestre rotte.
Ref. Esso contiene anche gli strumenti di ripristino del sistema che possibile utilizzare per riparare Windows non

funzionante.

Table 1: Examples of incorrectly translating technical terms from English into Italian by online translation engines. Translation
queries submitted on 29/03/2018. GT and BT refer to Google Translate and Bing translator, respectively.

a strong (and expensive) term of comparison.

Our results show that, in contrast to the generic
and corpus-based adaptive solutions which com-
promise either the translation quality or the ar-
chitectural cost, recently proposed instance-based
adaptation methods (Farajian et al., 2017b) pro-
vide a flexible solution at reasonable costs. This
adaptive system is based on a retrieval mechanism
that, given a test sentence to be translated, extracts
from the pool of parallel data the top (source, tar-
get) pairs in terms of similarity between the source
and the test sentence. Using this small set of re-
trieved pairs, it then fine-tunes the model, and ap-
plies it to translate the input sentence. As shown in
(Farajian et al., 2017b), by applying local adapta-
tion to few training instances, not only the system
is able to improve the performance of the generic
NMT but, in some domains, it can also outper-
form strong specialized corpus-based NMT sys-
tems trained for several epochs on the correspond-
ing domain-specific data.

In this paper, we further explore the effective-
ness of the instance-based adaptation method re-
porting, in addition to global corpus-level BLEU
scores, empirical results on how they perform in
translating domain terminology. To this aim, we
divide the terms into two categories of single- and
multi-word phrases, and study the systems’ be-
haviour in each class separately. Unsurprisingly,
in both cases corpus-based adaptation improves
the performance of the generic model by a large
margin. Such improvements, however, come at
the cost of computationally intensive adaptation on
all the in-domain data. In contrast, instance-based
adaptation achieves comparable results with a less
demanding strategy based on adapting the model
to few training instances retrieved from the pool
of data on the fly. This empirical proof, focused
on the proper treatment of domain terms in NMT
adaptation, is the main contribution of this paper.

2 Related works

When exposed to new domains (Koehn and
Knowles, 2017) or applied in multi-domain sce-
narios (Farajian et al., 2017a), machine transla-
tion systems in general and neural MT in partic-
ular, experience performance degradations due to
the distance between the target domain and the
domain(s) on which they were trained. Previous
studies on multi-domain MT provide solutions for
this issue, making it possible to cover more than
one domain while reducing performance degrada-
tions in the target domains (Luong and Manning,
2015; Chen et al., 2016; Zhang et al., 2016; Fre-
itag and Al-Onaizan, 2016; Chu et al., 2017; Fara-
jian et al., 2017b; Kobus et al., 2017). These so-
lutions can be categorized into static and adap-
tive approaches. To train one single model using
heterogeneous data from many domains, static ap-
proaches assume to have simultaneous access to
all the training data and their corresponding do-
main/topic information. This information, which
is either manually assigned or automatically in-
ferred from the data, is passed as additional sig-
nal to the MT system, helping it to produce higher
quality translations for the desired target domain.
Existing solutions in the field of NMT propose to
incorporate this topic/domain information only on
the source side (i.e. to support the encoder) (Kobus
et al., 2017), only on the target side (i.e. to support
the decoder) (Chen et al., 2016), or on both sides
(Zhang et al., 2016). Although consistent and sig-
nificant improvements have been reported by this
approach, its application to new domains is not
trivial, mostly due to the fact that it requires per-
forming expensive NMT and topic model adapta-
tions using the original multi-domain data and the
training set for the new domain.

Adaptive approaches, on the other hand, pro-
pose to fine tune an existing MT system, trained
either on another domain or pool of parallel data,
to the new domain or task. While Luong and
Manning (2015) report significant improvements
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by this approach on the new target domain, Freitag
and Al-Onaizan (2016) observe a significant drop
in system’s performance on the original domain,
which is due to the severe overfitting of the model
to the new domain. To solve this issue, they pro-
pose a slightly different approach, which performs
ensemble decoding using both the adapted and the
generic model. The mixed fine tuning method pro-
posed by Chu et al. (2017) is another approach for
keeping under control the performance degrada-
tion on the original out-domain data while adapt-
ing the model to the new domain. Given the out-
domain and in-domain training sets and a model
pre-trained only on the out-domain data, this ap-
proach continues the training on a parallel corpus
that is a mix of the two training corpora, in which
the smaller in-domain corpus is oversampled to
have the same size as the larger out-domain corpus.
The specialized models obtained by these adapta-
tion techniques are empirically shown to be effec-
tive, improving the translation quality of a generic
NMT system on the target domains. However, the
practical adoption of this approach results in devel-
oping and maintaining multiple specialized NMT
engines (one model per domain), which increases
the infrastructure’s costs and limits its scalability
in real-world application scenarios.

To combine the advantages of the two worlds,
(i.e. to get close to the high quality of corpus-
based adaptation still keeping the scalability of
one single model), Farajian et al. (2017b) in-
troduce an instance-based adaptation method for
NMT inspired by Hildebrand et al. (2005). In-
stead of adapting the original generic model to
the whole in-domain training corpus, the instance-
based method retrieves from the pool of parallel
data a small set of sentence pairs in which the
source side is similar to the test sentence. Then,
it fine-tunes the generic model on-the-fly by us-
ing the set of retrieved samples. This makes the
instance-based adaptive approach a reasonable so-
lution for real-world production lines, in which the
MT system needs to cover a wide range of appli-
cation domains while keeping under control the ar-
chitecture’s cost.

In addition to the architectural costs of NMT
deployment in multi-domain application scenar-
ios, there is another important factor that has to
be considered, that is their ability in translating
domain-specific words and phrases (i.e. terms).
Based on their nature, these expressions can be fre-

quently observed in their corresponding domains,
being at the same time infrequent or even out of
vocabulary (OOV) in the other domains. Never-
theless, data-driven MT systems need to be trained
on large amounts of training data, which is gen-
erally collected from different sources. This fur-
ther reduces the relative frequency of these words,
making them less probable to be translated cor-
rectly by the system. This makes it even more
challenging for NMT approach where rare and
OOV words are either segmented into their cor-
responding sub-word units (Sennrich et al., 2016)
or mapped to a special “unk” token (Luong and
Manning, 2015). However, in the relatively re-
cent history of NMT, there are few works that an-
alyze its behavior focusing on domain terminol-
ogy. Chatterjee et al. (2017) achieve significant
improvements with a guide mechanism that helps
the NMT decoder to prioritize and adequately han-
dle translation options obtained from terminology
lists. Arčan and Buitelaar (2017) empirically show
that offline adaptation of a generic NMT system to
the new domain improves its performance in trans-
lating domain-specific terms. However, they dis-
cuss only corpus-based adaptation techniques that,
compared to instance-based methods, are less suit-
able for real-world application. Moreover, they
mostly work in a setting in which domain termi-
nology has to be translated in isolation without any
context, while in our working scenario we work
with full sentences.

3 Neural machine translation adaptation

In this section we first briefly review the state-
of-the-art sequence-to-sequence neural machine
translation and then describe the two corpus-based
and instance-based adaptation approaches.

3.1 Neural machine translation

We build our adaptive systems on top of the state-
of-the-art attention-based encoder-decoder neural
MT (Bahdanau et al., 2015) in which given the
source sentence x = x1, ..., xM , the translation is
modeled as a two-step process. The source sen-
tence x is first encoded into a sequence of hid-
den states by means of a recurrent neural network
(RNN). Then, another RNN decodes the source
hidden sequence into the target string. In partic-
ular, at each time step the decoder predicts the
next target word from the previously generated
target word, the last hidden state of the decoder,
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and a weighted combination of the encoder hidden
states, where the weights are dynamically com-
puted through a feed-forward network, called at-
tention model.

Training of the presented NMT architecture is
generally carried out via maximum-likelihood es-
timation, in which the model parameters such as
word embedding matrices, hidden layer units in
both the encoder and decoder, and the attention
model weights are optimized over a large collec-
tion of parallel sentences. In particular, starting
from a random initialisation of the parameters, op-
timization is performed via stochastic gradient de-
scent (Goodfellow et al., 2016), in which at each
iteration a randomly selected batch β is extracted
from the data and each parameter θ is moved one
step in the opposite direction of the mean gradient
of the log-likelihood (L), evaluated on the entries
of β:

∆θ = −η 1

| β |
∑

(x,y)∈β

∂L(x, y)

∂θ
(1)

where η is a hyperparameter moderating the size of
the step ∆θ and is usually referred to as the learn-
ing rate. It can either be fixed for all parameters
and all iterations, or vary along one or both dimen-
sions (Goodfellow et al., 2016). During training,
the optimization is performed by going through
several so-called epochs, i.e. the number of times
the whole training data is processed.

3.2 Corpus-based adaptation in neural MT

Given an existing NMT model, trained either on
another domain or on a generic pool of parallel
data, corpus-based adaptation methods fine-tune
the model parameters by applying the same train-
ing procedure described in Section 3.1. Depending
on the application scenario, the optimization is per-
formed by iterating over a combination of both the
current and new data (Chu et al., 2017) or only the
training data of the new domain (Luong and Man-
ning, 2015). The former is usually used when the
goal is to adapt the model to the new domain while
avoiding performance degradation in the domain
on which the model was initially trained. Other-
wise, only the training data of the new domain is
used. In this paper, we opt for the latter solution
because we are interested only in the performance
of the system in the new domain.

These solutions, however, require a few hours to
fine-tune the system to the target domains, which
is scarcely compatible with application scenarios

in which users need to instantly start interacting
with the MT system. In spite of this (and the inher-
ent cost and scalability-related issues), the compet-
itiveness of this solution motivates its adoption as
a strong term of comparison in this paper.

3.3 Instance-based adaptation in neural MT

Instance-based adaptation (Farajian et al., 2017b)
is an extension of the aforementioned adaptation
method, in which, instead of adapting the model
to all the available in-domain training data, only
few instances (i.e. sentence pairs) are used to tune
the model. In particular, given an already exist-
ing NMT model, the pool of in-domain parallel
data, and a sentence to be translated, it performs
the following three steps: 1) retrieve from the pool
a set of (source, target) pairs in which the source is
similar to the test sentence; 2) locally adapt the pa-
rameters of the model using the retrieved sentence
pairs; 3) translate the given test sentence by ap-
plying the resulting locally-tuned model. The dia-
gram of the approach is shown in Figure 1. In order
to leverage more effectively the information of the
retrieved training samples, Farajian et al. (2017b)
propose to set the hyperparameters of the training
process (i.e. learning rate and number of epochs)
proportional to the similarity of the retrieved set to
the test. This results in fine tuning the model with
larger learning rates and for more epochs when the
retrieved sentence pairs are highly similar to the
test and vice versa.

Input Retrieve

Parallel Data

Adapt

Translate

Output

Adapted 
NMT Model

Generic 
NMT Model

Figure 1: Instance-based NMT adaptation.

4 Experimental setup

4.1 Data

The experiments of this paper are carried out in
the English-Italian translation direction. The train-
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Segments Tokens Types
Generic 20.8M 373.5M 1.7M
Gnome 76.5K 685.2K 36.0K
KDE4 179.5K 2.1M 75.3K

Table 2: Statistics of the Italian side of the training corpora.
Generic data is used for training the generic NMT system,
while the domain-specific data (i.e. Gnome and KDE4) are
used only in the adaptation step.

ing set consists of a large collection of propri-
etary data collected from several industrial trans-
lation projects in different domains (i.e. medical,
software documentations, user guides, etc.). The
statistics of the training corpus are presented in Ta-
ble 2 (first row).

To evaluate the performance of the systems in
translating domain-specific terms we need test sets
in which the terms are annotated. Moreover, both
adaptive systems need in-domain training data in
order to fine tune the generic model to the given
domain. This further increases the difficulty of
finding the evaluation data. The BitterCorpus3

(Arčan et al., 2014) is a collection of parallel
English-Italian documents in the information tech-
nology (IT) domain (extracted from Gnome and
KDE4 projects) in which technical terms are man-
ually marked and aligned. However, this corpus is
not ready to be used in our task as-is, since: i) it
contains only the annotated test data without any
in-domain training set, and ii) test data are aligned
at document level, while in our experiments we
need sentence-level aligned corpora.

In order to compile an evaluation package that
addresses our needs, we used the publicly available
Gnome and KDE4 corpora4 which are sentence-
level aligned, divided them into training and test
sets, and then automatically annotated the termi-
nologies in the test by means of the term list ex-
tracted from the BitterCorpus5. The statistics of
the Italian side of the training and test corpora
are reported in Table 2 and 3. Some examples of
the English terms and their corresponding Italian
translations are presented in Table 4. As we see,
there are several cases where, in addition to the
specific translations used in IT domain (marked
with *), the English term can have other transla-
tions that are valid in other domains. For example,
depending on the domain, the English word but-

3https://hlt-mt.fbk.eu/technologies/
bittercorpus
4http://opus.lingfil.uu.se/
5https://gitlab.com/farajian/TermTraGS

Seg.
Avg. Terms
Len. single multi allword word

Gnome 2000 20.5 2,660 183 2,843
KDE4 2000 25.7 3,767 256 4,023

Table 3: Statistics of the Italian side of the test corpora.

English Italian
list lista*, elenco*

path path*, percorso*, indirizzo*

button pulsante*, bottone
toolbar barra degli strumenti
wrapping a capo automatico*, avvolgere
title bar barra del titolo
wildcards caratteri jolly
tree view vista ad albero
konversation konversation
mouse pointer puntatore del mouse
destination folder cartella di destinazione
regular expression espressione regolare
right mouse button tasto destro del mouse

Table 4: Examples of term pairs in our test corpora. Words
marked with * represent in-domain translations of the term.

ton can refer to the object used to fasten something
(i.e. in Italian referred to as bottone), or the elec-
trical/electronic equipment that is pressed to turn
on or off a device (i.e. translated as pulsante in
Italian). This ambiguity is usually observed in the
case of single-word terms, while multi-words often
disambiguate each other.

4.2 NMT systems

We conducted the experiments with our in-
house developed and maintained branch of the
OpenNMT-py toolkit (Klein et al., 2017), which is
an implementation of the attention-based encoder-
decoder architecture (Bahdanau et al., 2015).
Our code is integrated with the open source
ModernMT project6, and is highly optimized and
already deployed for production systems. In our
experiments, we segmented the infrequent words
into their corresponding sub-word units by apply-
ing the byte pair encoding (BPE) approach (Sen-
nrich et al., 2016). In order to increase the con-
sistency between the source and target segmenta-
tions, we learned the BPE merge rules from the
concatenation of the source and target side of the
training data. We set the number of merge rules
to 32K, resulting in vocabularies of size 34K and
35K respectively for English and Italian. We used
2-layered LSTMs in both the encoder and decoder,
each of which containing 500 hidden units. We

6www.modernmt.eu
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set the word embedding size to 500 for both the
source and target languages. The parameters are
optimized with SGD using the initial learning rate
of 1.0 with a decaying factor of 0.9. The batch size
is set to 64, and the model is evaluated after each
epoch. We trained the system for 11 epochs and
selected the model with the highest BLEU score
on our development set.

Our reimplementation of the instance-based
adaptive system uses the open source Lucene li-
brary (McCandless et al., 2010) to store the train-
ing samples (i.e. pool of the generic and domain-
specific data). Similar to (Farajian et al., 2017b),
given the test sentence it retrieves the most similar
instance from the pool (i.e. top-1) and adapts the
aforementioned generic model accordingly. It sets
the hyperparameters of the fine-tuning process pro-
portional to the similarity of the retrieved instance
and the test sentence. For example, it fine-tunes the
model with the learning rate of 0.2 for 10 iterations
if the similarity of the retrieved instance to the test
is 1.0. In this work we used sentence-level BLEU
(Chen and Cherry, 2014) as the similarity measure.
In our experiments, the average time for updating
the model was about 0.5 seconds per sentence.

The corpus-based adapted NMT systems are
multiple instances of the generic system each
of which trained on the corresponding domain-
specific training data for several epochs, until no
improvement is observed in the model perplex-
ity on our development set for four consecutive
epochs. We then used, for each domain, the model
with minimum perplexity on the development set
(i.e. model obtained after 26 and 4 epochs re-
spectively for Gnome and KDE4). We used the
same settings as the generic system for training
these systems. However, for fine tuning we started
with a learning rate of 0.5. In our experiments, the
corpus-based adaptation of the model took about
3:00 and 1:15 hours for Gnome and KDE4 do-
mains, respectively.7

4.3 Evaluation metrics

We evaluate the systems’ performance both in
terms of BLEU (Papineni et al., 2002) and term hit
rate (THR). While the former measures the over-
all quality of the translations with respect to the
manually-translated reference, the latter analyzes
the ability of the system in learning the vocabulary

7We carried out the experiments on Azure instances with
NVIDIA Tesla k80 GPUs.

of each specific domain. To this aim it computes
the proportion of terms in the reference that are
correctly translated by the MT system. However,
in order to avoid assigning higher scores to the sys-
tems which over-generate the same term, it clips
the counts of the matched terms by their frequency
in the reference (2).

THR =

∑
term∈ref

countclip(term)

∑
term∈ref

countref (term)
(2)

Since there are two types of single-word and
multi-word terms in our test sets, in order to have
a more detailed analysis of systems’ behaviour we
report the scores for each class separately in addi-
tion to the overall THR score.

5 Analysis and discussion

In this section we present a detailed analysis of the
results obtained by different systems and compare
the systems in translating the technical terms in
Gnome and KDE4.

5.1 Translation quality

Table 5 reports the performance of the generic,
instance-based, and corpus-based adaptive sys-
tems on Gnome and KDE4 test sets in terms of
BLEU. As the results show (first two rows), the
instance-based system significantly improves the
performance of the generic system by +7.80 and
+6.55 BLEU points. However, it obtains a lower
BLEU score compared to its corpus-based counter-
parts. In our investigations, we noticed that in al-
most all the cases where the application domain is
new (i.e. the training data of the target domain was
not included in the pool of data used for training
the generic system), the corpus-based adapted sys-
tem produces translations of higher quality com-
pared to the instance-based system. Neverthe-
less, this comes at the cost of training the system
for several hours, instead of instantly starting the
translation process.

Another interesting phenomenon that we ob-
served in these experiments is the correlation of the
performance gain and the average similarity of the
retrieved samples to the test sentences. We noticed
a larger performance gain in the case of Gnome
compared to KDE4 (+7.80 vs. +6.55) while the
average similarity of the retrieved sentence pairs
in this domain is lower (0.36 compared to 0.56).
Comparing the ratio of the successful retrievals in
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Avg. Sim. Generic Instance Corpus
based based

Gnome 0.36 35.97 43.77 49.79
KDE4 0.56 35.09 41.64 46.26
Gnome † 0.43 38.06 51.36 56.00
KDE4 † 0.61 36.99 51.84 48.95

Table 5: BLEU score of the generic and adaptive NMTs on
the test sets. The corpora marked with †are subsets of the
original corpora for which a similar instance is retrieved.

the two systems partially explains this behaviour:
in the case of Gnome, in 83.9% of the cases the
system is able to find training samples similar to
the test while in KDE4 this figure decreases to
75.8%. Moreover, by limiting our analysis to these
cases, i.e. sentences for which the system has suc-
cessfully retrieved a similar instance (last two rows
in Table 5), we see a correlation higher than 0.9
between the performance gain and the similarity.
Even more surprisingly, we observe that on this
subset of KDE4 corpus the instance-based system
outperforms its corpus-based counterpart. This is
mostly due to the fact that retrieved instances in
this case are highly similar to the test sentences.

5.2 Term translation

Table 6 presents the performance of the systems
on both Gnome and KDE4 data. Since a large
portion of the generic training data belongs to
the IT domain we observe a reasonably high per-
formance by the generic system in the studied
domains, in particular on the single-word terms
(79.58 and 73.70 on Gnome and KDE4 domains,
respectively). However, translating multi-word
terms is more challenging for all the systems as it
involves producing sequences of words that might
have several translations in different context. For
example the English words bar, path, and mouse
are usually translated into bar, indirizzo, and topo
while their contextual translations in the techni-
cal terms title bar, full path and mouse pointer is
barra, path, and mouse. This makes the transla-
tion more difficult for the systems, resulting in a
significant performance drop compared to the case
of single-word terms.

5.3 Instance selection effect

In addition to the similarity of the retrieved sam-
ples to the test discussed in (Farajian et al., 2017b),
the presence of domain terms in the retrieved sen-
tence pairs is another important factor for instance-
based adaptation. As Table 7 shows, in about 30%

Term Type Generic Instance Corpus
based based

Gnome
Single-word 79.58 82.16 86.55
Multi-word 62.79 70.54 80.62
Overall 78.59 81.48 86.20

KDE4
Single-word 73.70 79.48 81.94
Multi-word 48.15 58.52 61.48
Overall 72.24 78.28 80.78

Table 6: Performance of the generic and adaptive NMTs on
the test sets, in terms of THR.

Term Type English Italian

Gnome
Single-word 70.1 62.0
Multi-word 60.0 51.6
Overall 69.7 61.4

KDE4
Single-word 71.7 59.5
Multi-word 68.2 45.5
Overall 71.5 58.7

Table 7: Percentage of the retrieved samples that contain the
desired terms.

of the cases the retrieved English sentence does not
contain the desired term. This proportion is even
higher if we look at the target side of the retrieved
instances, in which around 40% of the desired term
translations are missing. However, this is expected
since the retrieval is performed only based on the
source side information (i.e. in our experiments
English), with no additional filters based on the
target side of the retrieved instance. Measuring the
performance of the adaptive system in correcting
the terms which are missed by the generic system
shows that the instance-based system effectively
learns the vocabulary of the application domain,
correcting up to 76.64% of the mistakes made by
the generic system if the desired term translation
exists in the retrieved instance (Table 8).

6 Further analysis

In addition to the automatic evaluations we per-
formed further manual analysis on the outputs of
the instance-based adaptive system. The results of
this analysis indicate that, compared to the generic
system, its behavior differs in two main aspects:
i) learning to translate the terms that are missed
or wrongly translated by the generic system, ii)
adapting to different style of the translation. When
run on new domains, for which it has not seen any

Single-word Multi-word Overall
Gnome 64.33 52.94 63.22
KDE4 76.92 73.91 76.64

Table 8: Percentage of the terms corrected by the instance-
based adaptive system.
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in-domain training data, it is highly probable that
the generic system receives translation requests
containing terms which are OOV or infrequently
observed in the training data. In such cases, even
after applying BPE, it might not be able to pro-
duce proper translations. As an example, the En-
glish word dolphin, which is rarely observed in
the generic training data, is always translated in
the Italian word delfino which refers to the animal.
However, in the KDE4 domain it corresponds to
a proper noun that indicates a file manager appli-
cation. As we see in Table 9, the generic system
wrongly translates it into delphin. By accessing in-
domain training data (i.e. either the full corpus or
just one single, highly similar instance), both the
adaptive systems are able to correctly translate it.

The English terms Control Center and mouse
cursor are two interesting examples of learning
domain-specific translation styles. While in the
generic training data these terms are usually trans-
lated into Control Center and cursore del mouse,
in the KDE4 domain the human translators prefer
them to be translated into centro di controllo and
puntatore del mouse. As we see in the examples
of Table 9, the generic system produces their com-
monly used translations, while the instance-based
system is able to learn and produce the desired
domain-specific translations.

We also observed a few cases in which the
instance-based approach learns to properly gener-
ate Italian terms in the translation while there is no
corresponding source English term in the given test
sentence. The Italian word pulsante in the fourth
example provided in Table 9 is one of these cases.
As we see, the input English sentence does not
contain the word button, hence both the generic
and corpus-based adapted NMT systems do not
produce any translation for it. On the contrary,
the instance-based system, being trained on a very
similar instance which contains the word pulsante,
learns the pattern and produces a translation that is
closer to the reference.

Finally, we noticed that inconsistent translations
of the terms can affect the instance-based adaptive
system, resulting in translations which are differ-
ent than the manually produced references. The
last example provided in Table 9 shows one of
these cases. As we see, the English term pack-
ages can be translated into either pacchetti or pack-
age. So, based on the suggestion provided by the
retrieval module, the instance-based system learns

to translate it into package which is another valid
translation of this term. This, however, does not
affect the global performance of the system due to
the small amount of similar situations.

7 Conclusions

We investigated the application of instance-based
adaptive NMT in a real-world scenario where
translation requests come from new domains that
contain many technical terms. In particular, we
analyzed its ability to properly handle domain ter-
minology, comparing its output against the trans-
lations produced by a generic (unadapted) NMT
system and a corpus-based specialized NMT sys-
tem. Overall, our experiments with Gnome and
KDE4 data reveal that the two adaptation meth-
ods significantly improve the performance of the
generic system both in terms of global BLEU score
and term translation accuracy. Unsurprisingly, by
performing a computationally intensive fine tuning
on the full in-domain training data, corpus-based
adaptation produces specialized NMT systems that
achieve better results at the cost of reduced scal-
ability. However, the less demanding instance-
based adaptation (performed on one parallel sen-
tence pair retrieved from a pool of data based on
its similarity to the test sentence), is able to ef-
fectively learn domain terms’ translations, even
for expressions that were never observed by the
generic model. Such capability allows instance-
based adaptation to significantly reduce the gap be-
tween generic and corpus-based specialized NMT
models at manageable costs.
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