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ABSTRACT. In the past decade, sentiment analysis research has thrived, especially on social
media. While this data genre is suitable to extract opinions and sentiment, it is known to be
noisy. Complex normalisation methods have been developed to transform noisy text into its
standard form, but their effect on tasks like sentiment analysis remains underinvestigated. Sen-
timent analysis approaches mostly include spell checking or rule-based normalisation as pre-
processing and rarely investigate its impact on the task performance. We present an optimised
sentiment classifier and investigate to what extent its performance can be enhanced by integrat-
ing SMT-based normalisation as preprocessing. Experiments on a test set comprising a variety
of user-generated content genres revealed that normalisation improves sentiment classification
performance on tweets and blog posts, showing the model’s ability to generalise to other data
genres.

RESUME. Ces derniéres années ont été marquées par un intérét croissant pour I’analyse des
sentiments sur les réseaux sociaux. Bien que ces derniers soient une source de données utile,
ils sont connus pour étre bruité. Diverses méthodes de normalisation complexe existent pour
transformer du texte bruité en sa forme standard. Cependant, la plupart des études a I’analyse
des sentiments incluent la normalisation basée sur des regles et ne recherchent guére sa valeur
ajoutée a la classification. Nous présentons un systeme pour l’analyse des sentiments optimisé
et examinons si sa performance s’améliore si la normalisation basée sur la traduction auto-
matique statistique est intégrée. Des expériences avec un corpus de test varié démontrent une
meilleure performance si la normalisation est incluse, non seulement pour le genre Twitter, mais
aussi pour le genre blog, ce qui démontre la capacité de généralisation du modele.
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1. Introduction

Emotions and sentiment play a key role in successful communication and rela-
tionships, and the opinions and beliefs of others play a large part in how we evaluate
the world or make decisions. The study of sentiment and its related concepts such as
opinions and attitudes is known as automatic sentiment analysis or opinion mining.
With the growing amount of opinionated data on the web, sentiment analysis applica-
tions have found their way into various research fields and companies showing interest
in understanding how consumers evaluate their goods and services. Although the first
studies on automatic sentiment analysis appeared in the early 2000’s when researchers
focused on newswire text (Wiebe, 2000; Pang et al., 2002), the thriving interest in the
field has come along with the birth of social networking sites like Facebook and Twit-
ter. Social media generate a substantial amount of opinionated data, also referred to
as user-generated content (Moens et al., 2014), that offers valuable insights into the
public opinion online.

The accessibility to an ever-growing stream of opinionated data represents one
side of the coin, the introduction of what we could call “noise” the other. Given
the speed at which social media data are produced, their informal nature and the
restrictions with respect to message length, these data are characterised by a rather
informal language containing misspellings, grammatical errors, emoticons, abbrevi-
ations, slang, etc. (Barbosa and Feng, 2010). Since many natural language process-
ing (NLP) tools have been developed for and trained on standard language, a severe
drop in performance is observed when applying these tools to user-generated con-
tent (Eisenstein, 2013). Moreover, due to an inconsistent writing style, user-generated
content is prone to increase feature sparseness, which complicates the classification
task.

In this paper, we present a sentiment analysis pipeline for social media data ex-
ploiting a wide variety of information sources. We proceed to joint optimisation of
the classifier by simultaneously performing feature selection and hyperparameter con-
figuration. In a next step, we investigate to what extent the performance of our opti-
mal sentiment classifier can be further enhanced by applying complex statistical ma-
chine translation (SMT)-based normalisation to the data prior to training. Although
data noisiness has been widely acknowledged as one of the main challenges in the
field (Liu, 2015), this is, to our knowledge, the first study to provide a qualitative and
comparative analysis of a complex normalisation system and to experimentally test its
benefits for an optimised sentiment classifier.

The remainder of this paper is structured as follows. Section 2 presents an overview
of sentiment analysis research and text normalisation, while section 3 zooms in on the
normalisation system used for this research. Section 4 describes our sentiment analysis
architecture and details the experimental setup, after which the results are thoroughly
discussed in section 5. Finally, section 6 highlights the conclusions and presents some
directions for future research.
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2. Related research

Traditional communication tools have increasingly given way to social media,
which have become a rich source of opinionated data. To be able to analyse such
an amount of data, automatic text processing techniques like sentiment analysis have
become highly relevant.

2.1. Sentiment analysis

Natural language processing has many applications related to text analysis and
initial text classification studies focused on extracting factual information from docu-
ments, which resulted in systems for automatic information retrieval (Salton, 1989),
text summarisation (Nenkova, 2005), document classification (Finn et al., 2002), topic
modelling (Deerwester et al., 1990) and so on. More recently, the research focus of
the NLP community is increasingly geared towards the extraction of subjective in-
formation from text, thus introducing the field of sentiment analysis or the automatic
classification of a document as positive, negative or neutral (i.e. when a positive and
negative sentiment is expressed, or neither of them).

In its early days, sentiment analysis was mostly applied to newswire documents
and movie reviews, seminal work on which has been done by Wiebe et al. (2004) and
Pang and Lee (2008). The interest in the domain has thrived with the expansion of the
Internet and the birth of social media, providing a large amount of opinionated data
that is increasingly searched for by researchers, companies, politicians, and trend-
watchers. As a result, sentiment analysis has become a major research area in NLP,
which is reflected in survey articles by Liu (2015) and Mohammad (2016).

Two dominant approaches to sentiment analysis exist: (i) a machine learning-
based approach and (ii) a lexicon-based approach. Machine-learning approaches
are either supervised or unsupervised. Supervised methods include classifiers that are
trained on labelled or annotated documents, whereas unsupervised methods infer the
semantic orientation of a document without labelled data (e.g. using clustering or seed
words). Semi-supervised approaches are a combination of both, for instance when
sentiment lexicons are used, but no manually labelled data. Lexicon-based approaches
make use of dictionaries of sentiment words to calculate a global sentiment score for a
document. Both lexicon-based and machine-learning approaches present difficulties:
while the former suffer from the varying and changing nature of language, machine-
learning approaches generally require a large corpus of labelled documents to train a
model. The two methods have been investigated extensively over the past years and
this has resulted in a fair amount of benchmark data in the field. In machine learning,
researchers have investigated and compared the performance of different classifica-
tion and regression algorithms (Davidov et al., 2010; Agarwal et al., 2011), and more
recently successful sentiment analysis approaches involve deep learning using neural
networks (Severyn and Moschitti, 2015).
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Sentiment analysis has also increasingly attracted researchers’ interest in the
framework of specialised shared tasks like SemEval, a series of evaluations of com-
putational systems for tasks related to semantic text analysis. Datasets for training and
testing are provided by the task organisers so that the participants’ systems can be
compared against each other. SemEval-2013 to -2017 workshops included a Twitter
sentiment analysis task, which has resulted in state-of-the-art sentiment classifiers and
anumber of new resources, such as the NRC Hashtag Sentiment Lexicon (Mohammad
et al., 2013). Over the years, the shared task has attracted approximately 200 research
teams, submitting together more than 300 sentiment analysis systems. Popular clas-
sification methods are Support Vector Machines (SVMs), Naive Bayes, Conditional
Random Fields (CRFs), and deep learning architectures. Often exploited features in-
clude bags-of-words (i.e. word or character n-grams), syntactic features based on
part-of-speech (PoS) information or dependency relations, semantic features captur-
ing modality and negation, sentiment lexicon features and user-based features. Twitter-
specific features are often included to represent creative writing (e.g. punctuation, cap-
italisation, character flooding, emoticons and at-replies) (Nakov et al., 2016). In short,
recent research has successfully explored sentiment classification on Twitter, present-
ing classifiers with performance scores of up to F1= 0.69 (Rosenthal et al., 2017).
Nevertheless, it has also unveiled a number of bottlenecks, one of them being the use
of highly informal language or data noisiness.

2.2. Handling “data noisiness”

One of the larger and less-researched issues NLP is currently facing is data
noise (Liu, 2015), which refers to non-standardised language variation. In fact, an in-
herent characteristic of social media data is its tendency to deviate from the linguistic
norm, as it often contains misspellings, creative punctuation and inconsistent capital-
isation, or has a poor grammatical structure. This hinders automatic text processing
with traditional NLP tools that are trained on standard text and show a significant
drop in performance when applied to social media data (Eisenstein, 2013). Among
others, Ritter ez al. (2011) demonstrated that the performance of existing tools for PoS
tagging and chunking decreases when applied to tweets, and similar findings were
reported by Liu et al. (2011) for named entity recognition.

As described by Han et al. (2013), one way to minimise the performance drop
of such tools is to adapt or retrain them using social media data. Recent studies
have introduced Twitter-specific tools for, among other tasks, PoS tagging (Gimpel
et al., 2011), and named entity recognition (Ritter et al., 2011). A drawback of this
strategy is that it implies a process of continuous retraining of each individual tool to
make it robust to changes in language use. According to the researchers, another strat-
egy to handle non-standard language is text normalisation, which transforms noisy or
non-standard text into its standard form. Three dominant approaches to text normali-
sation exist, referred to as the spell-checking, the machine translation and the speech
recognition metaphors (Kobus et al., 2008). The former metaphor refers to normal-
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isation as a word-per-word correction primarily targeting out-of-vocabulary (OOV)
words. The translation metaphor refers to normalisation as a machine translation task
where the noisy text has to be “translated” into its standard form. Finally, the speech
recognition metaphor alludes to the analogy between noisy and spoken language, as-
suming that noisy content like SMS messages tends to be closer to oral expressions
than to written text. For a comprehensive overview of the different normalisation ap-
proaches, we refer to Kobus ef al. (2008).

Although various normalisation systems have been developed and have proven
successful (De Clercq et al., 2013; Pettersson et al., 2013; Schneider et al., 2017),
most approaches to sentiment analysis only incorporate shallow normalisation such as
spell-checking mechanisms or rule-based normalisation without evaluating the impact
of normalisation on the classification performance (Roy et al., 2011; Haddi et al.,
2013; Sharma et al., 2015). In the present study, we therefore investigate the impact
of an SMT-based normalisation system as preprocessing for our optimised sentiment
classifier.

3. Normalisation of user-generated content

As discussed in the previous sections, data noisiness may severely undermine the
accuracy of NLP tasks including tokenisation, lemmatisation and PoS tagging. More-
over, it may hinder the effectivity of bag-of-words or lexicon-based features due to
increased sparseness. The negative effects of data noise are well-known, but only few
studies have applied normalisation as a preprocessing step for text mining tasks. To
our knowledge, the actual impact of complex normalisation on sentiment classifica-
tion performance has not been investigated sufficiently. Mosquera and Moreda (2013)
did tackle the problem and showed a 6% polarity classification improvement after
applying normalisation to tweets, but, in contrast to the current approach, they im-
plemented a normalisation system based on dictionaries, rather than a statistical nor-
maliser trained on user-generated data.

We hypothesise that normalisation helps to reduce feature sparseness, as was
shown by Desmet (2014), and consequently improves the coverage of sentiment lex-
icons that are often used to construct features for this task. To this purpose, we ap-
plied SMT-based normalisation (De Clercq et al., 2013), the underlying idea of which
is to perceive normalisation as a translation process from noisy text into normalised
standard text in the same language. An SMT system basically consists of two subse-
quent models: a translation model that is trained to find the right target words given
the source words and a language model that ensures the translated words come in
the right order. Applying SMT to text normalisation can be done at different levels
of granularity (i.e. at the token or character level). The advantage of working at the
token level is that the high-frequency words and abbreviations can be translated in
context, which outperforms a dictionary look-up (Raghunathan and Krawczyk, 2009).
A character-based translation module can translate non-standard words that were not
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= | Its so keeeewl, lol

Its so cool , It is so cool
Its so kewl , lol . > ’ =
’—’—> laughing out loud laughing out loud OUTPUT

PREPROCESSING SMT
tokenisation translation model & language model
&

flooding correction

‘ TOKEN LEVEL H CHARACTER LEVEL ‘

Figure 1. lllustration of the normalisation process. After preprocessing the tweet, it
is normalised at the token level, followed by a normalisation at the character level.

seen in the training set as it learns patterns of character sequences rather than entire
words, which makes the system more robust (Li and Liu, 2012).

For the current research, we propose an SMT-based approach and make use of
a system developed by De Clercq et al. (2013) for text normalisation of (initially
Dutch) user-generated content. The system is based on statistical machine translation
and makes use of the SMT system Moses (Koehn et al., 2007). As a target corpus
for the language model, which was built with KenLM (Heafield, 2011), parts of the
English Open Subtitles Corpus ! were used, since the data in this corpus are user-
generated. The training data for the normalisation system comprises texts from the
social networks site ASKfm 2, YouTube comments (Dadvar et al., 2014) and a sub-
set of the Twitter corpus (TWE) compiled by Xue et al. (2011). The final corpus
comprises about 60,000 tokens and has been manually normalised using annotation
guidelines (De Clercq et al., 2014). The system performance was evaluated on three
different types of user-generated content, being message board posts (SNS), text mes-
sages (SMS), and tweets (TWE). With F; scores of up to 0.65 for all three genres,
the system has demonstrated its robustness across different genres of user-generated
content.

The system, the process of which is depicted in Figure 1, works as follows: prior
to performing SMT, the noisy text is tokenised using the Twitter tokeniser by Gimpel
et al. (2011). Subsequently, a cascaded approach is taken: the system first processes a
noisy tweet at the token level to find frequent abbreviations (such as “lol” for “laughing
out loud”), after which the output is split into character sequences for normalisation
at the character level. The latter step should allow to better resolve character transpo-

1. http://www.opensubtitles.org.
2. http://ask.fm.
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sitions, but also problems across the token level, like fusions such as “its” for “it is”.
As mentioned earlier, character-based translation models also better generalise since
they can learn productive alternations and correct them in words that do not occur in
the training data. An important decision to make when applying such a cascaded ap-
proach is the level of granularity at the character level, for which we tested unigrams
and bigrams.

original normalised
SMS Ok then later i msg u where i am. Ok then later i message you where
iam.
yah, wed i think. But i noe she not yah, wed i think. But i noe not free
free on wed. on wed.

Twitter @Manlyboyze I would put Gillard @Manlyboyze 1 would put Gillard
2nd best behind Hawke, Rudd 3rd, second best behind Hawke, Rudd
Keating 4th, then all the rest, then third, Keating 4th, then all the rest,
Howard last #Showdown then Howard last #Showdown

Table 1. Corpus examples before and after normalisation.

We empirically verified which cascaded approach (i.e. token+character unigrams
or token+character bigrams) works best for the research presented here by selecting
100 random instances from the English SemEval Twitter training corpus (Rosenthal
et al., 2014). These 100 tweets (comprising 2,185 tokens all together) were manually
normalised by two trained linguists who performed the task independently. In a next
phase, a few conflicting normalisations were discussed and resolved, which resulted
in a total of 206 tokens that were normalised. Next, the dataset was automatically
normalised using two different flavours of the normalisation system and we thus com-
pared the output of the cascaded token-+character unigram approach (system A) with
that of the cascaded token+character bigram approach (system B). We found that the
systems perform comparably in terms of recall, given that system A resolved 41%
of the normalisations, whereas system B resolved 40%. When looking at the preci-
sion of both systems, however, we found that system A hypernormalised more tokens,
which often led to strange additions. As such, precision of the system was 61%, as
opposed to 86% of system B. We therefore decided to use system B or the cascaded
token+character bigram module for the normalisations performed in the framework
of this paper. This finding is in line with previous experiments on Dutch data which
revealed that the best performance is indeed achieved with a cascaded bigram ap-
proach (De Clercq et al., 2013).

4. Sentiment analysis architecture

This section presents the experimental corpus and feature engineering process,
after which the feature filtering and normalisation experiments are described.
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4.1. Data preprocessing and feature engineering

For the experiments we made use of a training and a held-out test corpus, both
containing English social media data. The corpora were distributed in the framework
of the SemEval-2014 shared task on sentiment analysis (Rosenthal et al., 2014) and
consist of 11,338 and 8,987 instances, respectively (Table 2).

train corpus test corpus
Twitter Twitter SMS  blog
11,338 5,752 2,093 1,142

Table 2. Number of instances in the experimental corpus.

The training corpus contains merely tweets, whereas the test corpus comprises a
variety of user-generated content, including tweets (regular and sarcastic), text mes-
sages (SMS), and LiveJournal ® blog posts. All instances in the corpora are assigned
one out of three class labels, being positive, negative, and neutral, which represent
37%, 16% and 47% of the training data. The class distributions in the test set are
comparable.

Prior to extracting features, all tweets in the norm and not norm corpus were
tokenised and PoS tagged using the Carnegie Mellon University Twitter NLP Tool
(Gimpel et al., 2011). The tag list comprises regular PoS tags (e.g. “N” for noun, “V”
for verb), as well as Twitter-specific ones (e.g. “#” for hashtags, “E” for emoticons).
The following paragraphs describe the different features that were extracted to provide
the model with relevant information for the task.

Bag-of-words features (BoW): features that represent each message as a “bag” of
its words or characters. Unigrams, bigrams and trigrams were extracted at the token
level and trigrams and fourgrams at the character level (without crossing token bound-
aries). [N-grams that occurred only once in the training corpus were discarded, which
decreased the total number of n-gram features by 80% and the entire feature space by
about 50%.

Post length: numeric feature indicating the tweet length in tokens.

Word-shape features: numeric and binary features including (i) the number of tokens
with character (e.g. yaaaay) and (ii) punctuation flooding (e.g. ??//), (iii) whether the
last token of the tweet contains punctuation, (iv) the number of tokens in uppercase
and (v) the number of hashtags in the tweet. All the numeric features were normalised
by dividing them by the tweet length.

3. http://www.livejournal.com.
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Syntactic features:

— Part-of-Speech (PoS) features: four features for each one of the 25 tags in the
PoS tagset, indicating (i) whether the tag occurs in the tweet, (ii) whether the tag oc-
curs zero, one, or two or more times, (iii) the absolute and (iv) relative frequency of the
tag. It is important to note that the Twitter-specific PoS tagger distinguishes hashtags
that are part of the tweet content from those with a “hashtag function”. For instance, in
“Foreign commentator award at the #commentawards goes to Marie Colvin”, #com-
mentawards is tagged as a noun, while in “T hope I get to meet Carmelo Anthony at
the Knicks Rally #Hopeful”, #Hopeful is tagged as a hashtag.

— Dependency relation features: four binary features for every dependency rela-
tion found in the training data (example 1). The first feature indicates the presence
of the lexicalised dependency relations in the test data (hm-lex). For the remaining
features, the dependency relation features are generalised in three ways, as proposed
by Joshi and Penstein-Rosé (2009): by backing off the head word to its PoS tag (h-
bo), the modifier to its PoS tag (m-bo), and both the head and modifier (hm-bo). The
dependency parser we made use of is not adapted to Twitter data, hence hashtags are
treated like other words.

(1) Ihad such a great time tonight that I’ve decided to keep celebrating! — hm-
lex: (time, great), h-bo: (N, great), m-bo: (time, A), hm-bo: (N, A)

Named entity features: four features indicating the presence of named entities in a
tweet: one binary feature and three numeric features, indicating (i) the number of NEs
in the tweet and (ii) the number and (iii) frequency of tokens that are part of a NE.

PMI features: two numeric features based on PMI (pointwise mutual information)
obtained from (i) word-sentiment associations in the training data, and (ii) an ex-
isting PMI lexicon (Mohammad et al., 2013). A positive PMI value indicates posi-
tive sentiment, a negative score indicates negative sentiment. The higher the absolute
value, the stronger the word’s association with the sentiment. PMI values were cal-
culated by subtracting a word’s association score with a negative sentiment from the
word’s association score with a positive sentiment, as shown by the following equa-
tion: PM1I(w) = PMI(w, positive) — PMI(w, negative).

Sentiment lexicon features: four sentiment lexicon features were implemented to
capture the semantic orientation of a tweet. We consulted existing lexicons including
AFINN (Nielsen, 2011), General Inquirer (GI) (Stone et al., 1966), MPQA (Wilson
et al., 2005), the NRC Emotion Lexicon (Mohammad and Turney, 2010), Liu’s opin-
ion lexicon (Hu and Liu, 2004), Bounce (Kokciyan ef al., 2013) and a manually cre-
ated emoticon list based on the training data. Four features were extracted per lex-
icon: the number of positive, negative and neutral lexicon words averaged over text
length, and the overall polarity (i.e. the sum of the values of the identified sentiment
words). These features were extracted by looking at (i) all the tokens in the instance
and (ii) hashtag tokens only (e.g. win from #win). Negation cues were considered by
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flipping the polarity of a sentiment word if it occurred within a window of three words
left or right to a negation word from a manually composed list (e.g. “neither”, “with-
out”, “cannot”). To minimise ambiguity, a word was only attributed a sentiment value
if its PoS tag matched that of the dictionary entry (when available).

4.2. Experimental setup

Our two main research objectives are (i) to build a sentiment classifier that makes
optimal use of a varied feature set (cf. section 4.1) and (ii) to investigate the impact
of lexical normalisation when included as a preprocessing step (cf. section 4.2.3).
For the experiments we made use of a support vector machine as implemented in the
LIBSVM library (Chang and Lin, 2011), since the algorithm has been successfully
implemented with large feature sets and its performance for similar tasks has been
recognised (Zhu et al., 2014). Prior to constructing models, all feature vectors were
scaled so that each variable fits in the range [0, 1]. As the evaluation metrics, we report
accuracy, and macro-averaged precision, recall and F; score. Macro-averaging was
preferred over micro-averaging as it attributes equal weight to the different classes in
the evaluation (Sokolova and Lapalme, 2009). We recall that these classes are positive,
negative and neutral (cf. section 4.1).

4.2.1. Baselines

Three standard baseline classifiers were implemented against which to compare the
models’ performance, being the majority and random class baseline and a unigram-
based model (wlgr) relying solely on word unigram features. For this model, the
LIBSVM classifier was applied in its default parameter settings. Evaluation was done
using ten-fold cross validation.

baseline | accuracy precision recall F;

majority | 46.97% 15.66% 3333% 21.30%
random | 38.91% 33.58% 33.58% 33.58%
wlgr 46.97% 15.66% 3333% 21.30%

Table 3. Cross-validated results for the majority, random and unigram baseline.

As can be deduced from the table, scores for the baselines are low. The (unop-
timised) unigram baseline scores equally to the majority baseline as it consistently
predicts the neutral class, which demonstrates the importance of hyperparameter opti-
misation for our LIBSVM classifier.

4.2.2. Building an optimal sentiment classifier exploiting a rich feature set

It has been shown that sentiment classification benefits from a variety of informa-
tion sources including bags of words, syntactic features, sentiment lexicon features,
negation and modality clues, and so on (Zhu et al., 2014). Implementing such a rich
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feature set seems promising, since many individual features may have a substantial
predictive power when they are combined. However, it is probable that not all individ-
ual features are equally informative for the decision-making algorithm. For instance,
bag-of-word features have shown to perform well for sentiment analysis (Rosenthal
et al., 2015), but easily suffer from sparseness as the corpus size increases (Saif
et al., 2012). High-dimensional data with a large number of features may include
irrelevant and redundant information, which could degrade the performance of learn-
ing algorithms (Yu and Liu, 2003). hat is why in our first round of experiments, we
disentangle which types of information sources described in section 4.1 lead to opti-
mal classification performance by means of feature filtering and hyperparameter op-
timisation using a genetic algorithm (see further). It is important to note that, in this
experimental round, normalisation is not included as a preprocessing step.

Dimensionality reduction of the feature space is done in two phases, includ-
ing (i) feature filtering based on information gain (Daelemans et al., 2009) and
(ii) wrapped feature selection.

(i) Feature filtering is done based on information gain (IG). IG is the difference in
entropy, i.e. the uncertainty about a class label given a set of features when the feature
is present or absent in a feature vector representation. Given the considerable number
of individual features, we decided to apply feature filtering prior to joint optimisation
using a wrapper method. We experimentally determined a threshold of 0.001, meaning
that features with an IG value below 0.001 were discarded. This reduced our initial
feature space by approximately 99.5% (i.e. from 430,980 to 1,852 features).

(i) Wrapper methods, as opposed to statistical feature filtering (see (i)), conduct
a search for informative features using the induction algorithm itself as part of the
evaluation function (Kohavi and John, 1997). The selected features are the ones
that have the most predictive power given the particular task and classification al-
gorithm. The advantage of wrapped feature selection is that it tests features in com-
bination to detect the possible interactions between them. An important disadvantage
of wrapper methods is that they are computationally expensive for data with numer-
ous features (Chandrashekar and Sahin, 2014). Two measures were taken to prevent
the search space from becoming too large. First, the feature space was filtered using
information gain, as explained in the previous paragraph. Second, the remaining indi-
vidual features were combined into feature groups for feature selection, since 1,852
individual features would increase the search space considerably due to combinatorial
explosion.

Another challenging but necessary (see the results of the unoptimised unigram
model in Table 3) task when applying machine learning algorithms is defining good
hyperparameter settings as it allows a classifier to better fit the training data. Out of
the variety of hyperparameters that can be set for a LIBSVM classifier, we chose to
optimise kernel-specific settings including ¢ (the kernel type), d (the kernel function
degree), g (the kernel function gamma), and the classification cost value, C'. Hoste
(2005), among other researchers, demonstrated the importance of joint optimisation,
meaning that feature- and hyperparameter selection are performed at the same time
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so that their mutual influence can be evaluated. To this purpose, we made use of the
Gallop (Genetic Algorithms for Linguistic Learner Optimisation) toolbox (Desmet
et al., 2013). Optimisation was done using k-fold cross validation on the training set
and the number of individuals to be tested per generation was set to 100. Given the size
of the training corpus, k was set to 3. Both the feature groups and hyperparameters
were defined so as to maximise macro-averaged F; to assign equal weight to each
class in the evaluation.

4.2.3. Normalisation experiments

We hypothesised earlier that data noise could (i) increase sparseness in the fea-
ture space and (ii) lower the coverage of sentiment lexicons. On the positive side,
however, character flooding or extensive capitalisation may provide hints for auto-
matic sentiment analysis. To assess the actual impact of normalisation on this task, we
compared the performance of our most optimal sentiment classifier when trained on
not-normalised versus normalised input. Before presenting the experimental results,
we already provide some insights into the qualitative analysis of the input data before
and after normalisation.

Related to the first hypothesis, we observed that token n-grams in the normalised
corpus were more sparse: 54,326 token n-grams versus 53,458 in the not-normalised
corpus. A qualitative analysis revealed that, while the normaliser decreased sparseness
by normalising spelling variations like “yesssss” and “yesss” to “yes”, it increased
sparsity through (i) correct normalisations that resulted in more tokens than the orig-
inal word (e.g. “btw” — “by the way”, “gonna” — “going to”), but also through
strange operations and hypercorrections (e.g. “#Illini”— “#I willini”). Also, given
that n-grams with a frequency less than two in the training corpus were discarded
during preprocessing, it is likely that normalisation increased the number of tokens
added to the bag-of-words. For instance, “Jerry’s” and “Jerrys” both occur once in
the corpus and were discarded from the bag-of-words in the not-normalised corpus,
but during normalisation, “Jerrys” was corrected to “Jerry’s”, and occurring more than
once now, the word was added to the bag-of-words. Normalisation did, however, cause
a slight decrease in sparsity in the character-level n-grams (—1%) and the dependency
features (-0.5%).

Regarding our second hypothesis, we observed that after normalising the input
text, the coverage of the sentiment lexicons increased by 0.22%. This would indicate
that normalisation has a rather limited effect on sentiment-bearing words, which could
be because (i) their noise cannot be resolved by the normaliser or (ii) they barely need
correction. The results of a qualitative analysis of the corpus are in favour of the
latter assumption, revealing that syntactic words (e.g. “wiv u” — “with you”, “ima”
— “I am going to”) appeared much more prone to deviant spelling in our corpus than

sentiment-bearing words.
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5. Results

In section 4.2.2 we described the steps towards our most optimal classifier. Now
we discuss its results and take a closer look at the selected features and hyperparam-
eter settings (sections 5.1 and 5.2.1). Furthermore, we investigate the impact of nor-
malisation as preprocessing on the classification performance. To this end, a second
optimised classifier was built after the SMT-based normalisation system was applied
to the dataset, leading to a more standard text input corpus. We then discuss the re-
sults of our optimised classifier before and after normalisation (section 5.2). Finally,
this section zooms in on the performance of our optimised classifiers on a held-out
test set containing different genres of user-generated content (section 5.2.2).

5.1. The effect of classification optimisation

Observing poor results by the unoptimised LIBSVM classifier, and hypothesis-
ing that not all individual features contribute equally to the classification performance
(cf. section 4.2.2), we investigate the effect of joint optimisation. Table 4 compares
the results of two classifiers before and after joint optimisation. A unigram-based
model is compared to that of a rich-feature-based model to investigate the benefits
of a rich feature set for this task.

model features \ optimised? \ accuracy F; precision  recall

1) unigram BoW | - 46.97% 21.30%  15.66% 33.33%
2) rich feature set | - 46.97% 21.30%  15.66% 33.33%
3) unigram BoW | v 67.87% 63.00%  66.98% 61.58%
4) rich feature set | v/ 79.20% 75.29%  77.55% 73.94%

Table 4. Cross-validated results for the unigram and rich feature-based models, be-
fore and after joint optimisation.

As can be deduced from the table, when applied in its default parameter settings,
the classifier consistently predicts the majority class, independently of the features
that are used to construct the model (cf. systems 1 and 3). This demonstrates once
more (cf. Table 3) that LIBSVM’s default kernel type (RBF) is sensitive to a high-
dimensional feature space if no suitable hyperparameter settings are defined (Hsu
et al., 2003). Joint optimisation clearly pays off, as it increases the performance of
the unoptimised classifiers by 42% and 54%. The results further demonstrate that,
when optimised, the classifier benefits from a rich feature set, yielding an F; score of
75.29%, as opposed to F;= 63% when only word unigram features are used.
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5.2. The effect of normalisation on sentiment classification

Having in place an optimised sentiment classifier, we now investigate the impact
of integrating SMT-based normalisation as preprocessing on the classification perfor-
mance. Table 5 presents the three-fold cross-validation results obtained for both op-
timised models, trained on normalised and not-normalised tweets (hereafter referred
to as the “norm” and “not norm” setup). Similarly to the setup without normalisation
as preprocessing, optimisation of the classifier involves 1G-based feature filtering as
well as joint feature selection plus hyperparameter optimisation using Gallop. Feature
filtering decreased the feature space by approximately 99.5% (from 400,872 to 2,002
features), which is similar to the feature space reduction we observed for the corpus
without normalisation (cf. section 4.2.2).

overall score Fy score per class
accuracy F, precision recall Fi(pos.) Fi(neg.) F;(neu.)
TWE not norm | 79.20% 75.29% 77.55% 73.94% | 82.78% 61.22%  81.87%
TWE norm 77.77% 74.17%  76.00% 73.02% | 80.39% 61.39%  80.73%

Table 5. Cross-validated results of the optimised classifier with and without normali-
sation as preprocessing.

As shown in Table 5, with F; scores of 75.29% and 74.17%, the optimised not
norm and norm models outperform the baselines and unoptimised models with more
than 50%. Surprisingly, the model constructed from the raw (i.e. not normalised) cor-
pus slightly outperforms the norm model. As described in section 3, the precision of
our normaliser is high (i.e. 86%), hence it is unlikely that its error rate exceeds the
amount of noise in the corpus. Results on the held-out test set (see further) could,
however, provide more insights into the performance of both models. The scores per
sentiment class indicate that both classifiers perform better on the positive and neutral
classes compared to the negative class. This could be explained by the lower number
of negative class instances in the training data (cf. section 4.1).

In what follows, we evaluate the performance of the norm and not norm models on
the held-out test set comprising a variety of user-generated content genres. Assuming
that they each contain a different level of noise, we take a closer look at the classifier
performance for each genre. Before discussing the results, we zoom in on the feature
groups that were selected during joint optimisation.

5.2.1. Selected features in the normalised and not-normalised setups

In this section, we scrutinise which feature groups and hyperparameter settings
were chosen after optimisation of the norm and not norm models by means of the ge-
netic algorithm Gallop (Desmet et al., 2013). We recall that the feature groups were
created from the remaining features after filtering the feature space using information
gain (cf. section 4.2.2). For the not norm model, all features were grouped into 36 dif-
ferent feature groups depending on their nature (e.g. token unigrams, token bigrams,
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binary NE features, NRC sentiment lexicon features, and so on). Since all hm-bo
dependency features (cf. section 4.1) were discarded after feature filtering using In-
formation Gain*, only 35 feature groups were retained for the norm setup. Hence,
respectively 36 and 35 feature groups were considered for wrapped feature selection
in the not norm and norm setup. During the optimisation, different combinations of
hyperparmeter settings and feature group activations were evaluated by measuring the
classifier performance through a three-fold cross validation experiment. At the end of
an optimisation run, the highest fitness score indicated the classifier performance given
a particular combination of hyperparameter settings and feature group activations. For
both our models, this score is shown in Table 5.

As this score may be shared by other individuals with different feature group ac-
tivations or hyperparameters (for a detailed explanation, see Desmet (2014)), it is
advisable to not only discuss the individual with the highest fitness score, but also a
number of individuals that obtained a comparable fitness score. For the analysis of
the selected features and hyperparameter settings, we therefore discuss the k-nearest
fit solution set as proposed by Desmet (2014), i.e. by rounding the scores to three
decimals and selecting the top three fitness scores out of these.

Based on the top fitness scores, we carefully analysed the hyperparameter settings
and selected the feature groups that were activated in the seven and six best individuals
of the TWE norm and not norm models, respectively. In section 4.2 we defined which
LIBSVM parameters are relevant to this task. The output of the optimisation process
revealed that the linear kernel (t=0) was always selected as the most suited kernel type
for the norm model, whereas the sigmoid kernel (¢=3) was selected for the not norm
model. In effect, when looking at the results of the optimised models, we see a sub-
stantial improvement over the results obtained with the classifier in its default kernel
configuration (Table 5), demonstrating that defining a suited kernel is instrumental to
LIBSVM’s good performance with large feature spaces. For the normalised model, the
optimal cost value C' of the k-nearest individuals varied between 0.25 and 1, where
it varied between 256 and 1,024 for not norm. The d parameter* is not relevant here
given that a linear and sigmoid kernel were defined. The ~ parameter ° is not relevant
when using a linear kernel, but it was set to an optimal value of 0.0039 for the not
norm model.

Figure 2 visualises the activation of the different feature groups in the three-nearest
fit individuals for both models. Feature groups that are consistently retained in the
fittest individuals can be considered the most important given the nature of the classi-
fication task. In both figures the right column contains information about the selection
status of the feature group, represented as a percentage and with a colour range. The

4. In the same way, for both norm and not norm, sentiment features based on hashtag tokens
were discarded for the Bounce and SemEval (se) lexicons after IG-filtering. This makes intuitive
sense as both are emoticon lexicons and do not consider regular words.

5. d is the degree of freedom of the polynomial kernel.

6. Intuitively, the gamma parameter defines how far the influence of a single training example
on the model reaches.
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Feature group activation NOT NORM
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tokenlgramFeatures
token2gramFeatures
token3gramFeatures
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dependency_hm-lex
dependency_h-bo
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100%
0%

66.67%

100%
100%
66.67%
100%
100%

Feature group activation NORM

postLength
countFloodedTokens
countCapitalizedTokens

countFloodedPunctuationTokens

countHashtags
punctuationLastToken

tokenlgramFeatures
token2gramFeatures
token3gramFeatures
character3gramFeatures
character4gramFeatures

dependency_hm-lex
dependency_h-bo
dependency_m-bo

71.43%
71.43%
0%
57.14%
57.14%
71.43%
71.43%
100%
28.57%
28.57%

PoSBinaryFeatures dependency_hm-bo

PoSTernaryFeatures 83.33% PoSBinaryFeatures 28.57%
PoSAbsoluteFeatures 100% PoSTernaryFeatures 85.71%
PoSFrequencyFeatures 100% PoSAbsoluteFeatures 100%
NEBinary 66.67% PoSFrequencyFeatures 100%
NEAbsolute 66.67% NEBinary 100%
NETokenAbsolute 66.67% NEAbsolute 0%
NETokenFrequency 66.67% NETokenAbsolute 71.43%
nrc 33.33% NETokenFrequency 0%
gi 33.33% nrc 100%
liu 33.33% gi 71.43%
mpqa 100% liu 0%
afinn 100% mpqa 100%
bounce 66.67% afinn 100%
se 33.33% bounce 0%
nrc-hashtokens 100% se 0%
gi-hashtokens 66.67% nrc-hashtokens 85.71%
liu-hashtokens 33.33% gi-hashtokens 85.71%
mpqa-hashtokens 100% liu-hashtokens 85.71%
afinn-hashtokens 83.33% mpqa-hashtokens 0%
nrc-PMIScore 66.67% afinn-hashtokens 85.71%
se-PMIScore 100% nrc-PMIScore 85.71%

se-PMIScore 100%

Figure 2. Gallop feature group activation of the models with (norm) and without (not
norm) normalisation as preprocessing.

higher the percentage of individuals where the feature group is selected, the darker the
tone. The figures are split in such a way that feature sets of the same nature or related
feature sets are grouped together. The upper part comprises the word-shape features,
the post length, and hashtag count. The second part shows the bag-of-word features at
the token and character level. The third part contains the dependency relation features,
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the PoS tag features and the named entity features. After that, the sentiment lexicon
features are presented per lexicon (NRC, General Inquirer (gi), SemEval (se), etc.),
for regular and hashtag tokens. At the bottom of the table are the PMI-based features.
Overall, we notice that more features groups are retained in the not norm setup (31 out
of 36) than in the norm setup (27 out of 37). If we zoom in on the differences between
norm and not norm, we observe that social media-specific features, i.e. features that
capture creative writing like punctuation flooding and capitalisation, are more often
activated in the not norm than in the norm model. Interestingly, this is not the case
for countFloodedTokens, a feature that captures the number of tokens with charac-
ter flooding, which is removed during normalisation. A qualitative analysis revealed,
however, that not all types of flooding were removed during normalisation. As such,
important features were derived from words like “yummmm” and “xxxxx” where the
flooded characters are at the end of the word instead of in the middle. These words
were, as opposed to “yaaay” and “loooooll”, not corrected by the normaliser. When
looking at the sentiment features, we see that information provided by the MPQA and
AFINN lexicons results in good features for both models, since they show a 100%
activation across the best individuals. The AFINN lexicon also shows a high activa-
tion when applied to hashtag tokens in both models. This is in line with the work
by Ozdemir and Bergler (2015), revealing that AFINN outperforms other popular lex-
icons for sentiment analysis tasks.

Overall, the top three most important feature groups (i.e. with the highest overall
activation) for the not norm model include PMI-based features (i.e. nrc-PMIScore and
se-PMIScore), sentiment lexicon features (i.e. nrc-hashtokens to afinn-hashtokens)
and word-based features (i.e. postLength to punctuationLastToken). For the norm
model, the first and second most important feature groups (i.e. PMI and sentiment
lexicon features) are the same, but the third most important group are n-gram features
(i.e. token1gramFeatures to characterdgramFeatures). The analysis further reveals that
features based on dependency relations in the training data are the least informative,
given that only one out of four dependency features (i.e. dependency m-bo) is activated
in norm, but no dependency features were activated in the fittest not norm models.

5.2.2. Results on the held-out test set

In this section, we report the results of our optimised sentiment classifiers
(i.e. trained on our corpus with and without normalisation as preprocessing) on a
varied held-out test set. The test set has not been part of the corpus during training
and optimisation and therefore allows to draw conclusions about the robustness of our
system. It was distributed for the SemEval Task 9 (Rosenthal et al., 2014) and consists
of 8,987 messages from a variety of genres including Twitter (64%), SMS (23%), and
blogs (13%). Table 6 displays the scores obtained by the two models. As evaluation
metrics, we report accuracy and (macro-averaged) precision, recall and F; score.

We can observe that overall, the best scores are obtained with the norm model,
reaching an F; score of 68.90% on the full test set. This is opposite to our findings
in the cross-validation experiments (cf. Table 5) and indicates that the norm model
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overall score F score per class
accuracy F, precision recall Fi(pos.) Fi(neg.) F;(neu.)

TWE not norm | 70.26% 68.23%  73.02% 67.22% | 6691%  63.40%  74.38%
TWE norm 70.94 % 68.90% 72.55% 67.80% | 69.22% 62.95%  74.54%

Table 6. Results for each optimised model on the held-out test set, for all classes and
for each class label separately.

is more robust, allowing to perform better on unseen data, even when it contains
different genres of UGC. We observe that both systems perform well on all three
classes, although they show an important difference in distribution in the training data
(cf. section 4.1). The negative class, for instance, only represents 16% of the train-
ing corpus. We can conclude from this that our optimisation strategy to take macro-
averaged F; score as fitness criterion during optimisation pays off. Judging from the
raw performance results, sentiment classification of user-generated content benefits
from lexical normalisation as a preprocessing step. In a next step, we investigated
whether the results of our normalised system are significantly better than those of
the not-normalised system. To this end, we applied a t-test (o= 0.05) after bootstrap
resampling (Noreen, 1989). More specifically, we drew samples (n= 5,000) with re-
placement from the output of each system (i.e. the classified instances) and of equal
size of the test set (n= 8,987). For each resample, macro-averaged F; score was calcu-
lated and we subsequently applied a paired samples t-test to compare the mean scores
for both systems, which revealed a significant difference (p< 0.001) between the re-
sults of the norm and not norm models.

In the above paragraphs, we demonstrated the benefits of normalisation as pre-
processing for our sentiment classifier tested on an unseen and varying corpus of user-
generated content. In what follows, we take a closer look at both models’ performance
for each data genre in the test set, the results of which are presented in Table 7.

SMS2013 TWE2013 TWE2014 TWE2014 sarc LJ2014

2,093 inst. 3,813 inst. 1,853 inst. 86 inst. 1,142 inst.
TWE not norm | 71.57% 66.89% 65.73% 46.38% 68.63%
TWE norm 70.31% 68.26 % 67.37% 50.42% 69.67 %

Table 7. Macro-averaged F1 scores for each optimised model per genre in the held-
out test set.

Interestingly, the results indicate that both models, which are trained on Twitter
data (TWE), perform best on the SMS and LiveJournal genres. Not surprisingly, Twit-
ter sarcasm seems to be the most difficult genre, but it also benefits most from the
model where normalisation is included as preprocessing. The figures indicate that the
norm model performs best for all genres except SMS. In fact, a qualitative analysis
revealed that the genre is much more noisy than Twitter (as can be observed in the
examples in Table 1 and which was also shown by De Clercq et al. (2013)). Hence,
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it is not surprising that the not norm model better fits the SMS genre, as compared to
norm.

It is noteworthy, however, that the performance of the normaliser on the SMS
set is comparable to its performance on Twitter. In fact, a manual normalisation of
50 instances from the SMS test set showed that recall of the system was 39% and
precision 87%, which is comparable to its performance on tweets (cf. section 3). To
better evaluate the benefits of normalisation for sentiment analysis on other genres
than Twitter, further experiments are necessary where such other genres are included
in the training corpus of our sentiment model. In sum, the results in the table indicate
that the norm model outperforms not norm on unseen data, and it generalises well to
other data genres (e.g. LiveJournal) or variations (e.g. sarcastic tweets), except SMS.

As the experiments were run using SemEval data, we also compared the perfor-
mance of our sentiment classifier in the light of the SemEval shared tasks on sentiment
analysis. We focus particularly on the SemEval-2014 T9 (Rosenthal ez al., 2014) run
in which we participated and where participants were required to classify (social me-
dia) messages as positive, negative or objective/neutral. Table 8 presents the scores of
TeamX (Miura et al., 2014), the Task 9 winning team, and compare them to the results
of our two models (i.e. LT3 norm and LT3 not norm). The TeamX system is based on a
supervised text categorisation approach by means of logistic regression. The features
that are exploited include bags-of-words, sentiment lexicon features, cluster features,
and word sense features. As preprocessing steps the authors included rule-based nor-
malisation, spelling correction, PoS tagging, word sense disambiguation, and negation
detection.

It is important to note that Table 8 displays scores obtained by two different evalua-
tions. Firstly, we report the scores obtained by TeamX and LT3 on the three sentiment
classes, being positive, negative and neutral. Secondly, we present the results of the
SemEval-2014 competition, which scored the systems solely by their performance on
the positive and negative class (Rosenthal ez al., 2014).

SMS2013 TWE2013 TWE2014 TWE2014sarc LJ2014 Full test
2,093 inst. 3,813 inst. 1,853 inst. 86 inst. 1,142 inst. 8,987 inst.
TeamX 53.62% 71.72% 69.34% 55.06% 58.11% 65.40%
LT3 (not norm) | 71.57% 66.89% 64.73% 46.38% 68.63% 68.23%
LT3 (norm) 70.31% 68.26% 67.37% 50.42% 69.67 % 68.90%
77777777777777777 @ﬁcfair;zs;l;ss’gmjf;a7—§0747 Task9
" TeamX | 57.36%  72.12%  7096%  56.50% 69.44%  65.63%
LT3 64.78% 65.56% 65.47% 47.76% 68.56% 60.60%

Table 8. Comparative results on sentiment classification: the SemEval 2014 winning
team versus the current system (with and without normalisation as preprocessing)
for the classification of pos/neg/neu sentiment and the official SemEval-2014 Task 9
scores for the classification of pos/neg sentiment.
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As shown in Table 8, with a top F; score of 68.90% obtained by our norm model,
our system compares favourably with the top-performing TeamX system, which ob-
tained an F; score of 65.40% on the complete test set. Looking at the different genres
in the test set, we observe that TeamX obtained the best results on the Twitter genre,
whereas our system performed particularly well on the SMS and LiveJournal (LJ)
genre. This demonstrates our system’s robustness to data genres other than Twitter,
while TeamX’ system was particularly tuned to Twitter data, making use of eleven
different types of n-gram features (contiguous and not-contiguous, token-based and
character-based, both with different levels of granularity) and word clusters generated
from a 56M Twitter corpus ’.

Looking at the official SemEval-2014 Task 9 results, we observe that the TeamX
system outperformed ours on the positive and negative sentiment class, except for
SMS2013. Both systems (i.e. TeamX and LT3) were, however, trained on the three
sentiment classes. A possible explanation is that the TeamX system integrated weight-
ing of the predicted labels to handle with the class imbalance in the test set (Miura
et al., 2014). Overall, comparing these scores with the performance of our current
system clearly demonstrates the beneficial effects of classifier optimisation and nor-
malisation, which allowed us to outperform the Task 9 wining team with 3.5 points
(i.e. 68.90% vs. 65.40%).

6. Conclusions and future work

The present research presents the development of an optimised sentiment analysis
pipeline exploiting a rich feature set and investigated the effect of complex normal-
isation as a preprocessing step. Different feature types were exploited, including bags
of words, word shape features, syntactic features and sentiment lexicon features. We
performed a series of experiments that were evaluated against three baselines (i.e. ran-
dom, majority class and word unigram), which were all improved at each step of our
experimental setup. In a first step, we explored the effect of classifier optimisation by
means of joint hyperparameter and feature selection using genetic algorithms. The re-
sults revealed that, when applied in its default parameter settings, the LIBSVM model
consistently predicted the majority class. Optimisation of the model increased its per-
formance from F1= 21.30% to F1= 63%, and eventually to F1=75.29% when a rich
set of features was exploited instead of bags of words.

Having in place an optimised and rich-feature-based sentiment analysis architec-
ture, our focus was on investigating the usefulness of lexical normalisation as a pre-
processing step to sentiment classification. Cross-validation experiments on the devel-
opment data showed that the norm model did not outperform the not norm model, but
experiments on an unseen and varied test set revealed that normalisation did benefit
the classification performance. In fact, including normalisation as preprocessing not
only improved the classification results for tweets, but also for LiveJournal blog posts,

7. http://www.cs.cmu.edu/ ark/TweetNLP.
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a different type of user-generated content. This demonstrates that the norm model per-
forms well on unseen data and that it is able to generalise to other genres of UGC than
Twitter. For the noisier SMS genre, however, the not norm model performed better.

In a last step, we compared the performance of our optimised sentiment classifier
(with and without normalisation as preprocessing) to that of the SemEval-2014 win-
ning team and observed that our model performs best overall, and proves more robust
to other genres of user-generated content than Twitter.

In future research, it will be interesting to explore “targeted” normalisation, which
focuses on increasing the coverage of words that are relevant to the task (i.e. sentiment-
bearing words). As was demonstrated in section 4.2.3, besides errors, normalisation
also corrects character flooding and inconsistent capitalisation, which could hint at
a specific sentiment. Hence, it will be interesting to investigate whether these forms
of creative writing can be left unchanged and how this would affect the system per-
formance. Exploring deep learning using neural networks for sentiment classifica-
tion is another important direction for future work, as several top-ranked systems in
the SemEval-2015 to -2017 competitions were based on deep learning. Since our ap-
proach involves an intensive process of feature engineering, it would be interesting
to see whether competitive or even better results can be achieved when features are
automatically deduced from the data using neural networks. Finally, we plan to port
our sentiment analysis system to other languages, starting with Dutch.
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