Recent Developments

Joss Moorkens & Yota Georgakopoulou

MT Summit XVI

Table of contents

- The TraMOOC Project
- NMT systems for TraMOOC
- Comparative Evaluation of Neural MT and Phrase-Based SMT
- Crowdsourced evaluations (explicit & implicit)
- Task-based evaluations

Joss Moorkens, Sheila Castilho, Federico Gaspari, Andy Way (DCU/ADAPT) – Ireland Yota Georgakopoulou, Maria Gialama (Deluxe Media) – Greece/United Kingdom Rico Sennrich, Antonio Valerio Miceli Barone (University of Edinburgh) - United Kingdom Valia Kordoni, Markus Egg, Maja Popović (Humboldt University of Berlin) - Germany Vilelmini Sosoni (Ionian University, Corfu) - Greece Iris Hendrickx (Radboud University Nijmegen) – The Netherlands Menno van Zaanen (Tilburg University) – The Netherlands

Joss Moorkens & Yota Georgakopoulou

Our Project

Reliable Machine Translation (MT) for Massive Open Online Courses (MOOCs)

slation for Massive Open Online Courses

- The main expected outcome is a highquality semi-automated machine translation service for educational text data on a MOOC platform
- Open educational platform for MT and a replicable process for creating such a service

9月2017年

Joss Moorkens & Yota Georgakopoulou

- Create domain-specific SMT NMT • engines - 3 iterations
- Crowdsourced evaluation of MT quality
- Explicit and implicit evaluation stages
- Task-based evaluations
- Free and premium platform due 2018

DEL

- Make existing monolingual educational material available to speakers of other languages
 - o multi-genre and heterogeneous textual course material
 - Subtitles video lectures
 - o assignments
 - tutorial text
 - social web text posted on MOOC blogs and fora (questions/answers/comments)
- Reusing existing linguistic infrastructure and MT resources extending existing models
- Test on a MOOC platform and on the VideoLectures.Net digital video lecture library

- Users who want access to open online education that is not constrained by language barriers.
- MOOC providers, who wish to offer high-quality, integrated multilingual educational services.
- Machine Translation developers, who need a platform for promoting, testing and comparing their solutions.
- Language Technology Engineers, who want access to accurate and wide-coverage linguistic infrastructure, even for less widely spoken languages.

Joss Moorkens & Yota Georgakopoulou

The Consortium

ation for Massive Open Online Course

slation for Massive Open Online Courses

Which MT paradigm?

- Project had originally planned to compare Syntax-Based and Phrase-Based SMT
- Comparative Evaluation of Neural MT (Nematus) and Phrase-Based SMT (Moses)
- English to German, Greek, Portuguese, and Russian
- MT engines trained on open and educational data

Joss Moorkens & Yota Georgakopoulou

NMT at WMT 2017

		Chinese→	English		
#	Ave %	Ave z	System	#	Av
1	73.2	0.209	SogouKnowing-nmt	1	78
	73.8	0.208	uedin-nmt		76
	72.3	0.184	xmunmt		76
4	69.9	0.113	online-B		70
	70.4	0.109	online-A		75
	69.8	0.079	NRC		/*
7	67.9	0.023	ihu-nmt	7	72
	66.9	-0.016	afrl-mitll-opennmt	8	70
	67.1	-0.026	CASICT-cons	0	69
	65.4	-0.058	ROCMT		68
11	64.3	-0.107	Oregon-State-Uni-S	11	64
12	61.7	-0.209	PROMT-SMT		
	61.2	-0.265	NMT-Ave-Multi-Cs	22	
	60.0	-0.276	UU-HNMT	#	Ave
	59.6	-0.279	online-F	1	72
	59.3	-0.305	online-G	-	
				2	70
	1	$English \rightarrow$	Chinese		69
#	Ave %	Ave z	system		68
1	73.2	0.208	SogouKnowing-nmt		66
1	72.5	0.208	uedin-nmt		66
	72.0	0.178	xmunmt		66
					66
4	69.8	0.065	online-B	-	

#	Ave %	Ave z	system
1	78.2	0.213	online-B
	76.6	0.169	online-A
	76.6	0.165	KIT
	76.6	0.162	uedin-nmt
	75.8	0.131	RWTH-nmt-ensemb
	74.5	0.098	SYSTRAN
7	72.9	0.029	LIUM-NMT
8	70.2	-0.058	TALP-UPC
	69.8	-0.072	online-G
	68.6		C-3MA
11	64.1	-0.260	online-F
	1	English→	German
#	Ave %	Ave z	system
1	72.9	0.257	LMU-nmt-reranked
2	70.2	0.158	online-B
2	70.2 69.8	0.158 0.139	Cardenal and the second second
2	100 million (1990)		uedin-nmt
2	69.8	0.139	uedin-nmt
2	69.8 68.9	0.139 0.092	uedin-nmt SYSTRAN
2	69.8 68.9 66.9	0.139 0.092 0.035	uedin-nmt SYSTRAN LMU-nmt-single
2	69.8 68.9 66.9 66.7	0.139 0.092 0.035 0.022	uedin-nmt SYSTRAN LMU-nmt-single KIT xmu

German -> English


```
9月2017年
```

Joss Moorkens

- Main strength of NMT is grammatical improvements, but possible degradation in lexical transfer (Neubig, Morishita, Nakamura 2015)
- Output conditioned on full source text and target history
- Some problems:
 - $\circ~$ Networks have fixed vocabulary \rightarrow poor translation of rare/unknown words
 - o Models are trained on parallel data; how do we use monolingual data?
 - Recent solutions:
 - Subword models allow translation of rare/unknown words (Sennrich, Birch, Haddow 2016a)
 - Train on back-translated monolingual data (Sennrich, Birch, Haddow 2016b)

Joss Moorkens & Yota Georgakopoulou

- 4 datasets (250 segments) from EN MOOC data translated into German, Greek, Portuguese, and Russian using TraMOOC engine prototype 2
- PB-SMT/NMT mixed, random task order
- 2-4 professional translators in Deluxe Media
- Detailed results presented by Sheila Castilho in Research Track and in proceedings of MT Summit XVI

- NMT Tools Used:
 - Nematus: <u>https://github.com/rsennrich/nematus</u>
 - Amun: <u>https://github.com/amunmt/amunmt</u> (for deploying the models)
- Domain adaptation:
 - Models initially trained on all available data, then continually trained on in-domain data, which effectively adapts the system to the domain NMT

Joss Moorkens & Yota Georgakopoulou

• For all 4 language pairs:

	FLUENCY 1. No fluency 2. Little fluency 3. Near native 4. Native							
	EN-DE		EN-E	EN-EL EN-PT		Т	EN-RU	
% scores assigned 3-4 fluency value (SMT, NMT)	54.2	67.6	65	75	73.8	79.5	60.2	75.1
% scores assigned 1-2 fluency value (SMT, NMT)	45.8	32.4	35	25	26.2	20.5	39.8	24.9


```
9月2017年
```

Joss Moorkens & Yota Georgakopoulou

Translation for Massive Open Online Courses NMT/SMT Adequacy

• For all 4 language pairs:

	ADEQUACY 1. None of it 2. Little of it 3. Most of it 4. All of it							
	EN-DE		EN-E	EL	L EN-PT		EN-RU	
% scores assigned 3-4 adequacy value (SMT, NMT)	73.5	66.4	89	89	94.7	97.1	72.8	77.5
% scores assigned 1-2 adequacy value (SMT, NMT)	26.5	33.6	11	11	5.3	2.9	27.2	22.5

Words per second (all PEs)	SMT	NMT
German	0.21	0.22
Greek	0.22	0.24
Portuguese	0.29	0.30
Russian	0.14	0.14

Previous work by Moorkens & O'Brien (2015) found an average speed of 0.39 WPS for EN-DE professional PE.

SMT, NMT	Ger	man	Greek		Portuguese		Russian	
POST-EDITED SENTENCES (CHANGED)	940	813	928	863	874	844	930	848
UNCHANGED SMT, NMT	60	187	72	137	126	156	70	152


```
9月2017年
```

Joss Moorkens & Yota Georgakopoulou

Translation For Massive Open Online Courses NMT/SMT Summary

- In this study, using these language pairs, in this domain...
- Fluency is improved, word order errors are fewer using NMT
- Fewer segments require editing using NMT
- NMT produces fewer morphological errors
- No clear improvement for omission or mistranslation using NMT
- NMT for production: no great improvement in post-editing throughput
 - o "Errors are more difficult to spot"

9月2017年

Based on the pace of improvement of NMT however, TraMOOC moved to NMT exclusively

Joss Moorkens & Yota Georgakopoulou

Using the Crowdflower platform for all 11 language pairs:

- Clear instructions available during the entire translation procedure.
- Test Questions to validate the accuracy of the participants' input.
- Post-editing question should be displayed first, hiding the rest of the questions to avoid influencing the contributors' judgment.
- Fluency for ST and TT, adequacy and error mark-up for TT
- Multiple error mark-up supported.

For QA and language coverage, 5-10% expert evaluation by DME

- Post-editing (expert and crowd): "Make changes in the translation if there are errors in grammar, meaning or spelling"
 - Basic rules regarding spelling apply. If there are any typos or slight grammatical/syntactic mistakes in the original, please fix them in the translation
 - Do not implement corrections for stylistic reasons only
 - No need to restructure sentences only to improve the natural flow of the text

OK: At a high level, yeah.	Добря. На високо ниво, да,	
Fix errors in gramm golge: He becoor was ge	Question 1 ar, meaning or spelling making as few changes as possible.	
)月2017年 J	oss Moorkens & Yota Georgakop	oulou *18**

Change the mark-up error type list (for expert group) so as to map onto DQF-MQM typology: Addition, Mistranslation, Omission, Untranslated, Function Words, Word Form, and Translated Sentence

9月2017年

Joss Moorkens & Yota Georgakopoulou

Crowdsourcing – Issues & solutions Franslation for Massive Open Online Courses

	Crowd behaviour issue	Solution(s)
	Malicious behaviour	Constant monitoring, manual and automated
1. Unforeseen delays: • Crowdsourcing contracts	Use of Google Translate	Source language text is an image. Manual check with Google Translate feature in Chrome.
• Change of	BR performing EU-PT tasks	Target specific countries
MOOČ partner	No change, yet low score on quality	Popup alerts
2. Crowd behaviour issues ➔	Poor coverage/ low contributor flow	Increase HIT payment; expand geographical reach & channel; decrease contributor level; decrease text question difficulty

Joss Moorkens & Yota Georgakopoulou

Crowdsourcing – Issues & solutions

Malicious behaviour	Solutions
Blank translations	Change tactics for test questions, binary evaluation answers, distributed randomly
Random symbols	Increase the minimum time per page
Repetitive answers	Increase contributors' level
Other language characters	Constant manual and script-based (automated) monitoring: Python scripts for blanks, Latin characters in non-Latin languages, etc.
Multiple malicious accounts	Customised alerts scripts (blanks, length, time per page, etc.); flag malicious contributors; ban specific channels
9月2017年 、	Joss Moorkens & Yota Georgakopoulou

Underway: Crowdsourced implicit evaluations

Implicit evaluation: Annotation of entities, topics and terms in the source and target texts

 Generate a thesaurus of tag-sets that allows for the implicit evaluation of MT output through the comparison of the source and target tag-sets

The come: Task-based evaluations

- openHPI European MOOC platform plus TraMOOC API
 - Launched by the Hasso Plattner Institute (HPI) for Digital Engineering in Potsdam, Germany
- Users will be able to switch between the original course language and automatically translated content
- Users will be able to request translation for specific forum contributions
- Feedback via surveys on the translation content and the integration of the translation tools into the openHPI platform

