UFAL Submissions to the IWSLT 2016 MT Track

Ondrej Bojar, Ondrej Cifka, Jindrich Helcl,
Tom Kocmi, and Roman Sudarikov

Charles University, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

surname@ufal .mff.cuni.cz

Abstract

We present our submissions to the IWSLT 2016 machine
translation task, as our first attempt to translate subtitles and
one of our early experiments with neural machine translation
(NMT). We focus primarily on English—Czech translation
direction but perform also basic adaptation experiments for
NMT with German and also the reverse direction. Three MT
systems are tested: (1) our Chimera, a tight combination of
phrase-based MT and deep linguistic processing, (2) Neural
Monkey, our implementation of a NMT system in Tensor-
Flow and (3) Nematus, an established NMT system.

1. Introduction

In the machine translation task (MT task) at IWSLT 2016,
the goal is to translate a given set of sentences using (a sub-
set of) permitted training data and any MT system. IWSLT
has covered a range of languages and recently started to in-
clude Czech in one of the tested domains, namely the “Talk”
domain in 2016.

We take this opportunity to evaluate our system Chimera
[1] on subtitles, and to compare it with two neural MT sys-
tems: Neural Monkey [2] and the well-known Nematus [3].

The paper is structured as follows. In Section 2, we de-
scribe our selection of the training data and note that unfortu-
nately, the permitted resources for IWSLT this year included
an overlap with the test sets. The subsequent sections are de-
voted to the three system setups targetting Czech: Chimera in
Section 3, Neural Monkey in Section 4 and Nematus in Sec-
tion 5. The results are presented and discussed in Section 6.
Since NMT is computationally expensive and requires spe-
cial hardware (large-memory GPUs), we also used Amazon
EC2 resources, see Section 7 for some technical details.

2. Training and Test Data

The organizers of the MT track provided participants with
cleaned development and test sets, and also with a relatively
small in-domain training set of sentences. Additionally, a
long list of permitted resources was given on the web page.
To make a better use of the large set of permitted data, we
selected sentences similar to the official in-domain training
set, as described in Section 2.1.

We spotted an overlap between CzEng 1.6, one of the
permitted corpora, and the official development and test sets.
In order to avoid overfitting (tuning phrase-based MT on part
of its training data is likely to arrive at too strong preference
for long phrases), we created our own version of the devel-
opment set, as detailed in Section 2.2.

We leave up to the organizers of the shared task to se-
lect the best way to handle the overlap with the official test
set. As described below, the overlap is not always at the level
of sentences, so it is rather difficult to identify which sen-
tences from the test set should be disregarded (and if a rea-
sonably big set remains). Admittedly, with the current size
of available training data for some language pairs, it is gen-
uinely possible that the test material will be partly covered.
The only way of reducing such risk is to create the test set
from scratch every year (as e.g. WMT does, see [4]), but one
should be aware that any text that appears on-line can easily
become a part of at least language model training data, so
even the practice of WMT to translate some news texts is not
totally safe if the participants are targetting the language.

2.1. Training Data

To select sentences similar to the official in-domain training
data as provided by the organizers, we pre-processed all other
data sources in the following way:

e Tokenize both the source and target side using the
Moses [5] tokenizer.

e Concatenate the resulting corpora and sort them using
the XenC [6] tool. XenC was used in two modes: sim-
ple source language perplexity filtering, based on per-
plexity scores given by an in-domain language model,
and bilingual cross-entropy difference filtering. For
both modes, domain training data was used to create
respective language models.

e Take the top 2-5% of the sentences as sorted by each
mode from the previous step and remove duplicates.
For English—Czech this gives us 650,836 sentences
(ToP2 in Table 1) or 5,832,340 sentences (TOPS). For
German-English, we used the same procedure, tak-
ing the top 1,726,548 most similar to the provided in-

Sentences en Tokens cs Tokens
TRAIN e 122,382 1,999,190 1,661,449
CZENGPRE 51,424,584 559,640,512 472,769,122
TOP2 650,836 3,541,384 3,792,587
TOP5 5,832,340 62,275,138 52,312,292
SYNTDEV+TEST 7,402 130,717 78,427
DTEST 4,774 78,427 65,734
DTESTDEDUP 3,110 59,525 49,864
ETEST 1,193 20,059 16,826
ETESTDEDUP 1,555 28,989 24,191
Official Test Set @
IWSLT16.TED.tst2015 1,080 17,861 —
IWSLT16.TED.tst2016 1,133 19,896 —
IWSLT16.QED.tst2016 549 4,522 —

Table 1: Summary of training, development and test sets.
Corpora denoted e were directly provided by task organizers.

domain training data out of 18,598,505 sentences al-
lowed for training.

The corpora for our English—Czech translation are sum-
marized in Table 1: TRAIN is the provided in-domain cor-
pus, CZENGPRE is the pre-release of CzEng 1.6 [7] as used
in WMT16! and TOPX are the top 2 or 5% sentences from
CZENGPRE selected by the described procedure. Finally,
SYNTDEV+TEST is the synthetic corpus created from the
source side of the provided development and test set for our
system Chimera, see Section 3 below.

2.2. Test Data

In order to be able to tune our systems and select which setup
to use for final submission, we split the provided develop-
ment set of 5,967 sentences into DTEST and ETEST. DTEST
contained 4,774 sentences and was used for MERT [8] in
Moses-based systems, see Section 3 below. Neural Mon-
key runs were internally evaluated on DTEST and Nematus
did not make use of DTEST at all. ETEST contained 1,193
sentences and was used for comparing results of our sys-
tems using the standard mteval-v13a.pl? with the op-
tion ——international-tokenization.

2.2.1. Test and Training Data Overlap

When we ran our first system setup (Moses two phrase ta-
bles extracted from CZENGPRE and TRAIN), it achieved a
suspicious result of 44 BLEU [9]. When searching for an
explanation, we found that CZENGPRE (as well as the full re-
lease of the corpus CzEng 1.6), while permitted by IWSLT
organizers, contains sentences from the development data.
To avoid overfitting, we created restricted versions of
DTEST and ETEST, called DTESTDEDUP and ETESTDEDUP,

"http://www.statmt.org/wmt16/translation-task.
html

2ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-vl3a.pl

Source If you were to shoot a bullet straight at the Sun,
it would take 17 years to get there!

Moses Takze by to bylo 6 250 dni nebo to pod€lime
365 a ziskdme téméft 17 let!

Gloss So this would be 6,250 days, or we divide it by

365 and get almost 17 years!

Reference Pokud byste vystfelili kulku na Slunce trvalo
by ji 17 let tam doletét.

Figure 1: Our Moses translation of one of the sentences in the
official test set provides details not seen in the source. The
official IWSLT reference translation is different, indicating
that perhaps a slightly different revision of the data was in-
cluded in the training and in the test corpora.

resp., removing all sentences that were found in CZENGPRE.
In the sentence-level (i.e. segment-level) comparison, we
disregarded letter case, all punctuation and numbers and also
most possible tokenization differences. But even then our
Moses systems with CZENGPRE phrase table got more than
40 BLEU.

One possible explation is that segmentation schemes dif-
fered. For instance the segment “What was that about,” I'm
saying. What was that about? as present in one of the subti-
tle files would be probably stored as two separate sentences
in CzEng. No segment-level matching would be thus able to
identify the overlap.

The official test sets suffer the same overlap issue, as il-
lustrated in Figure 1. The particular example comes from
a Khan Academy video® and it is indeed listed in the data
sources of IWSLT test set as a part of QED talks.*

2.3. Data Pre-Processing

Table 2 summarizes the pre-processing pipelines of our se-
tups. Our Chimera and Nematus setups reuse (parts of) ex-
isting models and we had to honor the pre-processing used
for the models. As a result, the comparison of the systems
is not possible at the level of tokens but only in an end-to-
end evaluation of translation quality, similarly as the whole
IWSLT compares participating systems. Please note also that
the different systems were trained on incomparable amounts
of data — e.g. our Nematus run for IWSLT is only an adap-
tation of the models trained for WMT [10], so effectively,
Nematus was trained on much larger data than what we list
here.

The pre-processing for Chimera means the Morphodita
tagger® [11], which includes tokenization and provides case-
sensitive lemmas. We then cast the lemma case (capital for
names) to word forms (“supervised truecasing”, stc). Mor-
phodita keeps hyphenated words as one token but phrase-

3nttps://www.amara.org/en/videos/G3McfuOB5hUN/
cs/236630/

‘https://sites.google.com/site/
iwsltevaluation2016/home/off-limit-ted-talks

Shttp://ufal.mff.cuni.cz/morphodita

System Tokenization and Letter Case BPE
Chimera Morphodita stc + split at hyphens ~ no

Neural Monkey = Morphodita stc + split at hyphens yes
Nematus Moses tokenizer + truecasing yes

Table 2: Corpus pre-processing.

based MT benefits from finer tokens, so we split such words
after Morphodita processing.

Nematus models, on the other hand, rely on Moses tools
tokenizer.perl and truecase.perl.

For neural approaches, we limit the size of vocabulary
to a fixed number of token types by applying byte-pair en-
coding (BPE, [12]), created jointly for the source and target
languages.

3. Primary Submission: Chimera

Since we were only starting with neural machine translation,
we decided to use our complex hybrid system Chimera as the
primary submission. Chimera consists of three components:
transfer-based deep-syntactic system TectoMT [13], which
contributes translations to a factored Moses setup. The final
translations are then processed with Depfix [14], a rule-based
system for correcting grammar and also recovering lost nega-
tion.

The idea for IWSLT2016 was to reuse most of our
WMT16 news translation setup [15] and adapt it for the new
domain. The standard Chimera setup uses Moses with two
phrase tables, one trained on a large general corpus, and one
coming from TectoMT. We reused the large phrase table from
WMT16, which was trained on CZENGPRE, and recreated
the TectoMT phrase table by translating the IWSLT develop-
ment and test set source with TectoMT. Several components
of TectoMT are also trainable but this retraining is done only
very rarely. Depfix is applied unaltered.

We achieve domain adaptation by two means: (1) Moses
is tuned on the domain-specific DTEST, and (2) we used a
third phrase table extracted from TRAIN in one of our setups.

The final selection of the particular Chimera variant was
based on the evaluation on ETEST. The differences between
our Moses-based systems are shown in Table 3. The high-
est BLEU score on ETEST was reached by our our baseline
(“UFAL Moses”) relying only on two phrase tables: CZENG-
PRE and TRAIN. Nevertheless we decided to use “UFAL
Chimera” as our IWSLT primary submission, based on our
experience in WMT16.

4. Main Focus: Neural Monkey

Neural Monkey is a sequence-to-sequence learning system
following the standard encoder-decoder architecture imple-
mented in TensorFlow®. Neural Monkey was used in the
WMT16 multimodal and post-editing tasks [2], because it

Shttp://www.tensorflow.org/

CZENGPRE TRAIN SYNTDEV+TEST | DepFix

UFAL Chimera . ° ° °
UFAL MosesTecto e ° ° —
UFAL Moses ° ° — _

Table 3: Training data and additional modules used in
Moses-based systems

supports an arbitrary number of sentence encoders. We only
made use of one encoder for IWSLT and used a branch of
NM that aims to replicate the setup of Bahdanau et al. [16].

4.1. Learning Curves

To our knowledge, papers describing NMT models typically
report only a few hyper-parameter settings, and subsequent
works follow the reported values. We would like to partially
fill this gap. NMT is however notoriously computationally
demanding so we had to limit our analysis to rather few se-
tups.

Figure 2 plots the learning curves of Neural Monkey in
terms of BLEU score when trained on TRAIN and evaluated
on DTEST. Each of the curves corresponds to approximately
82 hours of training in 16 threads on a 32-core non-GPU ma-
chine. This time is too short for proper training of an NMT
system but we hoped it would suffice for the comparison.
All the runs used the batch size of 500 sentence pairs and
limited both source and target sentences to 50 tokens. Con-
trary to common practice, we did not shuffle the corpus after
every epoch. Arguably, and as also pointed by one of our re-
viewers, shuffling may have helped to achieve better scores
through more robust training.

The left plot in Figure 2 corresponds to models using
BPE vocabulary of 5k (a joint vocabulary for both the source
and target languages), the right plot corresponds to the vo-
cabulary of 50k. We see that the vocabulary size is a criti-
cal parameter for NMT performance, the 50k systems reach
about double the BLEU score in the given training time and
seem rather far from saturation.

Larger vocabulary size is however much more time con-
suming on CPUs, so only about a half of the training itera-
tions could have been performed. Running such a setup on
GPU would take no difference in time, but the GPU RAM
is the bottleneck here, usually requiring to reduce the batch
size.

The different curves in the plots then correspond to var-
ious sizes of word embeddings (“emb”; the decoder and en-
coder use separate embeddings derived from the same vo-
cabulary) and hidden state sizes (“rnn”). A similar pattern
in observed in both 5k and 50k vocabularies: in each hid-
den state size, larger embedding helps to reach higher BLEU
score in the same number of iterations and no difference in
time is observed (on 16 CPU threads). Moving to a larger
RNN size takes its cost in terms of time, so fewer iterations
were achieved.

Validation BLEU

' dict5000 emb100 MN250 ——
dict5000 emb250 mn250
dict5000 emb500 mn250
dict5000 emb100 mn500 —— _|
dict5000 emb250 mn500 ———
dict5000 rlembﬁot) rnmﬁlt)() e

0 2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07 1.4e+0

Sentences

Validation BLEU

dict50000 emb100 mn100 ——
dict50000 emb250 mn100 B
dict50000 emb500 mn100 ——
dict50000 emb100 mn250 ——
dict50000 emb250 mn250
dict50000 emb500 mn250
dict50000 embl100 mn500 —— |
dict50000 emb250 mn500 ———

) dict50000 llembS()O mnﬁ‘OO e

0

2e+06 4e+06 6e+06 8e+06 le+07 1.2e+07 1l.4e+0

Sentences

Figure 2: Learning curves of baseline setups varying vocabulary size (“dict”), embedding size (‘“emb”) and the hidden state size

(“mn” .

Validation BLEU

dict25000 emb250 mn500 —— |
dict25000 emb500 mn250
dict25000 emb500 mn500 —x— _|
dict50000 emb100 mn250 —=—
dict50000 emb250 mn250

dict50000 emb500 mn250

di(tSOO‘OO emb500 I'Tl‘ﬂ500 —

3 L 1 1 I

1] 5e+06 le+07 1.5e+07 2e+07 2.5e+07 3e+07

Sentences

Figure 3: Learning curves of a few selected setups running
until overfitting.

An unfortunate but very important observation is then
illustrated in Figure 3: the performance in early stages of
learning does not necessarily correspond to the final score.
For example the run with dict50k and the largest hidden lay-
ers (emb500 rmn500) seemed most promising at the begin-
ning but started overfitting at about 6M sentences at valida-
tion BLEU of 9. The less promising run “emb100 rnn250”
did not overfit until 20M sentences and reached the best score
of these test runs, BLEU between 10 and 11. As a conse-
quence, the training should be run until the network starts
overfitting (for large datasets this may take a very long time).
For the best performance, the hyperparameters of the models
have to be carefully selected to match the data, e.g. smaller
training data in narrower domains may benefit from smaller
embedding sizes. Computational complexity is a serious bot-
tleneck, though. Each of the runs in Figure 3 took about 20
to 25 days on 16 CPU cores which might correspond to ap-
proximately two or three days on a powerful GPU.

Most of the learning curves for our runs have the typical
slowly saturating shape. As illustrated in Figure 4, we have
also seen quite a strange run where the network suddenly
decided to “unlearn” everything and the validation BLEU

dropped close to 0. At a later stage, the same run suddenly
made a leap in validation scores. We speculate that the Adam
optimizer employed in Neural Monkey may have changed
some of its parameters but it is difficult to provide better in-
sight; among other problems, this particular run took about
24 days on a GPU.

4.2. Considered Neural Monkey Runs

Figure 5 plots the learning curves of the few Neural Monkey
runs we considered for submitting. All the runs are based
on 50k BPE vocabulary extracted from the concatenation of
TRAIN and TOPS, embedding size 300 and hidden state size
300. The epoch size in the legend indicates whether the par-
ticular run was traversing TRAIN (122k) or TOP5+TRAIN (in
this order, 6M sentences).

The legend is sorted according to the score on ETESTD-
EDUP at the system submission deadline, Run 14243 being
the best at that time.

While Run 1 was running, we were spawning other runs
from its tentative saved models. The spawned runs start their
learning curves at BLEU scores between 12 and 16. The sys-
tem we ended up submitting was Run 1+2+3, derived from
Run 1 and another intermediate Run 1+2. If we had the time
to wait longer, Run 1 alone would have been probably the
best system to submit, while Run 1+2+3 has deteriorated. In
total, Run 1 spent more than 9 days to complete the plot-
ted 10 epochs on a two-core GeForce GTX Titan Z with 6
GB RAM in each core. TensorFlow made use of both of the
cores.

Some of the spawns were not successful, such as Run
145, or showed mixed performance such as Run 1+4.

With the exception of Run 1, the setups did not shuffle
the training data after every epoch. This explains the periodic
structure of Run 1+4.

The main difference was the batch size, which had to be
limited due to lower GPU RAM on other available comput-
ers. Run 1 used the default batch size of 128, Run 2 used 20
and Run 3 used 50, Run 4 used 500 and Run 5 again only 20

Vel BLEU4.

aaaaaa

a000m

Figure 4: A rather unexpected learning curve (BLEU) of Neural Monkey on a validation set.

Validation BLEU

Run 145 (epoch is 6.0M) ——
Run 1+4 (epoch is 6.0M) T
Run 1 (epoch is 6.0M) ——
Run 142 (epoch is 122.4k) —— -
Ruln 1+2+3 (epoch is 122.4‘lk)

0 1 ! 1
0 le+07 2e+07 3e+07

4e+07 S5e+07 6e+07 Te+07

Sentences

Figure 5: Learning curves of Neural Monkey runs.

parallel sentences.

It is not very clear why the performance increases in
some runs and decreases in others. It is also unclear whether
they would recover at a later stage. One explanation can be
found in the batch size: Run 1 and Run 1+4 had access to
12 GB GPU RAM (Titan Z and Tesla K80, resp.) and could
afford the batch size of 128 and 500, respectively. Larger
batch size better average the gradients and make the search
more stable. Moreover, Run 1 was shuffling the corpus at
every epoch, increasing the stability again.

5. For Comparison: Nematus

To compare our systems with the state of the art, we also
experimented with Nematus [3]. This NMT system is built
upon dl4mt-tutorial’ by Kyunghyun Cho et al.

We followed Rico Sennrich’s tutorial on neural model
adaptation presented at MT Marathon 2016%, using the Ne-
matus models which were trained for the WMT16 submis-
sions’. [10]

For the adaptation process, we experimented with differ-
ent training sets, learning rates and numbers of epochs. After
a few experiments, we noticed that the model performance
increases during first epoch over the training data but de-
creases as soon as in the second epoch. Therefore, we de-

"https://github.com/nyu-dl/dl4mt-tutorial
8http://www.statmt.org/mtml6/programme.html
%http://data.statmt.org/rsennrich/wmt16_systems/

Direction ‘ Original model ‘ IWSLT trainset ‘ Our trainset

en—cs 16.84 18.29 17.57
cs—en 25.12 25.16 25.22
en—de 19.89 19.94 19.90
de—en 27.89 30.04 29.99

Table 4: BLEU scores of Nematus on official development
sets. Results in bold indicate models submitted to the IWSLT
MT Task.

cided to run only one epoch and experiment with different
training sets (TRAIN and TOPS for Czech and similarly for
German) while optimizing the learning rate to get the best
results at the end of the first epoch. Each adaptation process
took several hours to days on the GPU, depending on the size
of the training data.

In general, the unadapted WMT 16 model (news domain)
performed quite well on the IWSLT data and the adaptation
process was not very helpful: we got only a slight improve-
ment on the development sets. Table 4 shows the perfor-
mance of the original models and models adapted using the
official training set or our selected set (TOPX). In the end, we
submitted the non-adapted runs except for cs—en.

5.1. Neural Monkey vs. Nematus and Bahdanau et al.

Neural Monkey and Nematus should both implement the
same model of [16]. Nematus is actually derived from Bah-
danau et al.’s codebase.

Table 5 summarizes the obvious differences of our Ne-
matus and Neural Monkey runs.

Additionally, we carefully examined the implementations
and noticed the following differences:

e Nematus uses two-layer conditional GRU,!? while in
the Neural Monkey implementation, only a single
GRU layer is used in the decoder.

e The initial state of the decoder state is computed dif-
ferently. In [16], the initial state is the result of a lin-
ear projection of the last hidden state of the encoder
backward RNN with the tanh activation function. In
contrast, Nematus code uses the average of all encoder

Ohttps://github.com/nyu-dl/dl4mt-tutorial /blob/
master/docs/cgru.pdf

Neural Monkey

Nematus

Training data

TRAIN and TOPS

CZENGPRE, mononews
+adapt on: TRAIN, TOPS

BPE vocabulary 50k 85k
Embedding size 300 500
RNN size 300 1024
Batch size 20 -500 80

Max. sent. len. 50 50
Dropout 0.8 not used
L2 regularization 1 x 1078 0.0
Gradient clip. - 1.0
Optimizer Adam Adadelta
Learning rate - 0.0001
Beam search - 12

Table 5: Differences between our NMT system setups for
English—Czech.

hidden states. Finally, in Neural Monkey, the decoder
initial state computation is configurable. In our exper-
iments, we used a linear projection of the final state of
the encoder.

e As decoder output projection, Neural Monkey uses the
deep output with one maxout hidden layer [17, 18], as
described in Bahdanau et al. [16]. In contrast, Ne-
matus applies a feed-forward neural network with one
hidden tanh layer to the outputs from the conditional
GRU layers.

e Nematus disables L2 regularization by setting its pa-
rameter to 0.0.

e Nematus uses gradient clipping of 1.0, Neural Monkey
leaves the gradients as they are.

e Nematus does not use any dropout technique, whereas
Neural Monkey employs one dropout probability pa-
rameter for the whole model and applies the dropout
to the embedding layer of the encoder and decoder, the
encoder projection layer to the decoder initial state, en-
coder hidden states in the attention mechanism, and to
the hidden state-to-output transitions in the decoder.

e There is also a few differences in the parameter ini-
tialization and the used optimizer. The biggest dif-
ference is that Neural Monkey does not initialize the
weight matrices in the recurrent connections as orthog-
onal matrices. This issue, however, is already solved
in the current version.

The comparison of the implementation of Theano vs.
Tensorflow internals is left as an exercise to the reader...

All these differences can easily affect the performance
of the systems and we plan to carefully evaluate them in the
future.

6. Results and Discussion

Table 6 lists the official IWSLT MT track results for English
to Czech translation.

We see that the results vary a lot across the different test
corpora. We are afraid that only very indicative conclusions
can be drawn from these results, esp. due to the corpus over-
lap described in Section 2.2 above. Different systems may
have benefited from the overlap to different degrees and such
a gain has no relation to the actual translation quality of the
system. The consistent win of MosesTecto over Chimera
is against all our experience from WMT and suggests that
BLEU reflects the exact match with the overlapping data.

This is our first participation in IWSLT, and sadly, we
underestimated subtitle formatting conventions. Our systems
are generally set up to translate one full sentence at a time.
The IWSLT MT track, at least in the QED domain, uses seg-
ment breaks as reasonable for presenting subtitles. Unfortu-
nately, many sentences are broken into shorter segments and
on the other hand, some segments contain (parts of) several
sentences.

The unexpected sentence breaks prevent our systems
from seeing relevant parts of the sentence. E.g. Depfix in
Chimera checks for presence of certain sentence elements
in the parse of the MT output (e.g. negated verb modifiers
or reflexive particles complementing verbs). The quality of
the parse is going to be severely damaged and some of the
checked sentence elements may appear in another segment.
The 20-gram POS LM in Chimera is aimed to capture the
long-range sentence structure, but we now apply it to sen-
tence parts... And finally, neural models (both Nematus and
Neural Monkey) are also trained on full sentences. Here, they
will suffer from not seeing the preceding context within the
sentence, and they also have a strong bias to stop producing
anything after the first full stop, leading to shorter output.

7. Comments on Training on Amazon EC2

We explored the possibility of training Neural Monkey and
Nematus on the GPU-enabled machines on Amazon EC2.
Getting the setup running was not very straightforward at the
first attempt, due to various requirements of bleeding-edge
tools (e.g. Neural Monkey requires Python 3.5 but Tensor-
Flow did not have ready-made GPU packages for that yet).
Fortunately, in the meantime, Amazon released the Deep
Learning AMI'' (Amazon Machine Image), which includes
Python, TensorFlow (though not compiled for Python 3.5)
and setup scripts for the GPU drivers (the drivers themselves
have to be downloaded manually from Nvidia), so we could
abandon our fragile and complex setup. We added Neural
Monkey and produced an AMI ready for NMT experiments.
Nematus was easier to get running because it builds upon less
recent tools.

Our training workflow then consisted of launching a new

Uhttps://aws.amazon.com/marketplace/pp/
BO1MOAXXQB

QED.TsT2016 TED.TST2015
LIMSI primary 15.89 | UFAL Nematus
UFAL MosesTecto 14.39 | LIMSI primary
UFAL Chimera 14.18 | UFAL Neural Monkey
UFAL Moses 13.35 | UFAL MosesTecto
UFAL Nematus 12.35 | UFAL Chimera
UFAL Neural Monkey ~ 7.89 | UFAL Moses

TED.TST2016
25.93 | UFAL Nematus 22.28
19.18 | LIMSI primary 16.24
16.04 | UFAL MosesTecto 12.71
15.72 | UFAL Chimera 12.71
15.71 | UFAL Neural Monkey 12.60
14.63 | UFAL Moses 12.30

Table 6: Tentantive official results for English—Czech. UFAL Chimera in bold is our primary submission.

machine instance based on this AMI using the AWS SDK,!2
copying over the necessary data, running the training re-
motely, copying back the result and terminating the instance.
We also regularly monitored the training by synchronizing
the working directory from the remote machine to our local
disks and terminated the instance when the model started to
overfit.

8. Conclusion

We presented our submission to the IWSLT MT track, cov-
ering phrase-based, hybrid and two neural MT systems. The
whole exercise was very useful for our main aim of develop-
ing the Neural Monkey toolkit. A detailed analysis of Nema-
tus and Neural Monkey has indicated several implementation
details that we should change in the near future.

We also provided some general observations on NMT hy-
perparameters and training, hoping to help other researchers
entering the field.

The overall results of the task are unfortunately not very
reliable. One reason is that we paid insufficient attention to
subtitle formatting customs, and the main reason is that the
training and development data for Czech unfortunately had
an overlap.

9. Acknowledgements

This research was supported by the grants H2020-ICT-2014-
1-645452 (QT21), SVV 260 333, GAUK 8502/2016 and us-
ing language resources distributed by the LINDAT/CLARIN
project of the Ministry of Education, Youth and Sports of the
Czech Republic (LM2015071). We are also grateful to Ama-
zon for their provision of EC2 credits for the purposes of MT
Marathon 2016.

10. References

[1] O. Bojar, R. Rosa, and A. Tamchyna, “Chimera —
Three Heads for English-to-Czech Translation,” in
Proceedings of the Eighth Workshop on Statistical
Machine Translation. Sofia, Bulgaria: Association for
Computational Linguistics, August 2013, pp. 92-98.
[Online]. Available: http://www.aclweb.org/anthology/
W13-2208

2https://aws.amazon.com/sdk-for-python/

(2]

(3]

[4]

(5]

J. Libovicky, J. Helcl,
jar, and P. Pecina,

M. Tlusty, O. Bo-
“Cuni system for wmtl6
automatic post-editing and multimodal transla-
tion tasks,” in Proceedings of the First Con-
ference on Machine Translation. Berlin, Ger-
many: Association for Computational Linguistics,
August 2016, pp. 646-654. [Online]. Available:
http://www.aclweb.org/anthology/W/W16/W16-2361

R. Sennrich, B. Haddow, and A. Birch, “Edinburgh
neural machine translation systems for wmt 16,” in
Proceedings of the First Conference on Machine
Translation. Berlin, Germany: Association for
Computational Linguistics, August 2016, pp. 371-376.
[Online]. Available: http://www.aclweb.org/anthology/
W16-2323

O. Bojar, R. Chatterjee, C. Federmann, Y. Graham,
B. Haddow, M. Huck, A. Jimeno Yepes, P. Koehn,
V. Logacheva, C. Monz, M. Negri, A. Neveol,
M. Neves, M. Popel, M. Post, R. Rubino, C. Scarton,
L. Specia, M. Turchi, K. Verspoor, and M. Zampieri,
“Findings of the 2016 Conference on Machine
Translation,” in Proceedings of the First Conference on
Machine Translation. Berlin, Germany: Association
for Computational Linguistics, August 2016, pp.
131-198. [Online]. Available: http://www.aclweb.org/
anthology/W/W16/W16-2301

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst, “Moses: Open source toolkit for
statistical machine translation,” in Proceedings of
the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, ser. ACL °*07.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2007, pp. 177-180. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1557769.1557821

A. Rousseau, “Xenc: An open-source tool for data se-
lection in natural language processing,” The Prague
Bulletin of Mathematical Linguistics, vol. 100, pp. 73—
82,2013.

0. Bojar, O. Dusek, T. Kocmi, J. Libovicky, M. Novék,
M. Popel, R. Sudarikov, and D. Vari§, “Czeng 1.6: en-

(8]

[9]

(10]

(1]

[12]

[13]

[14]

larged czech-english parallel corpus with processing
tools dockered,” in International Conference on Text,
Speech, and Dialogue. Springer, 2016, pp. 231-238.

F. J. Och, “Minimum error rate training in statistical
machine translation,” in Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics
- Volume 1, ser. ACL ’03. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2003, pp.
160-167. [Online]. Available: http://dx.doi.org/10.
3115/1075096.1075117

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: A method for automatic evaluation of machine
translation,” in Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ser. ACL
’02. Stroudsburg, PA, USA: Association for Compu-
tational Linguistics, 2002, pp. 311-318.

R. Sennrich, B. Haddow, and A. Birch, “Improving
neural machine translation models with monolingual
data,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, August 2016, pp. 86-96.
[Online]. Available: http://www.aclweb.org/anthology/
P16-1009

J. Strakova, M. Straka, and J. Haji¢, “Open-Source
Tools for Morphology, Lemmatization, POS Tagging
and Named Entity Recognition,” in Proceedings
of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations.
Baltimore, Maryland: Association for Computational
Linguistics, June 2014, pp. 13-18. [Online]. Available:
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf

R. Sennrich, B. Haddow, and A. Birch, “Neural
machine translation of rare words with subword units,”
in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, August 2016, pp.
1715-1725. [Online]. Available: http://www.aclweb.
org/anthology/P16-1162

O. Dusek, Z. Zabokrtsky, M. Popel, M. Majlig,
M. Novédk, and D. Marecek, “Formemes in english-
czech deep syntactic MT,” in Proceedings of NAACL
2012 Workshop on Machine Translation. Montréal,
Canada: Association for Computational Linguistics,
2012, pp. 267-274.

R. Rosa, D. Marecek, and O. Dusek, “DEPFIX: A sys-
tem for automatic correction of Czech MT outputs,” in
Proceedings of the Seventh Workshop on Statistical Ma-
chine Translation, ser. WMT *12. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2012,
pp- 362-368.

[15]

[16]

[17]

(18]

A. Tamchyna, R. Sudarikov, O. Bojar, and A. Fraser,
“Cuni-Imu submissions in wmt2016: Chimera con-
strained and beaten,” in Proceedings of the First Con-
ference on Machine Translation, Berlin, Germany. As-
sociation for Computational Linguistics, 2016.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural
Machine Translation by Jointly Learning to Align and
Translate,” in Proceedings of the Third International
Conference on Learning Representations (ICLR 2015),
2015. [Online]. Available: http://arxiv.org/abs/1409.
0473

L. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C.
Courville, and Y. Bengio, “Maxout Networks,” in Pro-
ceedings of The 30th International Conference on Ma-
chine Learning (ICML 2013), 2013, pp. 1319 — 1327.

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How
to Construct Deep Recurrent Neural Networks,” in
Proceedings of the Second International Conference on
Learning Represenations (ICLR 2014), 2014. [Online].
Available: http://arxiv.org/abs/1312.6026

