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Abstract

Computer-aided translation (CAT) tools often use a translation memory (TM) as the key re-

source to assist translators. A TM contains translation units (TU) which are made up of source

and target language segments; translators use the target segments in the TU suggested by the

CAT tool by converting them into the desired translation. Proposals from TMs could be made

more useful by using techniques such as fuzzy-match repair (FMR) which modify words in the

target segment corresponding to mismatches identified in the source segment. Modifications in

the target segment are done by translating the mismatched source sub-segments using an ex-

ternal source of bilingual information (SBI) and applying the translations to the corresponding

positions in the target segment. Several combinations of translated sub-segments can be ap-

plied to the target segment which can produce multiple repair candidates. We provide a formal

algorithmic description of a method that is capable of using any SBI to generate all possible

fuzzy-match repairs and perform an oracle evaluation on three different language pairs to ascer-

tain the potential of the method to improve translation productivity. Using DGT-TM translation

memories and the machine system Apertium as the single source to build repair operators in

three different language pairs, we show that the best repaired fuzzy matches are consistently

closer to reference translations than either machine-translated segments or unrepaired fuzzy

matches.

1 Introduction

Computer-aided translation (CAT) tools often use a translation memory (TM), containing trans-

lation units (TU), as the key resource to assist translators. TU are made up of source and target

language segments and translators use the target segments in the TU suggested by the CAT tool

by converting them into the desired translation. When an exact match (100%, s = s′) is not

available one can use a fuzzy-match repair method to repair a translation proposal t. The aim of

these methods is to replace the sub-segments in t that are the translation of the sub-segments in s
that do not appear in s′ by the translation of the corresponding sub-segment in s′. Fuzzy-match

repair is gaining more traction in modern tools such as DejaVu1 and MemoQ2 as a reliable

method of replacing words in a proposed target-language (TL) segment t by using a source of

bilingual information (SBI) such as the very same TM being used, a dictionary, or an on-line

translation tool.

1http://www.atril.com/content/10-deepminer-fuzzy-matches-repair-458
2https://www.memoq.com/whats-new-in-memoq-2015



Ortega et al. (2014) describe a method that is capable of using any SBI for fuzzy-match

repair. This method first aligns the words in the SL segment s of the TU being repaired (s, t)
with the words in the segment to be translated s′ and identifies the mismatched words in s and

s′, i.e. the sub-segments they do not have in common. It then uses the SBIs available to identify

the sub-segments in t that are the translations of the mismatched sub-segments in s in a way

similar to that used by Esplà-Gomis et al. (2011), and then to build a set of patching operators
by translating the mismatched sub-segments in s′. Each patching operator specifies the TL sub-

segment τ in t that needs to be repaired and the TL sub-segment τ ′ to be used for repairing.

Combinations of patching operators can then be applied to obtain a set of candidate repaired TL

segments from which the one to be finally used can be selected.

In this paper, we revisit Ortega et al. (2014)’s approach to fuzzy-match repair and go one

step further; in particular in this paper we:

• provide an algorithmic description of the method;

• introduce a set of principled restrictions by establishing a set of compatibility rules be-

tween patching operators so that two patching operators are not applied on the same mis-

match;

• extensively evaluate the method at the document level on DGT-TM3 texts in three different

language pairs, namely English–Spanish, Spanish–French and Spanish–Portuguese;

• provide some insight on the results by studying how often patching operators can actually

be built using the SBI available.

The rest of the paper is organised as follows. The next section discusses related work on

fuzzy-match repair and stresses the main differences with respect to the approach described

in this paper. Section 3 then provides an algorithmic description of our fuzzy-match repair

method, whereas Section 4 describes the rationale behind the principled restrictions that prevent

two patching operators from working on the same mismatch. Sections 5 and 6 discuss the

experimental settings and the results of an oracle evaluation we have conducted to determine

the potential of the method. The paper ends with some remarks and a description of future

research lines.

2 Related Work

In the literature, one can find many papers addressing the combination of machine translation

and translation memories, most of which explore different ways of integrating sub-segments

from the translation memory into the decoding process of a phrase-based statistical machine

translation system (Biçici and Dymetman, 2008; Simard and Isabelle, 2009; Zhechev and Gen-

abith, 2010; Koehn and Senellart, 2010; Li et al., 2016). Alternative approaches, such as those

by Dandapat et al. (2011), Hewavitharana et al. (2005) and Kranias and Samiotou (2004), use

instead the target segment t in a translation unit (s, t) as the backbone or the basis of the transla-

tion to be produced and describe ways to repair it by modifying those sub-segments in t that are

the translation of the mismatched sub-segments in s. The method proposed here, which extends

that of Ortega et al. (2014), belongs to this second group.

Dandapat et al. (2011)’s method first aligns, in a way similar to ours, the words in s and

s′ using the (word-based) edit distance (Levenshtein, 1966) and marks the mismatched sub-

segments in s and s′ for translation. It then aligns the mismatch sub-segments in s with their

3The translation memory of the Directorate General for Translation of the European Comission, https://ec.

europa.eu/jrc/en/language-technologies/dgt-translation-memory



counterparts in t by using a sub-segmental translation memory built on the user’s translation

memory following the standard method to obtain phrase tables in statistical MT (Koehn, 2010).

Finally the sub-segments in t aligned to mismatched sub-segments in s are replaced by the

translations of the corresponding sub-segments in s′ as they are found in the sub-segmental

translation memory. The main differences with the approach described here are (a) that Danda-

pat et al. (2011) do not take into account the context words around the mismatches —which may

lead to incorrect translations due to boundary friction problems such as incorrect agreement or

incomplete word reorderings— and (b) that they rely on the user’s translation memory (which

may be small) rather than on an external SBI.

Hewavitharana et al. (2005) first use a modified IBM model 1 to align the mismatched

words in s to sequences of one or more words (“phrases”) in t and then directly map the se-

quence of source-side one-word edit operations (substitutions, deletions and insertions) needed

to convert s into s′, the segment to be translated, into an identical sequence of edit operations

on the corresponding word sequences in t to generate the fuzzy-match repaired translation. An

important strength of their method is that multiple alternative target-side edits are possible for

each source-side insertion or substitution, and that they score them using a probabilistic model.

An important limitation of their method (as compared with ours) is the lack of context around

source-side one-word edits.

Kranias and Samiotou (2004) use several linguistic resources —such as bilingual dictio-

naries and lists of suffixes and closed-class words— to align the words in s to those in t and then

uses these alignments to identify the words in t to be repaired. Finally, the words to be repaired

are replaced (edited, inserted or deleted) by the translation of the corresponding mismatch in s′

obtained using machine translation. This method is similar to the one we describe in this paper

but differs in that it only uses context around the mismatches when the new segment s′ contains

words not found in s. In contrast, we always use context when available around all mismatches,

which allows us to treat insertions, deletions and substitutions in the same way, and to mitigate

the incomplete reordering and agreement errors that may occur because of not using context.

Finally, it is worth noting that commercial computer-aided translation software have re-

cently begun to implement fuzzy-match repair. For example, MemoQ4 implements a feature

called MatchPatch that uses term bases and other resources for fuzzy-match repair, while Déjà

Vu implements a feature called DeepMiner5 that extracts sub-segments from the very same

translation memory being used for their use for fuzzy-match repair. Unfortunately, details about

how these methods work are not available.

3 Algorithm for Fuzzy-Match Repair

We describe a fuzzy-match repair algorithm that generates a set of candidate fuzzy-match- re-

paired segments from a translation unit (s, t) and the SL segment to be translated s′ by using

any SBI. First, we describe the algorithm used to build the list of patching operators to be used

for fuzzy-match repair; then, we describe the algorithm that explores all possible combinations

of patching operators to generate the set of candidate fuzzy-match repaired segments.

In order to build the list of patching operators (see Algorithm 1), first the alignment be-

tween the words in the SL segment to be translated s′ and those in the SL segment s in the

TU being repaired is obtained by a method based on the (word-level) edit-distance algorithm.6

The string-positioned sub-segment pairs (σ, σ′), containing unaligned (unmatched) words and

their corresponding positions in s and s′, are then obtained by using the phrase-pair extraction

algorithm used in phrase-based statistical machine translation (Koehn, 2010, section 5.2.3) to

4https://www.memoq.com/whats-new-in-memoq-2015
5http://www.atril.com/software/dj-vu-x3-professional
6If more than one optimal path is available to align s′ and s, on of them is chosen arbitrarily.



Algorithm 1 BuildPatchOp(s′, (s, t)) generates the set of patching operators to use.

Input: SL segment to be translated s′; TU (s, t) to be repaired

Output: A list of patching operators P
1: P ← () � Initially P is an empty list

2: A ← EditDistanceAligner(s′, s) � Get the word alignment between s and s′

3: for (σ, σ′) ∈ ExtractPhrasePairs(s′, s, A) do
4: M ← Translate(σ) � M is a set with translations of σ
5: M ′ ← Translate(σ′) � M ′ is a set with translations of σ′

6: for μ ∈ M do
7: for μ′ ∈ M ′ do
8: for τ ∈ FindInSegment(μ, t) do
9: τ ′ ← AttachTranslationToString(τ, μ′)

10: append (σ, σ′, τ, τ ′) to P
11: end for
12: end for
13: end for
14: end for
15: return P

obtain bilingual phrase pairs. After this, for each sub-segment pair (σ, σ′) the pair of sets of

translations into the TL (M,M ′) is obtained by using the SBI available. Finally, the translations

in those sets are used to build patching operators by looking for all the occurrences in t of the

target sub-segments μ ∈ M to get the corresponding string-positioned target sub-segments τ ,

and then attaching to each τ the target sub-segment μ′ to get τ ′.
The following example illustrates how the set of patching operators is built. Suppose the

segment s′ = Bill found out about the fraud to be translated into Spanish with the help of the

TU (s, t) = (Gina found out about the news,Gina se enteró de las noticias). The unmatched

(unaligned) words in s′ are Bill and fraud, whereas the unmatched (unaligned) words in s are

Gina, and news. After word alignment these are the sub-segments pairs (σ, σ′) (up to length 3)

which contain at least an unmatched word together with their translations (μ, μ′) into Spanish:7

σ σ′ μ μ′ μ in t?
Gina found found Gina encontró encontró no

Gina found Bill found Gina encontró Bill encontró no

Gina found out found out Gina se enteró se enteró yes

Gina found out Bill found out Gina se enteró Bill se enteró yes

found Bill found encontró Bill encontró no

found out Bill found out se enteró Bill se enteró yes

about the about the fraud sobre el de la estafa no

about the news about the de noticias sobre el yes

about the news about the fraud de las noticias de la estafa yes

the the fraud el la estafa no

the news the las noticias el yes

the news the fraud las noticias la estafa yes

Only in those cases in which μ, the translation of σ, is found in the target segment t of the TU

being repaired a patching operator can be built; this is indicated by the fifth column in the table

7Note that the string-positioned sub-segment pairs (σ, σ′) extracted from s and s′ always contain an aligned word

in s or s′. In this example we are assuming that the sets of translations M and M ′ of σ and σ′ are singletons.



Algorithm 2 Patching(P,O, n, (s, t), t�, D, T ) generates all possible fuzzy-match repaired

segments by backtracking.

Input: List of patching operators P ; set of patching operators O applied so far; position in P
of the patching operator being considered, n; TU to be repaired (s, t); fuzzy-match repaired

segment being built t�; boolean D indicating whether the n-th patching operator in P will

be attempted to apply (true) or not (false), list T containing fuzzy-match-repaired segments

1: if D then
2: if Compatible(Pn, O, (s, t)) then
3: ApplyPatchOp(Pn, t

�)
4: O ← O ∪ {Pn} � Add compatible patching operator

5: else
6: return � Prune this branch of the recursion tree

7: end if
8: end if
9: if n = length(P ) then

10: append t� to T � Add candidate fuzzy-match repaired segment to list T
11: return � All the patching operators have been considered

12: else
13: Patching(P,O, n+ 1, (s, t), t�, true, T ) � Continue by applying operator n+ 1
14: Patching(P,O, n+ 1, (s, t), t�, false, T ) � Continue by not applying operator n+ 1
15: end if

above.

Algorithm 2 generates the set of all possible fuzzy-match repaired segments by using

those sets in P(P ) (the power set of P ) containing compatible patching operators. This is

achieved through a backtracking algorithm that performs a recursive depth-first search and in-

crementally builds fuzzy-match repaired segments t�; the algorithm is initialized with two calls

Patching(P, ∅, 1, (s, t), t, false, ()) and Patching(P, ∅, 1, (s, t), t, true, ()), where () stands

for an empty list. At each level of the recursion tree a new patching operator is considered and

tested for applicability (D = true) or discarded (D = false). For a patching operator to be

applicable it needs to be compatible with the set of patching operators O applied so far to build

t� (see Section 4). If it is compatible with the rest of patching operators in O, the patching

operator is added to O and applied (lines 3–4); otherwise the branch of the recursion tree is cut.

When a leaf of the recursion tree is reached (i.e. n = length(P )) the corresponding fuzzy-

match repaired segment t� is added to the list T of candidate fuzzy-match repaired segments.

The algorithm ApplyPatchOp(o, t�) replaces in t� the sub-segment τ by τ ′; this can be safely

done if patching operator Pn is compatible with the other patching operators applied so far.

This algorithm assumes that patching operators that are compatible can be applied in any

order because the repaired segment to be generated would be the same. Thanks to this assump-

tion, the worst-case complexity of the algorithm is O(2n), with n = length(P ), in which case

2n repaired segments are produced. If the algorithm had to explore the application of all the

patching operators in P and in all possible orders its worst-case complexity would be super-

exponential.

For the example introduced above, Algorithm 2 would produce 128 repaired seg-

ments if all patching operators were compatible. However, most of them are not com-

patible because they edit the same words in t (see next section) and the algorithm ends

up producing only 25 repaired segments. Some of these 25 repaired segments are identi-

cal but are produced by applying a different set of patching operators. For instance, the



repaired segment Bill se enteró de la estafa is produced by applying the patching opera-

tor (Gina found out,Bill found out,Gina se enteró,Bill se enteró) and either the patching op-

erator (about the news, about the fraud, de las noticias, de la estafa) or the patching operator

(the news, the fraud, las noticias, la estafa).

4 Restrictions

Ortega et al. (2014) introduce three restrictions: two related to the type of sub-segments used

to build the patching operators and a third one related to the words in t being edited. The first

two restrictions —one restricting the length of the sub-segments and the other one requiring

a certain amount of context words around mismatches— are optional and were introduced to

reduce the number of patching operators to be considered. These optional restrictions throw

away legal repairs that are however considered to be of low quality and will not be applied for

the experiments reported in Section 5.

The third restriction cannot be avoided and is needed in order to prevent two patch-

ing operators from editing the same word in t. However, it may happen that two

patching operators working on the same mismatch do not edit any of the words in t
but introduce missing ones. In those cases, the fuzzy-match repair algorithm of Or-

tega et al. (2014) may end up producing candidate fuzzy-match repaired segments t�

with repeated words. The following example illustrates this situation. Suppose the

segment s′ = the size does not exceed 100 cm to be translated with the help of the trans-

lation unit (s, t) = (the size does not exceed 100, el tamaño no supera los 100) whose

target segment can be repaired with the two patching operators (σ1, σ
′
1, τ1, τ

′
1) =

(exceed 100, exceed 100 cm, supera los 100, supera los 100 cm) and (σ2, σ
′
2, τ2, τ

′
2) =

(100, 100 cm, los 100, los 100 cm). As both patching operators do not edit (change) any word

in t they could be applied one after the other and produce the fuzzy-match repaired segment

t� = el tamaño no supera los 100 cm cm, which contains duplicated words due to the fact that

the word cm is to be inserted by both operators.

To avoid this problem we need to identify when two patching operators work on the same

mismatch, and to do so one needs to check the mismatches both in s and s′ because there

may be words in s not appearing in s′ (the mismatch only shows up in s), or words that do not

appear in s but are introduced in s′ (the mismatch only shows up in s′, as in the example above).

Hence two patching operators oi = (σi, σ
′
i, τi, τ

′
i) and oj = (σj , σ

′
j , τj , τ

′
j) will be marked as

incompatible if they edit the same word in t (as in the work by Ortega et al. (2014)) or they meet

the following condition:

(mismatch(σi, s) ∩mismatch(σj , s) �= ∅) ∨ (mismatch(σ′
i, s

′) ∩mismatch(σ′
j , s

′) �= ∅)
where mismatch(x, y) returns the set of mismatch words covered by sub-segment x in segment

y.

It is worth nothing that this new restriction may mark as incompatible two patch-

ing operators that, even though they work on the same mismatch, do not edit the same

words in t. In those cases it is still advisable to forbid the application of the two patch-

ing operators since it is very likely that they work on the same region in t and their

application interfere with one another. The following example illustrates this situation.

Suppose the segment s′ = the size is around 100 cm to be translated with the help of

the translation unit (s, t) = (the size is about 50 cm, el tamaño es de unos 50 cm) whose

target segment can be repaired with the two patching operators o1 = (σ1, σ
′
1, τ1, τ

′
1) =

(is about, is around, es de unos, está alrededor de) and o2 = (σ2, σ
′
2, τ2, τ

′
2) =

(about 50, around 100, de unos 50, de unos 100). Both operators share a mismatch (about) but

do not edit the same words in t: o1 edits the word es (which is replaced by está), introduces



en–es es–pt es–fr

TM # TUs 196,294 150,567 149,479

Avg. SL segment length 9.61 27.24 27.35

Test set
# SL segments 1993 1983 1983

# SL words 40238 45334 46350

Avg. SL segment length 20.19 22.67 21.73

Table 1: Data about the translation memories and test sets used in the experiments.

the word alrededor and removes (edits) the word unos; o2 edits the word 50 and replaces it

by 100. The two operators can be applied at the same time if operator o2 is applied first —the

repaired target segment being t� = el tamaño está alrededor de 100 cm— but not the other

way around. Recall that the algorithm described in Section 3 assumes that patching operators

can be applied independently of each other and the order in which they are applied does affect

the final result.

5 Experimental settings

To evaluate the potential of the fuzzy-match repair algorithm described in Section 3, we have

performed an oracle evaluation (see below) on three different language pairs: English–Spanish

(en–es), Spanish–Portuguese (es–pt) and Spanish–French (es–fr). These language pairs have

been chosen to study how the method behaves when translating between closely-related lan-

guages (e.g. Spanish–Portuguese and Spanish–French) and when the languages involved in

the translation are not so closely related (English–Spanish). In addition, of the two closely-

related language pairs we have used, Spanish and Portuguese are more alike than Spanish and

French: Spanish and Portuguese are both pro-drop, Ibero-Romance languages —they permit

null-subject sentences— whereas French is a non-pro-drop Gallo-Romance language.

As for the corpora used for the experiments, we have used three translation memories, one

per language pair, extracted from the DGT-TM 2015 multilingual translation memory;8 each

translation memory contains between 145,000 and 200,000 translation units. In addition, we

have also extracted three test sets from the same source. Each test set contains around 2,000

parallel segments with source segments no longer than 100 words. The experiments consist

of simulating the translation of each source segment in the test sets by using the translation

memories and using the corresponding target-language segment as a reference for evaluation.

Table 1 provides additional information about the translation memories and test sets used.

As a source of bilingual information we have used the free/open-source machine

translation platform Apertium (Forcada et al., 2011),9 which provides a single transla-

tion for each source segment;10 more precisely, we have used the language-pair packages

apertium-en-es,11 apertium-es-pt12 and apertium-fr-es.13 Apertium has been

used both to build patching operators by translating sub-segments σ into the target language

and to translate the segments in the test set for which a fuzzy match above the given threshold

has not been found. Table 2 provides the word error rate (WER) and BLEU scores attained

by Apertium when translating the source-language segments in the test set; the percentage of

out-of-vocabulary words (OOV) is also reported. As can be seen, the translations performed by

8https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
9https://www.apertium.org

10That is, sets M and M ′ in lines 4 and 5 of Algorithm 1 are singletons in this case.
11SVN revision 64348.
12SVN revision 62539.
13SVN revision 62696.



en–es es–pt es–fr
WER 65.3% 47.4% 55.2%
BLEU 18.6% 36.4% 24.7%
OOV 2.6% 2.4% 2.4%

Table 2: Apertium’s performance on the test sets and percentage of out-of-vocabulary words

(OOV).

Apertium need less post-editing in the case of the two closely-related language pairs (es–pt and

es–fr) than in the case of English–Spanish.

Finally, we evaluate the potential of our fuzzy-match repair method with fuzzy-match score

thresholds of 60%, 70% and 80% with the aim of studying whether out method is more capa-

ble of repairing fuzzy matches above a given threshold. In this regard it is worth noting that

professional translators usually set the fuzzy-match score threshold above 60% (Bowker, 2002).

5.1 Oracle Evaluation
The way to study the potential of our approach for fuzzy-match repair has been to generate,

for each source segment s′ in the test set, the set of all possible fuzzy-match repaired target

segments T and then use t′, the translation of s′, to choose the best one and evaluate its quality.

Obviously, in a real setting t′ would not be available and the best fuzzy-match repaired segment

would need to chosen using a method similar to those used for estimating the quality of machine

translation output (Specia and Soricut, 2013; Avramidis, 2013).

What follows is a detailed explanation of the procedure we have followed with each source

segment s′ in the test set:

1. Retrieve the set of translation units U whose fuzzy-match score FMS(s′, s) is above the

desired fuzzy-match threshold θ.

2. If there is no translation unit (s, t) so that FMS(s′, s) ≥ θ, i.e. U = ∅, use machine

translation to get a translation for s′. Otherwise use the TU (s, t) ∈ U with the highest

FMS(s′, s) and produce the set T with all possible target fuzzy-match repaired segments.

3. Select the fuzzy-match repaired segment t�∗ ∈ T with the minimum edit distance to t′.

Once all the segments in the test set have been processed the translations produced are evaluated

by comparing them to the target segments in the test set and computing the error rate over the

whole test set as follows: ∑N
i=0 ED(t∗i , t

′
i)∑N

i=0 max(|t∗i |, |t′i|)
(1)

where ED(x, y) returns the word-based edit distance between the segments x and y, N is the

number of segments in the test set, and |x| is the number of words of segment x. This way of

computing the error rate resembles the way in which the fuzzy-match score is computed.14

6 Results and Discussion

Table 3 shows, for the three different language pairs on which we have evaluated our approach

and for three different fuzzy-match score thresholds (FMT) —60%, 70% and 80%—, the error

rate computed as described in Equation (1) when:

14For instance, OmegaT (http://www.omegat.org) computes the fuzzy-matching score between s and s′ as

1− ED(s,s′)
max(|s|,|s′|) .



FMT: 60% en–es es–pt es–fr
TM MT FMR TM MT FMR TM MT FMR

Error (%) 55.0 65.3 36.5 56.5 47.4 31.3 56.4 55.2 34.7
Er. (%) on matches 20.1 65.3 17.9 22.5 47.4 17.0 20.3 55.2 16.5
# matches 1184 1993 1184 1221 1983 1221 1206 1983 1206
Avg. length 22.6 22.1 22.6 21.1 20.6 21.1 22.8 22.4 22.8

FMT: 70% en–es es–pt es–fr
TM MT FMR TM MT FMR TM MT FMR

Error (%) 61.0 65.3 38.5 62.4 47.4 31.8 62.3 55.2 35.6
Er. (%) on matches 16.3 65.3 14.6 18.0 47.4 13.9 15.8 55.2 12.8
# matches 828 1993 828 777 1983 777 786 1983 786
Avg. length 22.4 22.1 22.5 20.8 20.6 21.1 22.6 22.4 22.6

FMT: 80% en–es es–pt es–fr
TM MT FMR TM MT FMR TM MT FMR

Error (%) 69.7 65.3 42.6 70.1 47.4 33.8 69.5 55.2 38.2
Er. (%) on matches 13.1 65.3 11.9 15.3 47.4 11.9 12.2 55.2 9.7
# matches 660 1993 660 641 1983 641 649 1983 649

Avg. length 22.3 22.2 22.4 20.8 20.6 21.1 22.5 22.4 22.8

Table 3: For the three different language pairs considered in our evaluation and for three dif-

ferent means of translation —translation memory (TM), machine translation (MT) and fuzzy-

match repair (FMR)— and fuzzy-match score thresholds (FMT), the table gives the error rate

over the whole test set, the error rate over the segments in the test set for which a match above the

given threshold is found in the translation memory, the amount of these segments (# matches)

and the average length of the target segments produced.

TM: the target segment in the translation unit with the highest fuzzy-match score is used as

a translation, if available; otherwise, an empty translation is used, and therefore the error

reflects the need to type the words in the reference translation.

MT: the same machine translation system used as SBI (Apertium) is used to translate the source

segments in the test set.

FMR: the translation to be evaluated is obtained by applying the fuzzy-match repair algorithm

described in Section 3 with the translation unit with the highest fuzzy-match score, if

available; otherwise, the translation is produced using machine translation.

Two error rates are reported, one computed on the whole test set and another computed only

on the set of segments for which a TU with a fuzzy-match score above the given threshold is

found (error on matches). The former provides and indication of the actual translation effort

a translator would made to translate the source segments in the test set. The latter provides

an indication of the performance of our method for fuzzy-match repair (FMR) without the

interference of whole-segment machine translation, since it focuses only on those segments for

which there is a translation unit to repair. This allows to directly compare FMR performance to

that of using the target segment in the best TU without any repair (TM). In addition, the number

of source segments for which a match is found in the translation memory and the average length

of the translations produced are provided.
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Figure 1: For the three language pairs used for evaluation, error rate over the segments in the

test set for which a match above the fuzzy-match score threshold is found in the translation

memory.

As can be seen, our method for fuzzy-match repair has the potential (recall that this is an

oracle evaluation) to improve the translator’s productivity for all three different language pairs:

the error rate is both below that of using the target segment in the best translation unit (TM)

and below that of using machine translation (MT). Furthermore, it is worthwhile to note that a

good part of the difference in performance between the three language pairs can be attributed

to the performance of the MT system; if we pay attention to the performance of FMR when the

evaluation only focuses on those segments for which a match has been found we can see that

the scores reported are quite similar for all language pairs, even though this does not happen in

the case of the MT scores reported, i.e. our method for fuzzy-match repair appears to be quite

robust to MT errors.

The error rate over the whole test set grows with the fuzzy-match score threshold (FMT).

This happens because the greater this threshold is, the less source segments can be translated

using fuzzy-match repair and, as a consequence, the amount of segments that are translated with

Apertium grows. If we focus only on those segments that can be translated by means of FMR,

we can see that the error rate decreases as the threshold grows; Figure 1 show how the error

rate on matches behaves as a function of the fuzzy-match score threshold. This is the expected

behaviour because as the threshold grows the amount of words to repair decreases.

With respect to the process of building patching operators, and provided that the perfor-

mance of the machine translation system differs between the language pairs, it is worth studying

how successful it is our method when it comes to use Apertium to build patching operators. Fig-

ure 2 plots the success rate when building patching operators as a function of the length of the

source sub-segments σ for a fuzzy-match score threshold of 60%, 70% and 80%; as can be seen,

success rates for different fuzzy-match thresholds behave very similarly. A patching operator

is successful when the translation of the sub-segment σ of s is found in t, that is, when the

machine translation system and the proposed translation unit exactly agree on the translation
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(a) σ success rate at 60% FMT
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(b) σ success rate at 70% FMT
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(c) σ success rate at 80% FMT

Figure 2: For the three different language pairs and for fuzzy-match score thresholds (FMT) of

60%, 70%, and 80% success rate when building patching operators as a function of the number

of words in the source sub-segments σ being translated.

of a source sub-segment: this acts as a safety feature, as patching is not attempted when this

agreement is absent. This is why our method is robust to machine translation errors.

As can be seen, the longer the sub-segments the harder it is that the translation obtained

from the SBI is found in t. This behaviour is present in all the language pairs and is more

pronounced when the translation involves non-related language pairs (en–es) than when the

languages are closely related (es–pt). The average length of σ in the patching operators used to

build the repaired target segment chosen by the oracle when the fuzzy-match score threshold is

set to 80% is around 2.8 words for en–es, 3.7 for es–fr and 4.7 for es–pt.

7 Concluding Remarks

In this paper we have extended the approach of Ortega et al. (2014), which uses any external

source of bilingual information to repair fuzzy matches coming from a translation memory, to

prevent two patching operators from working on the same mismatch, and we have extensively

evaluated its performance on three different language pairs and provided a more formal algo-

rithmic description.

The oracle evaluation we have conducted reveals the potential of our approach to fuzzy-

match repair. For three different language pairs we consistently improve the quality of the trans-

lations produced —both with respect to raw machine translation or unrepaired fuzzy matches—

even though the SBI we have used (the machine translation system Apertium) performs below

the state of the art for some language pairs. We hope that by combining different SBIs, e.g.



different machine translation systems as well as bilingual concordancers,15 the quality of the

repaired segments increase.

As a future work we plan to combine different SBI and try different methods to automat-

ically select the best fuzzy-match repair for a given SL segment. In particular we will adapt

existing techniques used for sentence-level machine translation quality estimation and devise a

set of features specially designed to tackle this particular problem.
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