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Abstract

Lexical sparsity is a major challenge for machine translation into morphologically rich lan-
guages. We address this problem by modeling sequences of fine-grained morphological tags
in a bilingual context. To overcome the issue of ambiguous word analyses, we introduce soft
tags, which are under-specified representations retaining all possible morphological attributes
of a word. In order to learn distributed representations for the soft tags and their interactions
we adopt a neural network approach. This approach allows for the combination of source and
target side information to model a wide range of inflection phenomena. Our re-inflection ex-
periments show a substantial increase in accuracy compared to a model trained on morpholog-
ically disambiguated data. Integrated into an SMT decoder and evaluated for English-Italian
and English-Russian translation, our model yields improvements of up to 1.0 BLEU over a
competitive baseline.

1 Introduction

In morphologically rich languages (MRLs), words can have many different surface forms de-
pending on the grammatical context. When translating into MRLSs, standard statistical ma-
chine translation (SMT) models such as phrase translation models and n-gram language mod-
els (LMs) often fail to select the right surface form due to the sparsity of observed word se-
quences (Minkov et al., 2007; Green and DeNero, 2012). While neural LMs (Bengio et al.,
2003; Schwenk, 2007) address lexical sparsity to a certain degree by projecting word sequences
to distributed vector representations, they still suffer from the problem of rare words which is
particularly exacerbated in MRLs (Botha and Blunsom, 2014; Jean et al., 2015; Luong et al.,
2015).

A potential solution to overcome data sparsity in MRLs, is to use word representations
that separate the grammatical aspects of a word, i.e. inflection, from the lexical ones. Such
word representations already exist for many languages in the form of morphological analyzers
or lexicons. However, using these resources for statistical language modeling is far from trivial
due to the issue of ambiguous word analyses. Table 1 illustrates this problem in Italian, for
which a fine-grained morphological lexicon but no sizable disambiguated corpus exists. These
morphological analyses! clearly contain information that is useful to encourage grammatical
agreement and, in this case, detect the highlighted error. Unfortunately, though, the needed

'In this work we use the terms analysis and tag interchangeably to denote fine-grained word annotations provided
by a morphological analyzer or lexicon.
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SMT idee ribelli che circola

Gloss ideas rebellious that circulate
noun-f:p noun-f:p con ver:impr+pres+2+s
noun-m:p wh-che ver:ind+pres+3+s
Analyses adj:pos+f+p  det-wh:f+p

adj:pos+m+p  det-wh:f+s

Table 1: Example of morphological error in Italian SMT output: the verb form should be plural
(circolano) and not singular (circola) to agree in number with the subject. Most of the words
have multiple analyses according to our morphological lexicon of reference (Zanchetta and
Baroni, 2005). The correct one in context is highlighted.

information is difficult to access because each word can have multiple analyses. Performing
contextual disambiguation during translation is an ill-posed problem because the SMT decoder
produces large numbers of ungrammatical word sequences but gold tagged training data is nat-
urally composed of grammatical sentences.” Moreover, searching for the optimal tag sequence
introduces spurious ambiguity into the SMT decoder. Finally, training a disambiguator requires
manually disambiguated data, which is not available in many languages and costly to produce.

In this paper, we address this problem with a novel inflection model that is based on two
main ideas: First, morphological ambiguity does not need to be resolved for SMT. Instead, we
map words to a space where all possible morphological attributes of a word are retained. Rather
than enforcing hard tagging decisions, we let the model operate on soft word representations.
The resulting tag set is larger than the original one, but still effective at reducing the lexical
sparsity of purely word-based LM. Second, learning distributed representations for soft mor-
phological tags can help share statistical strength among overlapping tags, i.e. tags that have
some attributes in common. To achieve this, we train a neural network that predicts sequences
of soft tags conditioned on rich contextual features.

We show that: (i) our soft representation model achieves higher accuracies in re-inflecting
translations than a model performing contextual disambiguation, and (ii) our model significantly
improves translation quality on two different target MRLs, including a language for which no
sizable disambiguated corpora exist.

The paper is organized as follows: after reviewing the previous work (Section 2), we
present our distributed inflection model based on soft morphological representations (Section 3).
In Section 4 we introduce the general experimental setup, followed by a detailed description of
the re-inflection experiments (Section 5) and the end-to-end SMT experiments (Section 6). We
conclude with a discussion of SMT output examples and an outlook of future work

2 Previous Work

Previous work on inflection modeling for translation into MRLs has mostly relied on the avail-
ability of morphologically disambiguated data to choose the most probable analysis of each
word in either a context-independent (Minkov et al., 2007) or context-dependent (Green and
DeNero, 2012; Koehn and Hoang, 2007; Subotin, 2011) way. While the former irrevocably
discards potentially useful attributes of the words, the latter tasks the inflection model with dis-
ambiguating the word sequence under construction, which is difficult given the ill-formedness
of SMT output and a cause of spurious ambiguity.

2This issue has also been shown to affect syntactic parsing of SMT output (Post and Gildea, 2008; Carter and Monz,
2011).
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Considerably less work has focused on MRLs where disambiguated data does not exist,
with few exceptions where ambiguity is solved by randomly selecting one analysis per word
type (Minkov et al., 2007; Toutanova et al., 2008; Jeong et al., 2010).

As for how inflection models are integrated into the STM system, different strategies have
been proposed. Minkov et al. (2007); Toutanova et al. (2008); Fraser et al. (2012) treat inflec-
tion as a post-processing task: the SMT model is trained to produce lemmatized target sentences
(possibly enhanced with some form of morphological annotation) and afterwards the best sur-
face form for each lemma is chosen by separate inflection models. Some work has focused on
the generation of new inflected phrases given the input sentence (Chahuneau et al., 2013) or
given the bilingual context during decoding (Koehn and Hoang, 2007; Subotin, 2011). Other
inflection models have been integrated to SMT as additional feature functions: e.g. as an addi-
tional lexical translation score (Jeong et al., 2010; Tran et al., 2014) or as an additional target
language model score (Green and DeNero, 2012). We follow this last strategy, rather than gen-
erating new inflections, motivated by previous observations that, when translating into MRLs,
a large number of reference inflections are already available in the SMT models but are not
selected for Viterbi translation (Green and DeNero, 2012; Tran et al., 2014).

More in general, our work is related to class-based language modeling (Brown et al., 1992)
with the major difference that we also condition on source-side context and that we use ex-
plicit morphological representations instead of data-driven word clusters (Uszkoreit and Brants,
2008), word suffixes (Miiller et al., 2012; Bisazza and Monz, 2014) or coarse-grained part-of-
speech tags (Koehn et al., 2008).

Modeling morphology using neural networks has recently shown promising results: in the
context of monolingual neural language modeling, Luong et al. (2013); Botha and Blunsom
(2014) obtain the vectorial representation of a word by composing the representations of its
morphemes. Tran et al. (2014) model translation stem and suffix selection in SMT with a
bilingual neural network. Soricut and Och (2015) discover morphological transformation rules
from word embeddings learned by a shallow network. We are not aware of work that leveraged
fine-grained morphological tags for neural language or translation modeling.

3 A Distributed Inflection Model

In MRLs, the surface form of a word is heavily determined by its grammatical features, such
as number, case, tense etc. Choosing the right target word form during translation is a complex
problem since some of these features depend on the source context while others depend on the
target context (agreement phenomena). We model target language inflection by a Markov pro-
cess generating a sequence of abstract word representations based on source and target context.
This complements previous work focusing on either the former (Avramidis and Koehn, 2008;
Chahuneau et al., 2013; Tran et al., 2014) or the latter (Green and DeNero, 2012; Fraser et al.,
2012; Botha and Blunsom, 2014; Bisazza and Monz, 2014).

3.1 Soft Morphological Representations

As previously stated, it is common for words in MRLs to admit multiple morphological analy-
ses out of context. Rather than trying to disambiguate the analyses in context using for instance
conditional random fields (Green and DeNero, 2012; Fraser et al., 2012), we modify the tagging
scheme so that each word corresponds to only one tag. To also avoid the loss of useful informa-
tion incurred when arbitrarily selecting one analysis per word type (Minkov et al., 2007; Jeong
et al., 2010), we introduce soft morphological representations, or simply soft tags.

Assume that a morphological analysis y is a set of morphological attributes S(u) such as
masculine or plural. Given a word w, a morphological analyzer or lexicon LEX returns a list

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 147



of possible analyses of that word A,, = {u : (w, ) € LEX}. Then, we can map word w to a
unique soft tag r,, by simply taking the union of all its possible morphological attributes, that

1S:
de:ef U S(l‘k)

i €AW

For instance, the Italian word “ribelle” has four analyses: adj:pos+f+s, adj:pos+m+s, noun-f:s,
and noun-m:s. Its corresponding soft tag is adj:pos|adj:fladj:s|adj:m|noun-f:sjnoun-m:s. Hence,
soft tags maintain all morphological attributes of a word to denote its grammatical dimension
while ignoring the lexical content. This new representation scheme compromises between spar-
sity and ambiguity, and allows for an efficient integration of our model directly into the decoder
as no additional cost is incurred for the local tagging search.

Soft tags can also be seen as the marginalization of 4+ when predicting a surface word w;
given a lemma /; and its context C; (i. e. variables that influence w;, such as w;_1):

pwilli; €)= > plwilp, li, Ci)p(plls, C:)
P €A,

> pluklls C) )

Pk €A,

assuming that any lemma-analysis pair (I, u) corresponds to at most one inflected form w.
Using soft tags, Equation 1 can be approximated by p(7,|l;, C;).

3.2 Inflection Neural Network

Our inflection model®, Inf-NN, is trained on word-aligned bilingual data to predict sequences of
target soft tags given a fixed-size target history and the input source sentence (see Figure 1). We
adopt a neural LM approach as learning distributed representations for the soft tags can help to
share statistical information among overlapping tags (i. e. tags that share some morphological
attributes). Moreover, compared to Maximum Entropy models that use lexical features, neural
networks can better exploit sparse input features such as lexicalized source context and target
lemma features, as well as their interactions, in high dimensional spaces.

We learn distributed representations for both source words and target soft tags. The source
word representations are initialized from pre-trained embeddings, which has been shown to
encode certain morphological regularities (Soricut and Och, 2015), whereas target tag represen-
tations are initialized randomly.

Inf-NN is a feed-forward neural network whose output is a conditional probability distribu-
tion over a set of morphological tags given target history and source context. Formally, let h; =
(ri—1,--.,Ti—n+1) be the n—1 tag history of the target word w;, and ¢; = (S;—g, ..., Sj+k) the
source context centering at the word s; aligned to w; by an automatic aligner. We use simple
heuristics similar to the approach by Devlin et al. (2014) to handle null and multiple alignments
so that each target word w; can be mapped to exactly one source word s;. Lets; € RP and
r; € RP denote the distributed representations of source s; and target tag 7; respectively. Then,
the conditional probability prenn(7i| ks, ¢;) is computed at the output layer y of the network as
follows:

z; = (W, + W'h, +b,)
y = softmax(W™z; + b,))

3The implementation is available at https://bitbucket.org/ketran/soft-tags
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Figure 1: Graphical representation of the Inf-NN model: the current target word’s soft tag, r;,
is predicted based on a fixed-size target tag history and a source side context centered around
s;, the translation of w;. Each target word w; can be deterministically mapped to a soft tag r;.

where W¢, W', and W™ are weight matrices, c¢; and h; are shorthands for [s;_r;...;8;4x]
and [r;_1;...;T;—nt1] respectively, [v; v'] denotes vector concatenation, and ¢ is a non-linear
transfer prelu. As ¢, we use in all experiments the channel-shared parametric rectified linear
unit (PReLU) introduced by He et al. (2015). PReLU ¢(x) is defined as:

¢(x)

axr otherwise

o) = {x ifm>p

€T

where a is a parameter learned during training. To speed up decoding, we train the Inf-NN
model with a self-normalized objective (Devlin et al., 2014; Andreas and Klein, 2015). More
specifically, we adopt the objective function proposed by Andreas and Klein (2015):

(0) = — E[Inp(ri|hi,c;)] +n 6]
+ %E[IIP Z(hi,Cj)Khi,Cj) S H]

where H is a set of random samples on which self-normalization is performed, 6 =
{{sj}, {ri},Wc,Wh,Wm, b., a} are the parameters of the networks, and Z(h;,¢;) is the
partition function of the input (h;, ¢;). In practice, we obtain 7 by sampling from a Bernoulli
distribution Bern(p). This is equivalent to applying dropout (Srivastava et al., 2014) on the loss
gradient 1 € R of self-normalization term, where m is the size of a mini-batch. We regularize
the networks with ¢5 norm.

4 Experimental Setup

We evaluate our approach on two related tasks: re-inflecting reference translations and end-to-
end translation from English into MRLs. With the first task, we test the effectiveness of soft
morphological representations against (i) a model that randomly assigns one tag per word type
(among its possible tags) and (ii) a model that admits multiple tags per word and requires a pre-
disambiguated corpus to be trained. With the second task, we measure translation quality when
our inflection model is integrated into a state-of-the-art phrase-based SMT decoder, showing its
applicability to languages where no disambiguated data exists.
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4.1 Data

As target languages, we choose two MRLs belonging to different language families and dis-
playing different inflectional patterns: Russian has very rich nominal, adjectival and verbal in-
flection, while Italian has moderate nominal and adjectival inflection, but extremely rich verbal
inflection. Experiments are performed on the following tasks:

e English-Russian WMT (Bojar et al., 2013): translation of news commentaries with large-
scale training data.

e English-Italian IWSLT (Cettolo et al., 2014): translation of speeches with either small-
scale training data (TED talks only) or large-scale training data (TED talks and European
proceedings).

SMT training data statistics are reported in Table 2. The Russian Inf-NN model is trained on a
1M-sentence subset of the bilingual data, while the Italian one is trained on all the data available
in each setting. For each data set, we create automatic word alignments using GIZA++ (Och
and Ney, 2003).

En-Ru En-It
large small large
Bilineual #sentences 2.4M 180K 2.0M
g src/trg #tokens  49.2/472M  3.6/3.4M  57.4/57.0M
src/trg dict.size  774K/1100K  55K/80K  139K/195K
Monolin #sentences 21.0M 2.1M
& trg #tokens 390M 58.4M
src/trg dict.size 2.7M 199K

Table 2: Training corpora statistics.

The ambiguous morphological analyses are obtained from the Russian OpenCorpora lex-
icon* (Bocharov et al., 2013) and from the Italian Morph-it!> lexicon (Zanchetta and Baroni,
2005). Table 3 shows the number of tags and soft tags occurring in our training data, as well
as the expected counts of analyses per word E,,[t], words per lemma E;[w] and analyses per
lemma E;[t].

Language #tags #soft-tags E,[t] Ejw] Et]

Russian 892 4431 3.8 72 274
Italian 450 901 1.9 127 243

Table 3: Morphological characteristics of the Inf-NN training data: number of tags and soft
tags, expected counts of analyses per word E,,[t], words per lemma E;[w] and analyses per
lemma E;[t].

We find that the Russian tag set and, consequently, the soft tag set are considerably larger
than the Italian ones. The average morphological ambiguity is also larger in Russian (3.8 versus

4opencorpora.org
Ssslmitdev-online.sslmit.unibo.it/linguistics/morph-it.php
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1.9 tags per word). However, somewhat surprisingly, morphological richness is higher in Italian
(12.7 versus 7.2 words per lemma). At a closer inspection, we find that most of this richness is
due to verbal inflection which goes up to 50 forms for frequently observed verbs.

4.2 Neural network training

The Inf-NN models are trained on a history of 4 target tags and source context of 7 words with
the following configuration: Embedding size is set to 200 and the number of hidden units to
768. Target word and soft-tag embeddings are initialized randomly from a Gaussian distribution
with mean zero and standard deviation 0.01. Source word embeddings are initialized from pre-
trained Glove vectors (Pennington et al., 2014) and rescaled by a factor of 0.1. Weight matrices
of linear layers are initialized from a zero-mean Gaussian distribution with standard deviation
\/2/n; where n; is the number of input units (He et al., 2015). We set self-normalization
strength v = 0.02, Bernoulli parameter p = 0.1, and regularization parameter = 10~
All models are trained with a mini-batch size of 128 for 30 epochs. Our stochastic objective
functions are optimized using the first-order gradient-based optimizer Adam (Kingma and Ba,
2015). We use the default settings suggested by the authors: & = 0.001, 5; = 0.9, 5> = 0.999,
e=10%and A =1—1078,

5 Re-inflection Experiments

The purpose of this experiment is to simulate the behavior of the inflection model during SMT
decoding: Given a reference translation and its corresponding source sentence, we re-inflect the
former using a simple beam search and count how many times the model recovers the correct
surface word form on a 10K-sentence held-out data set.

Since we do not assume the availability of a disambiguator, we also have to deal with
lemma ambiguity. While this issue does not affect the definition and training of our Inf-NN,
we do need lemmas to determine the set of candidate surface forms I, for each word w that is
being re-inflected. As a solution, we define I, as the union of the surface forms of each possible
lemma of w or, more formally, as:

I, = {w; | lem(w;) Nlem(w) # 0}

where lem(w) denotes the set of lemmas returned by the lexicon for word w. For example, the
Italian form baci has two possible lemmas: bacio (noun: kiss) and baciare (verb: to kiss). Its
candidate set I, will then include all the forms of the noun bacio and all the forms of the verb
baciare: that is, bacio, baci, baciamo, baciate, baciano, etc.

We compare the proposed soft-tag Inf-NN against an Inf-NN trained on randomly assigned
tag per type and to another one trained on tag sequences disambiguated by TreeTagger (Schmid,
1994; Sharoff et al., 2008). The latter model must search through a much larger space of mor-
phological tag sequences. Therefore, to allow for a fair comparison, we set a higher beam
size when re-inflecting with this model. As another difference from the other models, the
TreeTagger-based inflection model relies on the lemmatization performed by TreeTagger to
define the candidate set I,.

To validate the effectiveness of the neural network approach, we also compare Inf-NN to a
simpler MaxEnt model trained on a similar configuration. Finally, we evaluate the importance
of source-side context features by experimenting with a series of Inf-NN models that are only
conditioned on the target tag history.

Since no morphological disambiguator is available for Italian, we perform this experi-
ment only for Russian. As shown in Table 4, soft tags perform best in all settings and become
even more effective when moving from MaxEnt to neural network, demonstrating the impor-

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 151



MaxEnt Inf-NN
with src  w/osrc withsrc  beam

Tree-Tagger: all analyses 56.33 61.19 69.68 200
Random: 1 analysis per word  66.08 72.32 79.92 5
Soft-Reps: 1 soft tag per word ~ 66.95 75.43 81.93 5

Table 4: Token-level re-inflection accuracy (%) on a 10K-sentence English-Russian held-out
set. The last column indicates the beam size used when searching for the optimal re-inflected
sequence.

tance of learning distributed representations for the soft tags. The notably lower accuracy of
the TreeTagger-based model confirms our intuition that morphological disambiguation is not
needed to model inflection in SMT, but can actually make the task more difficult. This result
can be explained by the fact that, when fixing one tag per word type either by random assign-
ment or with soft tags, the number of tags per lemma becomes substantially smaller (cf. Table 3)
and classification easier. On the other hand, the Tree-Tagger based model operating on all word
analyses has to deal with spurious ambiguity: that is, a correct sequence of inflected words can
correspond to multiple tag sequences that are competing with one another. Solving this problem
by marginalizing over the ambiguous analyses (cf. Equation 1) can lead to intractable decoding
(Sima’an, 1996; Li et al., 2009).

The model using soft-tags, which capture all possible morphological attributes of words,
performs the best. Even without using source context features, our Inf-NN outperforms the
MaxEnt model by 8.5% absolute because of the high dimensional space used to capture complex
morphological regularities. By adding source context, we further increase accuracy by 6.5%,
leading to an overall gain of 15% over the MaxEnt baseline.

Next, we investigate the impact of our most accurate re-inflection model (Soft-Reps Inf-
NN) in an end-to-end SMT setting without relying on any disambiguated data.

6 End-to-end SMT Experiments

We integrated our Inf-NN model into a phrase-based SMT decoder similar to Moses (Koehn
et al., 2007) as an additional log-probability feature function (log prr.nN)-

When a new target phrase w is produced by the decoder, the Inf-NN model returns a
probability for each word w; that composes it, given the previously translated words’ soft tags
and the source context centered around the source word s; aligned to w;. To detect s; we store
phrase-internal word alignments in the phrase table and use simple heuristics to map each target
index 7 to exactly one source index j, as done for the Inf-NN training (Section 3.2). Since
every target word corresponds to one soft tag, obtaining the representation of wj is trivial (by
lookup in a word-tag map) and so is maintaining the target tag history. This crucially differs
from previous approaches that distinguish between hypotheses with equal surface forms but
different morphological analyses (Koehn et al., 2007), thereby introducing spurious ambiguity
into what is already a huge search space.® As a result, the integration of our Inf-NN does not
affect decoding speed.

5Green and DeNero (2012) also tag each target phrase in context as it is produced. However, they avoid the spurious
ambiguity problem by only preserving the most probable tag sequence for each phrase (incremental greedy decoding).
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6.1 Baseline

Our SMT baseline is a competitive phrase-based SMT system including hierarchical lexicalized
reordering models (Galley and Manning, 2008) and a 5-gram target LM trained with modified
Kneser-Ney smoothing (Chen and Goodman, 1999). Since the large English-Italian data comes
from very different sources (TED talks and European proceedings), we construct phrase table
and reordering models for this experiment using the fillup technique (Bisazza et al., 2011). Note
that our baseline does not include previously proposed inflection models because the main goal
of our experiment is to demonstrate the effectiveness of the proposed approach for languages
where no sizable disambiguated data exists, which is indeed the case for Italian.

Feature weights are tuned with pairwise ranking optimization (Hopkins and May, 2011)
on the union of IWSLT’s dev10 and test10 in Italian, and on the first 2000 lines of wmt12
benchmark in Russian (Callison-Burch et al., 2012). During tuning, 14 PRO parameter esti-
mation runs are performed in parallel on different samples of the n-best list after each decoder
iteration. The weights of the individual PRO runs are then averaged and passed on to the next
decoding iteration. Performing weight estimation independently for a number of samples cor-
rects for some of the instability that can be caused by individual samples.

6.2 Results

Translation quality is measured by case-insensitive BLEU (Papineni et al., 2002) on IWSLT’s
test12 and test14 in Italian, and on wmt13 and wmt14 for Russian, all provided with one refer-
ence translation. To see whether the differences between the approaches we compared in our
experiments are statistically significant, we apply approximate randomization (Noreen, 1989).”

Data Test  Baseline Inf-NN

wmt13 19.0 19.34(+0.3)
wmt14 26.1 26.74(+0.6)

en—ru large

iwslt12 24.6 25.64(+1.0)
iwslt14 20.4 20.94(+0.5)

iwslt12 25.0 25.84(+0.8)
iwslt14 20.9 21.44+0.5)

small
en—it

large

Table 5: Impact on translation quality of the Inf-NN model. 4 marks significance level p < .01.

Results are presented in Table 5. Our Inf-NN model consistently leads to significant im-
provements over a competitive baseline, for both language pairs and all test sets, without affect-
ing decoding speed. By comparing the two data conditions in English-Italian, we see that most
of the BLEU gain is preserved even after adding a large amount of parallel training data. This
suggests that morphological phenomena are not sufficiently captured by phrases and stresses
the importance of specifically modeling word inflection. It is possible that adding even more
training data would reduce the impact of our inflection model, but currently we do not have
access to other data sets that would be relevant to our translation tasks.

To put these results into perspective, our improvements are comparable to those achieved
by previous work that generated new phrase inflections using a morphological disambiguator
(Chahuneau et al., 2013) on the same large-scale English-Russian task.

Riezler and Maxwell (2005) have shown that approximate randomization is less sensitive to Type-I errors, i. e. less
likely to falsely reject the null hypothesis, than bootstrap resampling (Koehn, 2004) in the context of SMT.
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SRC and if you’re wondering about those other spikes, those are also fridays

REF e se vi state chiedendo cosa sono questi altri picchi, sono anche loro dei venerdi
(1) BASE e se vi state chiedendo di queste altre picchi, sono anche il venerdi

INFNN e se vi state chiedendo di questi altri picchi, sono anche il venerdi

Effect:  Correct number agreement between adjectives and noun

SRC ... a three-hour version of this that’s been viewed four million times
REF ... una versione di tre ore che & stata vista 4 milioni di volte
(2) BASE ... una versione di tre ore di ci0 che e stato visto 4 milioni di volte
INFNN ... una versione di tre ore di questo che € stata osservata quattro milioni di volte

Effect:  Correct gender agreement between subject and present perfect

SRC he died broken by history
REF mori distrutto dalla storia
(3) BASE mori infranta dalla storia
INFNN  mori devastato dalla storia
Effect:  Correct gender agreement between subject and adjective

SRC in one , i was the classic asian student ...
REF in uno ero la classica studentessa asiatica ...
(4) BASE in uno stato il classico asiatica studente ...

INFNN  in uno stato il classico asiatico studente ...
Effect:  Encouraged gender agreement between adjectives and noun, but gender is wrong

SRC in the other , i was enmeshed in lives that were precarious
REF nell’altro ero invischiata tra esistenze precarie
(5) BASE tra I’altro, sono stato profondamente impegnati in vita che erano pill precaria

INFNN  nell’altro, ero profondamente impegnati in vita che erano pill precaria
Effect:  Failed to encourage gender agreement because surface form is not in the SMT models

Table 6: Examples of SMT output drawn from IWSLT English-Italian test12 showing the effect
of our inflection model on lexical selection.

6.3 Examples

As previously mentioned, most previous approaches to inflection modeling for SMT may not
be applied to Italian due to the lack of morphological disambiguated data. It is then particularly
interesting to analyze how our model affects baseline translations. Table 6 presents a number
of English-Italian SMT output examples where the use of our soft-tag Inf-NN either resulted in
a better inflection choice (1-3) or not (4-5). Out of the ‘good’ examples, only (1) resulted in
a complete match with the reference translation, while in (2) and (3) the system preferred an
equally appropriate lexical choice, showing that automatically evaluating inflection models in
an SMT setting is far from trivial.

The usefulness of source-side features is demonstrated by example (3): here, the translation
of broken should agree in gender with the subject ke but the baseline system chose instead a
feminine form (infranta). Since the subject pronoun can be dropped in Italian, this error cannot
be detected by the target language model and may only be fixed by translating the sequence ‘he
died broken’ as a single phrase, which was never observed in the training data. By contrast, Inf-
NN successfully exploited the source-side context and preferred a masculine form (devastato).

Next are two unsuccessful examples: in (4) Inf-NN encouraged the system to translate
the whole phrase ‘the classic asian student’ as masculine whereas the baseline translation used
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an incoherent mix of masculine and feminine. Unfortunately, though, the student in question,
i.e., the speaker, happened to be a woman, but this could not be inferred in any way from this
sentence. In (5) Inf-NN failed to fix the agreement between adjective and subject pronoun. By
inspecting the parallel data we found that the word enmeshed always occurred with plural forms
of Italian adjectives. This example shows that improving the scoring of the existing translation
options is not always sufficient. While we do not address generation of new inflected forms in
this work, this is an interesting direction for future work.

7 Conclusions

We have proposed a novel morphological representation scheme combined with a neural net-
work for modeling translation into morphologically rich languages (MRLs). Our approach
successfully circumvents the problem of ambiguous word analyses and makes it possible to
improve translation into MRLs where morphological lexica but no manually disambiguated
corpora exist.

Evaluated in a re-inflection task, the proposed soft tags achieve significantly higher accu-
racy than (i) a model using standard tags and trained on morphologically disambiguated data
and (ii) a Maximum Entropy model that does not learn distributed representations for source
words and target tags. When integrated into a state-of-the-art SMT decoder, our inflection
model significantly improves translation quality in two different language pairs, without hav-
ing to disambiguate during decoding. In particular, our positive English-Italian results under
both small- and large-scale data conditions demonstrate the applicability of our approach to
languages where no disambiguator exists.

As future work, we will consider learning distributed morphology representation directly
from the corpus jointly with the inflection model as well as generating unseen word inflections
during translation.
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