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Résumeé. Dpans cet article, nous présentons une utilisation desastigies preuves pour traiter I'inférence en Lan-
guage Naturel (NLI). D’ abord, nous proposons d’utilises feeories des types modernes comme langue dans laquelle
traduire la sémantique du langage naturel. Ensuite, nopEmentons cette sémantique dans 'assistant de preuve Coq
pour raisonner sur ceux-ci. En particulier, nous évaluatgerproposition sur un sous-ensemble de la suite de tests Fr
Cas, et nous montrons que 95.2% des exemples peuvent éteetearent prédits. Nous discutons ensuite la question
de l'automatisation et il est démontré que le langage déteet de Coq permet de construire des tactiques qui peuvent
automatiser entierement les preuves, au moins pour leaicas@s intéressent.

Abstract. In this paper, we present the use of proof-assistant teoggoh order to deal with Natural Language
Inference. We first propose the use of modern type theoridsealmnguage in which we translate natural language se-
mantics to. Then, we implement these semantics in the mssistant Coq in order to reason about them. In particular
we evaluate against a subset of the FraCas test suite anchs®®®% accuracy and also precision levels that outperform
existing approaches at least for the comparable parts. ®vediscuss the issue of automation, showing that Coq'<tdcti
language allows one to build tactics that can fully autonpatefs, at least for the cases we have looked at.

Mots-ClIés : Inferenceen Langage Naturel, Théorie des Types, Sémarfiiounelle, FraCas, Coq, Automatisation
des Preuves.

KewNords: Natural Language Inference, Type Theory, Formal SemarfieCas, Coq, Proof automation.

1 Introduction

1.1 Natural Language Inference

Central within a theory of formal semantics for Natural Laage (NL) is the study of Natural Language Inference (NLI).
Roughly put, NLI is the task of determining whether an NL hifysis can be inferred from an NL premise. Human
beings do not only have the ability to understand infinite ydh sentences but can further reason about these. In effect,
understanding a NL sentence amounts (among others) to kgawiat can be inferred or not from such a sentence.

Natural Language Inference has been also central in thedfeddmputational semantics. As Cooper et al. aptly put it
‘inferential ability is not only a central manifestation sémantic competence but is in fact centrally constituti/&' o
(Cooper & Ginzburg, 1996). Inferential ability accordirgg@ooper et al. (Cooper & Ginzburg, 1996) is the best way to
test the semantic adequacy of NLP systeéms.

A number of NLI platforms have been proposed over the yeaosder to evaluate NLI systems. The two most important
ones are : a) the FraCas test suite, and b) the Recognizingalé&ntailment (RTE) challenges. For the needs of this
paper, we concentrate on the FraCas test suite (Cooper &@igz1996)

1. At this point, it is necessary to distinguish between deeg shallow approaches to inference. In a nutchell, shadpproaches refers to ap-
proaches where no translation to an intermediate langsadene (Romanet al., 2006; Glickmanret al., 2005; Hicklet al., 2005; MacCartneyt al.,
2008) among many others, where deep approaches concecaepes that perform a translation to a logical language fwimference (Bos & Markert,
2005; Pulman, 2013). There are also hybrid approachesNieCartney, 2009). Obviously, the approach pursued hexeléep approach.



1.2 The FraCas test suite

The FraCas Test Suite (Cooper & Ginzburg, 1996) arose outeoftaCas Consortium, a huge collaboration with the
aim to develop a range of resources related to computats@mahntics. The FraCas test suite is specifically designed to
reflect what an adequate theory of NLI should be able to captucomprises NLI examples formulated in the form of a
premise (or premises) followed by a question and an anstwevdlves 345 examples classified according to the semantic
phenomenon involved, e.g. quantifiers, adjectives, tettsédere are some illustrative examples from the suite :

(1) Some irish delegates finished the survey on time.
Did any delegate finish the survey on time ? [Yes, FraCas 3.55]

(2)  All mice are small animals.
Mickey is a large mouse.
Is Mickey a large animal ? [No, FraCas 3.210]

In this paper, we discuss inference against a subset of #@asrtest suite, approximately 1/4 of the suite.

1.3 Modern Type Theories

The term Modern Type Theories (MTTSs), refers to type theowéhin the tradition of Martin L6f (Martin-Lof, 1971;
Martin-Lof, 1984)2 In linguistics, this tradition has been initiated with thiemeering work of Ranta (Ranta, 1992,).

In this paper, we use one such TT, specifically Luo’s Type Theath Coercive Subtyping (Luo, 2011, 2012a) among
many others. One of the advantages of MTTs compared toitaditMontagovian approaches is that MTTs can be seen
as being both model-theoretic and proof-theoretic. NL s#ios can first be represented in an MTT in a model-theoretic
way and then these semantic representations can be uratirsterentially in a proof-theoretic way. (Luo, 2014). Béss

this advantage, MTTs offer a number of features that allaveémnantic fine-grainedness and expresiveness. Some of the
most important ones are briefly mentioned below :

1. Type structuresin MTTs are very rich. Types in MTTs cangexito represent collections of objects (or constructive
sets, informally) in a model-theoretic sense, although tire syntactic entities in MTTs.

2. The notion of signature in an MTT, as introduced in (Luol20Chatzikyriakidis & Luo, 2014b), can be used to
represent situations or (incomplete) possible worlds.

As regards the second point, see (Luo, 2014) for more exanigtay, elaborating on the expressiveness of typing struc-

tures of MTTs, we briefly mention the following type strucsr.

— Dependent sum type&i{typesX (A, B) which have product typed x B as a special case}-types have been used
to interpret intersective and subsective adjectives witlloe need of resorting to meaning postulates. The infeenc
follow directly from typing (Ranta, 1994; Chatzikyriak&i Luo, 2013). Note that subtyping is essential for ¥ixgype
to work (Luo, 2012b).

— Dependent product typesl{typesII(A, B), which have arrow-typest — B as a special case). These are basic
dependent types that, together with universes (see befowyjde polymorphism among other things. To give an
example, verb modifying adverbs are typed by means of degrenidtypes (together with the universai of common
nouns) (Luo, 2012b; Chatzikyriakidis, 2014).

— Disjoint union types 4 + B). Disjoint union types have been proposed to give integpiats of privative adjectives
(Chatzikyriakidis & Luo, 2013).

— Universes. These are types of types, basically collestdtypes. Typical examples of universes in MTT-semanties i
clude, among others, the univerBeop of logical propositions as found in impredicative type thiepand the universe
CN of (the interpretations of) common nouns (Luo, 2012b) Fertises of universes can be seen in (Chatzikyriakidis
& Luo, 2012) where the universeType of all linguistic types is used in order to deal with coordioa.

2. Note that this is a term introduced by (Luo, 2011, 2012&)riter to distinguish type theories with the tradition of KtalLofand simple type
theories as these are generally used within the Montagaraaiition. A similar term, ‘rich’ type theories has been digy other people like (Cooper
etal., 2014).

3. Potentially, even further back, with the work of Sundh@¢®undholm, 1986, 1989)



— Dot-types @ e B). These are special types introduced to study co-predicétiuo, 2012b). It is worth mentioning that
coercive subtyping is essentially employed in the forniatabf dot-types?

Besides the above, we should also emphasisestifgping is crucial for an MTT to be a viable language for formal

semantics. Furthermore, also very importantly, subtymngeeded when considering many linguistic features such as

copredication (Asher, 2012; Pustejovsky, 1995).

2 Using Cog as a Natural Language Reasoner

Given MTT’s proof-theoretic aspect, it is not surprisingtimany proof assistants implement MTTs. Starting from the
early AUTOMATH system and all the way to the state of the adqgfrassistants like Coq (Coq, 2004) or Agda (Agda
2008, 2008), MTTs have been shown to be a good language &vastive theorem proving. Perhaps, the most advanced
of these provers is the Coq proof-assistant (Coq, 2004 weal proof assistant that has been used successfullyricede

a number of impressive results. Some of these include a @eplechanized proof of the four colour theorem (Gonthier,
2005), the odd order theorem (Gonthétral., 2013) as well as CompCert , a formally verified compiler fo(L@roy,
2013).

Now, given : a) Coq’s powerful reasoning ability and b) thatiplements a MTT, a new avenue of research is opened up.
To use Coq as a NL reasoner. This has been attempted in (@fr&kidis & Luo, 2014a) with a number of promising
results. In this paper, | present an extension of this ambrtzat improves on accuracy and precision over previoug dee
approaches to NLI. We then discuss, how we can use proof atimmin order to fully automate NL reasoning.

2.1 How the system works

As already said, Coq implements a MTT, more specifically take@us of Inductive Constructions, a type theory which
is very close to the MTT we are using for representing NL seioganlt is thus straightforward to provide MTT NL
semantics in Coq since Coq ‘speaks’ so to say the languagadgirNow, given that Coq is a powerful theorem prover,
it can further reason about the implemented semantics.cinvige can use Coq’s proof mechanisms to prove valid NL
inferences, in the same sense we use Coq to prove valid maticahor logical theorems. We now move to exemplify
how this idea can be evaluated against the FraCas test Qditgpéret al., 1996). The FraCas test suite involves three
categories of NLIs : positive (YES), negative (NO) and unkndUNK). For positive NLIs, we construct the example as
a declarative hypothesis in the form of a conditional anddrgrove it as a theorem. A correct account should be able to
prove all YES NLIs as theorems. For negative NLIs, we forrteuthe example but instead we try to prove the negation
of the consequent. For UNK NLIs, we should not be able to findoaffor either case of the consequent (both positive
and negative). We use the modified Grammatical FramewordepdGF, (Ljunglof & Siverbo, 2011)) in order to parse
the FraCas examples and then we translate the examplesdpritasx of Cog® But let us see how this works by looking
at example (1) repeated below as (3) :

(83) Some irish delegates finished the survey on time.
Did any delegate finish the survey on time ? [Yes]

We assume & type approach to modification, where the first projectioné@ercion (X(delegate, ITish) < delegate
with delegate:C'N). In Coq this is done by using dependent record types :

4) Record Irishdelegate : CN := mkirishdelegate:[d delegate; _: Irishd]

Adverbs and quantifiers are given the following types retpely :

(5) IIA:cN. (A — Prop) — (A — Prop)

4. See (Bassaat al., 2010) for another proposal of using coercions to deal watipiedication. See also (Chatzikyriakidis & Luo, 2015) fiatther
elaboration on the existing dot-type account.

5. Note that for the moment, we do not have an automatic &tiosl procedure between the two. This is something that eewarently working
on.Given GF'’s ability to translate accurately between laggs (natural or formal), this task seems feasible.



(6) IIA:cN.(A— Prop) — Prop
These assumptions put together are enough to prove the &xarhp start of the proof is shown below :

Theorem | RI SH: (sone Irishdel egate(on_tinme(finish(the survey)))->
(sone del egate)(on_tinme (finish(the survey))).

The commandheorem puts Coq into proof mode. We unfold the definitions usihg delta which replaces the occur-
rences of a defined notion by the definition itself in the cotngoal (or in any of the hypotheses). We then apptyo,
which introduces the antecedent as an assumption :

H: exists x:lrishdelegate,(let (a, _) := ADV (finish (the survey)) in a)

exists x : delegate, (let (a, _):=ADV (finish (the survey))

Then we applyinduction which performselim H (it applies the correct destructor to an inductive type,lin case to
the hypothesigl) andintro :

x: I rishdel egate
H: (let (a, _):= ADV (finish(the survey))in a) (let (c, _):=x in c)

exi sts x0:del egate, (let (a, _):=ADV(finish(the survey))in a)x0

At this point we can substitute0 with x. The treatment of adjectival modification allows this sithtbn, and thus a
proof can be found :

| RISH2 < exists Xx.

1 subgoal

X : Irishdel egate

H: (let (a, _):= ADV(finish (thesurvey))in a)(let (c, )

(let (a, _):=ADV(finish(the survey))in a)x
| RISH2 < assunption.
Proof conpl et ed.

We have tested against almost 30% of the FraCas test suitia(aft102 plus 3 examples outside the suite). The evalnatio
involved examples from the following sections :

— Quantifiers and monotonicity (41 examples).

— Conjoined noun phrases (15 examples).

— Adjectives (18 examples).

— Dependent plurals (2 examples)

— Comparatives (10).

— Epistemic, intensional and reportive attitudes (11 eXas)p
— Collective predication (6 examples).

— Quantificational adverbs (2 examples)

100/105 examples were correctly captured, giving an olvarauracy of 95.2%. The state of the art in precision on
the FraCas test suite is Maccartrney (MacCartney, 2009) avitoverall accuracy of 70.5%, evaluated however against
53.3% of the suite (183 examples) and against semantic piemthat we have not tested against (e.qg. ellipsis). lIrrorde
to look at more direct comparisons, MacCartney offers ani@ay of 97.7% in the quantifier section, evaluating against
44 examples, while we offer an accuracy of 100% on an evalnajainst 41 examples. We offer an accuracy of 87.5%
while (MacCartney, 2009) 80% for the same number of examplage for plurals we offer an accuracy of 82.5% for
17 examples while (MacCartney, 2009) offers 75% for 25 eXemf@he system also achieves higher accuracy than the
earlier similar system proposed by (Chatzikyriakidis & | .2614a), raising accuracy from 93.5% to 95.2%. However, the



current system lacks an automatic translation betweenalsepand the syntax of Coq and this work is done manually
in this respect, as we have already pointed bilihe nature of the automatic translation can significanttiuce these
results if it is not efficient (basically because of low régabblems). The system as it stands can however guarantee
great precision. To put things in perspective, it offers ecpmion of 100% for the YES section in the quantifier section
while (MacCartney, 2009) offers 95.5% precision, whiletfog adjectival case it offers a precision of 81.8%, comptoed
71.4% of (MacCartney, 2009). The following table summasittee results from four sections of the FraCas test suite and
a comparison between the approach presented here, (Maega009) as well as (Angeli & Manning, 2014) is shown :

Category | Count Precision Recall Accuracy
AMMCN | AMMCN AM MCN
1 | Quantifiers| AM-MC :44 N :41 | 91 95100 | 100100 100| 95 97 100
2 | Plurals AM-MC:25N:17 | 80 90100 | 29 6469.2| 38 7582.5
3 | Adjectives | AM-MC:15N:15 | 80 7181.8/ 66 83100 | 73 8087.5
4 | Attitudes | AM-MC:9N:11 |- 100100 0 83100 | 22 89100

We conclude that the approach as presented here offers aenwfilyelcome results compared to previous approaches,
most importantly a very high precision and accuracy. It iw&eer worth pointing out that in order to have a more realisti
evaluation of the system, this should be developed into &onaatic system, where a) translation into Coq is not done
manually but automatically and b) the system is furtherai@d against a bigger fragment of the FraCas test suite as
well as against inferences using natural text like the RT&llehges.

2.2 Automation

Given that Coq is an interactive rather than an automateaténe prover, in order to prove a given theorem the user has
to guide the prover to the proof. The way to do this is via Cqu&defined tactics or any other tactic libraries that have
been defined for different purposes. Coq itself involves mlmer of tactics that are designed in order to automate part of
proofs. For example, the tactiatuition solves all first-order intuitionistic tautologies. For anmoer of examples and
once the definitions have been unfolded, these can be solttednmuition only. Given that Coq allows the construction
of new tactics, one can define a new tactic that will just whftdfinitions followed by the application éfituition. This
tactic, can then fully automate a number of the examples we taalt in this paper. Another variant of this auto tactic,
much more effective can be achieved by further addingto, a tactic like Coq's pre-defineduto tactic but much more
powerful since it can break up existentials as well, and cogigce which can reason with equalities and inequalitieis T
new tactic, let us call AU T O is shown below :

()

Most of the examples we have looked at, can be solved withtaletic (for example 3 is such a case). Other examples
need more powerful tactics. For example, comparatives atielctive predication examples need more powerful tactics

to be solved. However, these tactics can be provided andtllegncan be gathered into one general auto tactic that can
effectively solve all the examples. This is indeed what weeldone, we defined 3 different auto tactics and then combined
these three tactics (let us call theiyd andc) into a general auto tactid) :

Ltac AUTO :=cbv delta ;intuition ;try repeat congruenjegito ;intuition.

(8) Ltac d := solve[#b|c].

With this tactic full automation can be achieved. The tasticceeds if one of the tactics can solve the theorem. Otheywi
it fails.

3 Conclusions

In this paper, we have presented the use of Cog as an NL rea@wen Coq’s ‘understanding’ of MTT semantics, we
straightforwardly implemented MTT semantics for NL. We lendie the approach against almost 30% of the FraCas test

6. The details of such a translation are currently underldpueent and we hope that an efficient translation that wilintaén the impressive results
as regards accuracy will be available.



suite, where an accuracy of 95.2% was achieved and a be#salbperformance in the three comparable sections of the
FraCas with earlier approaches was shown. We then discussgsiof using Coqg’s tactical language in order to fully
automate the proof process. It was shown that at least faxtheples we have looked at, this is feasible.
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