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ABSTRACT 

This paper discusses the development and implementation of an approach to the 

combination of Rule Based Machine Translation, Statistical Machine Translation and Translation 

Memory tecnologies.  The machine translation system itself draws upon translation memories 

and both syntactically and statistically generated phrase tables, unresolved sentences being fed 

to a Rules Engine. The output of the process is a TMX file containing a varying mixture of TM-

generated and MT-generated sentences.  The author has designed this workflow using his own 

language engineering tools written in Java. 

1. Introduction 

There is broad agreement today that improvements in the fluency of machine translation 

output can be achieved by the use of approaches that harness human translations.  This paper 

discusses the development and implementation of an approach to the combination of Rule 

Based Machine Translation, Statistical Machine Translation and Translation Memory 

technologies. This “multi-faceted approach” can be applied in a vendor and platform independent 

environment.   

Early methods for the combination of machine translation and translation memory tools 

involved the use of an analysis made by translation memory software to produce an export file 

containing unknown segments which were then fed into a machine translation system. The 

results were subsequently imported into the translation memory software where they received 

an “MT” penalty. This technique has been superseded in practice by the introduction of MT plug-

ins which are now available in the major commercial translation memory applications.  Some 

professional translators use these plug-ins, in a “pre-translate” stage in preference to accepting 

fuzzy matches to produce draft translations which they then revise.  In the automated translation 

work flows referred to above, the process is controlled through the translation memory 

application, and in applications like SDL Studio 2014 and memoQ the user can set which, if any, 

machine translation services are to be consulted. 

The author has implemented an approach whereby the machine translation system itself is 

able to consult and draw upon translation memories and a statistical translation model as part of 

an automated translation process.  This paper does not claim to describe a novel approach as the 
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literature contains many useful accounts of attempts to combine translation memory and 

machine translation, such as the paper by Koen & Senellart
1
, and the very detailed account by 

Kanavos and Kartsaklis
2
of attempts to combine a variety of third-party translation tools on real 

translation projects. It describes a practical way of harnessing a number of different data 

resources which the author has found useful for handling major projects such as the one 

described further on in this paper. The author acknowledges that the methods discussed in this 

paper have been broadly applied in the recently launched MateCat project
3
.   

The author is both a translator and a self-taught software developer – not a computational 

linguist – and this contribution is intended to be a personal account of experiences rather than a 

scientific paper. The approach to translation automation described is a practical one. For nearly 

two decades the author has worked as an independent provider of translation automation 

services and a language technology consultant, for Siemens Nederland and other Dutch 

companies and institutions. The translation memories utilised to deliver these services have been 

built up in decades of work as a translator and language service provider. They include sentences 

translated by other professional translators and post-edited machine translations.  All these data 

have been combined into one large TMX file, which is a record of the author's knowledge and 

experience. These services are supplied within a private network and are not delivered “in the 

Cloud”, something that is important to many of the author's industrial and government 

customers. 

At TC21, the author reported on his attempts to combine the use of his growing translation 

memories with his early Dutch-English Machine Translation system.
4
  His clients in those days 

mostly wanted to receive fully formatted MS Word files. His initial efforts relied on the use of the 

Trados Translator's Workbench to create export files of unknown words which were machine-

translated, with the translations being imported into the translation memory. Nowadays, 

however, corporate clients for his automatic translation services have themselves acquired 

commercial translation environments – commonly but not exclusively SDL Studio and memoQ, 

and want to receive the output of the MT system in a format such as TMX which can be imported 

directly into their translation memory software for post-editing.  Significantly, the supply of a TMX 

file is billed at a lower rate than a fully formatted MS Word file! 

Having worked extensively as a translator for companies in the chemical, transportation and 

telecommunication industries, the author has built up a wide-ranging “master translation 

memory”.  As a developer of a machine translation application he has investigated various ways 

of exploiting these translation memories on the assumption that output derived from human 

translations will generally be more fit for purpose than that generated solely by the application of 

syntactic rules.  

                                                        
1
Convergence of Translation Memory and Statistical Machine Translation, P.Koen & J. Senellart, MT 

Marathon 2010. 
2
Integrating Machine Translation with Translation Memory: A Practical Approach, P. Kanavos & D. 

Kartsaklis, JEC 2010. 
3
See www.matecat.com 

4
The Best of Both Worlds – or will two mongrels ever make a pedigree? , T. Lewis, TC21, 1999. 



Translating and The Computer 36 

120 

 

2. Background 

The approach described in this paper was a practical response to the challenges posed by a 

large translation automation project. The author was asked to  translate 250,000 words in 

hundreds of small files for the HAN University of Applied Sciences
5
 in the Netherlands. The 

translations were needed quickly and costs had to be kept down.  After comparing the results of 

various MT services offering Dutch-English translation,  the university decided to avail itself of the 

author's machine translation software. At the time of placing the order,  the university had not 

even decided exactly how the machine translation output was going to be processed further. 

Working with veteran Localization Consultant, Lou Cremers, the author decided on a workflow 

which involved machine translating a TMX file in such a way that the client would receive a raw 

translation memory. The HAN translation office wanted to post-edit this machine translation 

output in a translation memory environment so that it could be brought to a standard fit for 

publication on the university's website. The institution eventually decided to use memoQ and 

arranged for a post-editing team to be trained in its use. After terminological preparation of the 

project, the MT software produced a series of TMX files (TMX 1.1). The post-editors were given an 

opportunity to provide feedback which was incorporated into the translation memory being built 

as the project progressed and even led to the improvement of some of the MT rules. 

When a second project for the HAN came along, the author knew that many of the sentences 

in this project already had translations in the translation memory built from the first project.  The 

client wanted to handle the project in the same way as the first one and receive a TMX file.  

Wishing to carry out the new project completely via his own machine translation software rather 

than use third-party translation memory software,  the author wrote the code to enable his 

machine translation engine to search this translation memory directly in order to enjoy the 

benefit of the translations contained in that memory within the automatic translation process.   

3. The process 

In terms of file handling, the process is a simple one.  A TMX file is prepared
6
 in which the 

target elements, in this case <tuv lang=”EN-GB”>, initially contain the source text. The MT engine 

reads the input TMX file line by line.  Only the content of the target element is of interest, 

everything else being written straight to the output buffer.  The engine first sends off a query to 

the TranslationMemoryConsulter class. If the selected translation memory contains a 99% or 

100% match, the corresponding translation is entered in the target element in place of the 

“source text”.  After making any required minor editorial adjustments to the target segment,  the 

engine moves on to the next segment. If the selected translation memory does not contain a 

suitable match, the segment is sent off to the internal translation server for further processing. 

The translated content is returned from the server segment by segment and also replaces the 

source text in the target element. 

The output of the process is a TMX file containing a mixture of directly TM-generated and 

MT-generated sentences. The client's translators can review this file for “sanity checking”, post-

editing or full-blown revision, depending on the intended purpose of the automatic translation.  

                                                        
5
See http://blog.han.nl/onlineeducation/vertalen-van-teksten-en-site-diverse-tools/ 

6
This can be done using the Okapi Tools: http://www.opentag.com/okapi 

http://blog.han.nl/onlineeducation/vertalen-van-teksten-en-site-diverse-tools/
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The advantage of delivering a TMX file is that the post-editing work can be done in any 

commercial (or non-commercial) translation environment, in a dedicated TMX editor such as 

Olifant or even in a simple text editor on any platform.  The translators at the author's main client 

for language technology services – Siemens Nederland N.V. - import the MT-generated TMX file 

directly into their translation memory in SDL Studio 2011. Other clients use different CAT tools. 

 As stated above, the MT engine goes through the submitted TMX file on a segment by 

segment basis, and if a translation memory contains a 100% or 99% match, the target language 

segment is inserted in the output TMX file and the engine then moves onto the next segment in 

the input file. The MT engine also recognises segments entirely in English (often the case in Dutch 

documents) and inserts these directly into the output TMX file.   

In practice, parts of sentences in the input file will frequently match the content of the 

translation memory database at subsegment level. In translation memory terminology, these are 

the “fuzzy matches” for which users can determine an acceptability percentage (many translators 

set this threshold at 75-80%) in a “Pretranslate” run.  The problem with these “fuzzy matches” is 

that a sentence in the translation memory can be displayed to the user as an 80% match or 

higher, even though it means the exact opposite of the source sentence. Figure 1 gives a simple 

example of this. 

 

Figure 1: The problem with fuzzy matches 

From the earliest translation memory environments attempts have been made to use 

colours or other devices to alert the user to the fact the displayed target segment is not a 

complete translation of the source segment.  However, the author found that users of his Dutch-

English automated translation service, who were paying for “unrevised machine translation”, 

were not prepared to receive translations potentially containing glaring inaccuracies. For this 

reason, it was decided to set a very high threshold (99-100%) for transferring segments 

automatically from the translation memory into the output file via the MT engine. On the other 

hand, his translation memories contained millions of potentially useful segments. 

This awareness of possessing translation memories that didn't always tell the whole truth 

has led the author to investigate ways of storing potential subsegment matches in phrase tables 

which the machine translation engine can consult.  The advantage of storing data at subsegment 

level is that the translations retrieved by the MT engine are NOT fuzzy matches but 100% 

matches for the part of the sentence to which they correspond. In practice, the author's MT 

engine consults two phrase tables to search for matches at subsegment level:  one is created by 

the application of syntactic rules; the other is statistically derived. 

The Clean Data Repository is created by decomposing segments in translation memories 

into meaningful fragments or subsegments.  The term “clean” refers to the fact that the data 

have been checked by a human reviewer.  They have been assembled by automatically aligning 
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meaningful subsegments of the segments contained in translation memories. This is done by 

“looping through” source and target sentences from complete sentence down to bigram level.  

Through the application of a series of syntactic rules, source and target segments are divided into 

noun phrases, prepositional phrases and verbal phrases, and short sentences are also retained 

as sentences.  Many of these entries will correspond to Multiword Expressions
7
 (MWE's).  The 

human checking goes beyond grammar checks; it is made sure that terms are in-domain and the 

subsegment is in the right register.  Entries in the Clean Data Repository in the author's Dutch-

English machine translation system look like these: 

<trans-unit> 

<source xml:lang="nl-NL">bij het uitvoeren van een beveiligingsfunctie</source> 

<target xml:lang="en-GB"><mf>when a security function is performed</mf></target> 

</trans-unit> 

 <trans-unit> 

<source xml:lang="nl-NL">virtueel diagnostisch systeem</source> 

<target xml:lang="en-GB"><n1>Virtual Diagnostic System</n1></target> 

</trans-unit> 

<trans-unit> 

<source xml:lang="nl-NL">wenst over te gaan tot</source> 

<target xml:lang="en-GB"><vts>wishes to proceed to</vts></target> 

</trans-unit> 

Figure 2: Examples of entries in Clean Data repository 

These data are stored on-disk in the form of an XLIFF file and are loaded into a Java data 

structure at run-time. No translation scores are involved as it is assumed that any entry in the 

Clean Data Repository, having been checked, is 100% correct, or has a probability of 1. The user 

can add project-specific data to this repository on the fly before a translation run.  This is done by 

breaking down the source document into ngrams, which are presented with their frequency of 

occurrence as shown in Figure 3.  The user can add the translations to the source segments in a 

text file and the program then converts the entries into the XLIFF format and adds them to the 

repository. 

1 : zijn de volgende afspraken gemaakt welke verder in het 

 1 : welke verder in het document uitgebreider zullen worden toegelicht 

 1 : in het kort zijn de volgende afspraken gemaakt 
Figure 3: Phrases to be translated and added to Repository 

The author's program also allows post-edited TMX files to be “decomposed” so that the 

subsegments are added to the repository on the fly – this is particularly useful on large projects 

with multiple files as improvements made by post-editors/revisers can be incorporated into the 

data repository immediately, literally by the click of a mouse button. Figure 4 shows subsegments 

extracted from a TMX file ready to be added to the Clean Data Repository. 

 

 

                                                        
7
For a simple explanation of Multiword Expressions, see 

http://en.wikipedia.org/wiki/Multiword_expression  

http://en.wikipedia.org/wiki/Multiword_expression
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<trans-unit> 

<source xml:lang="nl">plannen is voorbehouden aan</source> 

<target xml:lang="en"><mf>planning is reserved to</mf></target> 

</trans-unit> 

<trans-unit> 

<source xml:lang="nl">in de Excel sheet staat</source> 

<target xml:lang="en"><mf>the Excel sheet contains</mf></target> 

</trans-unit> 

<trans-unit> 

<source xml:lang="nl">de aanwezigen bij het overleg</source> 

<target xml:lang="en"><n2>those attending the consultation</n2></target> 

</trans-unit> 

Figure 4: Subsegments automatically extracted from a TMX file 

One of the problems of using a static phrase table is that in real language phrases are not 

set in stone but come to life in an engagement with other words.  The Dutch verbal phrase 

“brengen op de hoogte”, literally translated as “bring someone on the height”, means “to inform”.  

We inform somebody about something so the software has to enable us to link “brengen” to “op 

de hoogte” while taking into account an intervening object. The author has written code to deal 

with these “gappy phrases”, so that a sentence like “hij bracht de raad op de hoogte” will be 

correctly translated as “he informed the board”. A special repository of such gappy phrases is 

built as a subset of the Clean Repository Data, using segments contained in the main repository, 

which has in turn been derived from the main translation memory. 

If the MT engine fails to find matches for every subsegment in the Clean Data repository it 

may proceed to consult a “dirty data” repository.  As the name suggests, the entries in this phrase 

table will not have been individually reviewed. Their accuracy is reliant upon the successful 

building of a statistical translation model using the tools provided in the Moses Statistical 

Translation Toolkit
8
. The repository is built using the train-model.perl – script. Existing translation 

memories are saved as TMX files and then divided into source and target language text files, 

which are subsequently tokenized and cleaned in the manner known to SMT practitioners. Train-

model.perl is employed in the same way as for building the statistical translation model to be 

used by the Moses decoder in a statistical machine translation environment.  The resulting 

phrase tables will be as general or specific as the TMX files from which they are derived. 

The content of the file phrase-table.gz generated by the “Moses” training process is stored as 

byte code in a serialised Java data structure, or HashMap. The translation model is created is 

created during a training stage, i.e. in advance of its deployment.  The data to be stored in this 

Java data structure are selected during the training operation on the basis of scores produced by 

train-model.perl, which means that the entire phrase table created by train-model.perl will not be 

stored in memory at run-time.  At present, the generated scores are utilised in a fairly naive way - 

low-scoring phrase pairs are excluded from the phrase table loaded into memory. There is 

certainly scope for a more sophisticated use of these scores. 

At run-time, the MT engine “decides”, sentence by sentence, on the basis of a number of 

criteria whether the Statistical Model should be used to translate that particular sentence.  These 

                                                        
8
http://www.statmt.org/moses/  

http://www.statmt.org/moses/
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criteria include the length of the sentence, the complexity of the sentence and the percentage of 

subsegments that have already been translated with subsegments from the Clean Data 

Repository. For example, the Dutch sentence “Het product wordt getest” (The product is tested) 

will not be sent to the SMT model because the Rules Engine can perfectly well handle it, and it is 

probably also in the Clean Data Repository. One the other hand, in the case of the more complex 

sentence “In het ideale geval wordt er niet getest” (In the ideal situation no testing is done) a 

search will be made in the statistically derived phrase table. This is consulted, not by the open 

source Moses decoder, but by the author's own decoder. 

 As already stated, the Clean Data Repository mostly comprises noun phrases and verb 

phrases and short whole sentences. Unlike the results of the translation memory search, the 

target subsegments retrieved from the Clean Data Repository are POS tagged and may even 

contain some semantic information.  The “clean data” are therefore useful input to the Rules 

Engine which resolves any untranslated parts of the sentence and composes the subsegments 

from these different sources into the final English sentence.  On the other hand, the “dirty” or 

unvetted, statistically derived data do not currently include any syntactic or semantic 

information.  Their relevance and usefulness is dependent upon the domain relevance of the 

TMX files from which they are derived.  Figure 5 shows a translation unit derived from the 

Statistical Machine Translation model.  In most translation memory applications, the source of a 

translation is displayed in the editing panel so it is easy for the post-editor to identify whether the 

translation comes from a translation memory, via a Statistical Translation Model or from the 

Rules Engine. 

<tu creationdate="2014/10/15 09:41" creationid="SMT"> 

<tuv lang="NL-NL"> 

<seg>Actielijsten moeten worden aangevuld cq worden beheerd.</seg> 

</tuv> 

<tuv lang="EN-GB"> 

<seg>Action lists must be supplemented or, as the case may be, managed. </seg> 

</tuv> 

</tu> 

Figure 5: Translation unit supplied via the Statistical Machine Translation model 

On a large project it is possible to gauge the usefulness of particular resources by running 

test files and then consulting the job log. Figure 6 shows a job log from a project on which both a 

translation memory and a statistical machine translation model supplied translations.  The Clean 

Data Repository is consulted by default and its supplied translations are always piped into the 

Rules Engine. 

Starting new logfile 

Number of errors logged: 0 

Segments translated from Translation Memory= 35 

Segments/subsegments supplied by Clean Data Repository= 195 

Segments translated by Rule-Based MT Engine= 661 

Segments produced from SMT Data= 45 

Figure 6: Example of a job logfile showing translation sources 
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Any segments (or subsegments) not resolved by the above three approaches will then be 

tackled by the Rules Engine, which has its own ways of dealing with multiword expressions. The 

whole process – from input to output – is summarised in Figure 7. 

 

Figure 7: Automatic translation process from input to output 

4. Practical experience 

This three-pronged approach is useful for large-scale translation automation projects in 

domains for which a relevant translation memory is available.  Typically, a project memory, which 

is a subset of the main memory, is created. That translation memory is then used to generate 

new entries in the Clean Data Repository.  A statistical translation model may then be trained 

from the same translation memory. It has to be remembered that the resulting statistically 

derived phrase table is not used as the sole supplier of the translation of the sentence but only to 

offer translations of phrases at subsegment level. 

In the “HAN project” described above, the preparatory work and the feedback of the 

translation team was the key to its success, which led the university to consider the adoption of 

this form of automated translation for future projects. The translators had an opportunity to 

provide translations of a system-generated list of unknown words and phrases in advance of the 

first translation run. The unigrams (single words) were entered in the Core Dictionary, while the 

phrases were added to the Clean Data Repository. The project involved three translation runs of 

a document of some 250,000 words. After run_1 and run_2 respectively the data were corrected 

as some of the target sentences were considered unacceptable for submission to the post-

editors. The author fed the corrections into the system by adjusting entries in the translation 

memory and entering phrases and complete sentences into the Clean Data repository. The 

results achieved in run_3 were judged acceptable as they met the basic undertaking that the 

sentences would be grammatically correct and the output would not contain any garbage or 
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jumbled phrases. At the end of the project, the translation team was handed a large translation 

memory. 

5. Judgement on usefulness 

The SMT Research Survey Wiki
9
 lists more than 60 publications (since 2005) dealing with 

domain restriction. The literature suggests that the restriction of the domain in which training is 

done delivers results that require less correction of technical terms in post-editing than general-

purpose resources.  The author's practical experience of how different types of output from his 

software are received by his customers bear out this claim. 

In day-to-day practice the author implements domain restriction by using a project 

translation memory and entering relevant subsegments in the Clean Data Repository. This has 

broadly been found to deliver a more fluent – though sometimes disjointed - output than use of 

the Rules Engine alone. The disjointedness is frequently one of style, reflecting the multiplicity of 

translation originators, and the disconnect is between sentences rather than within a sentence.  

In particular, it has been found that long-standing translation memory entries that have never 

been updated are sometimes less accurate in terms of terminology than the “pure MT” output.   

This methodology has been used to provide English translations of Dutch technical texts to 

members of international teams on large-scale projects in the fields of transport, highway 

engineering and healthcare. In nearly two decades of providing machine translation services, the 

author has only received two serious complaints about the quality of the output. The key to user 

acceptance has undoubtedly been the Clean Data Repository, which is continually enlarged and 

kept up to date by deconstructing “approved” translation memories,  something which is done at 

the end of every project. In fact, many of its short sentences, such as technical instructions, could 

equally have been included in a translation memory, and a script allows them to be converted 

from the XLIFF to the TMX format so that they can be used in any third-party translation memory 

such as Studio 2014. 

The incorporation of unsupervised or “dirty data” is recent and the extent to which the use of 

the statistically derived model improves the output of the MT run has not yet been fully 

investigated. Figure 8 shows the English output from the machine translation of a Dutch 

sentence. The first version is generated by piping the results from the Clean Data Repository 

straight into the Rules Engine. The second version is built partly by finding matches in the 

statistically derived phrase table. 

DUTCH: De uitvoer van het rapport dient geëxporteerd te kunnen worden (als excel-, 

csv- en pdf-file). 

 

RBMT: It must be possible to export the output of the report (as Excel, csv and pdf-file). 

 

SMT MODEL: 

The output with the report should be capable of being exported  (such as excel, csv and 

pdf-file). 

Figure 8: Output from Rules Engine and from Statistical Translation model 

                                                        
9
http://www.statmt.org/survey/Topic/DomainAdaptation 
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In the above example the Rules Engine achieves a more fluent output than that produced if 

the SMT model is accessed (Google Translate provides a similar translation to our in-system SMT 

model).  The conversion of the awkward passive “should be capable of being exported” to “it 

must be possible to export” is the result of the application of a specific rule. However, the 

translation provided by the SMT model is not POS-tagged so the Rules Engine has less to work 

on. The author is therefore considering POS-tagging of the English phrases translated from the 

SMT model “on the fly”.  This POS-tagging can be accomplished by the 

BNC_Frequency_List_Investigator, a Java class written by the author to retrieve the parts of 

speech of items contained in the British National Corpus. 

Nevertheless, at subsegment level, the author's general-purpose Statistical Model (trained 

from Europarl
10

) can provide reasonably credible translations as shown below
11

: 

 

Dutch    With SMT    Without SMT 

beschikbare personeel  human resources available  available personnel 

gewenste middelen   desired equipment   desired means 

onderdeel van de planning  component of the timetable         component of the planning 

ingreep    surgical procedure   intervention 

bijzondere aandacht voor  particular attention to   particular attention for 

er kan ingesteld worden  you can set    it can be set  

bezetting van de OK   workforce of the OR   occupation of the OR 

medische gegevens   medical statistics   medical data 

wordt er gekeken naar  we look at    it is looked to  

in de volgende functies  within the next functions              in the following functions 

actuele omstandigheden  topical situations   current circumstances 

registratie van het OK-team  registration of surgical team          record of the surgical team 

indien een patiënt overlijdt  where a patient dies   if a patient dies 

standby functie   standby task    standby function 

 

The above phrases are taken from a healthcare specification which was translated both with 

and without the data provided by the SMT model. Given that the SMT model was trained from 

                                                        
10

http://www.statmt.org/europarl/ 
11

Phrases extracted from machine translation of healthcare technology specification – with and without 

use of SMT 
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the broad-ranging Europarl data without any tuning, it seems reasonable to assume that models 

trained on in-domain data will yield at least comparable results in terms of the usability of 

subsegments.  The author does not intend to throw out his Rules Engine but rather to use the 

SMT model as an additional source of translations at subsegment level. 

6. Conclusions 

This flexible approach to automatic translation has been designed for handling large-scale 

projects involving professional translators at the beginning and end of the production line.  The 

author prepares these projects in close collaboration with the translators, who will ultimately 

import the “machine output” into their respective translation memory tools. The full process sees 

the machine translation engine first consulting any provided translation memory and then, if 

there is no TM match,   consulting a Clean Data Repository of subsegment data and (if the engine 

so decides) a statistically derived phrase table, before piping the “mixed bag” of phrases into a 

Rules Engine which generates the final English sentence. 

Based on his results and customer acceptance achieved from using a large general-purpose 

translation memory and a statistical translation model based on the Europarl corpus, the author 

plans to build a series of in-domain translation memories and use them to train in-domain 

statistical translation models. 

 


