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ABSTRACT. Dictionaries are sociocultural objects that can be used as underlying structures of
cognitive science models. We first show that the lexical networks constructed from dictionaries,
despite a surface disagreement at links level, share a common topological structure. We assume
that this deep structure reflects the semantic organisation of the lexicon shared by the members
of a linguistic community. We propose a model based on the exploration of this specific struc-
ture to analyse and compare the semantic efficiency of [Children/Adults] productions in action
labelling tasks. We define a generic score of semantic efficiency, SKILLEX. Assigned to partic-
ipants of the APPROX protocol, this score enables us to accurately classify them into Children
and Adults categories.

RÉSUMÉ. Les dictionnaires sont des objets socioculturels qui peuvent être utilisés comme struc-
tures sous-jacentes pour la modélisation en sciences cognitives. Nous montrons d’abord que
les réseaux lexicaux construits à partir de dictionnaires, malgré un désaccord de surface au
niveau des liens, partagent une structure topologique commune. En supposant que cette struc-
ture profonde reflète l’organisation sémantique du lexique partagée par les membres d’une
communauté linguistique, nous proposons un modèle basé sur l’exploration de cette structure
spécifique pour analyser et comparer l’efficacité sémantique des productions [Enfants/Adultes]
dans une tâche d’étiquetage d’action. Nous définissons un score générique de l’efficacité sé-
mantique, SKILLEX. Assigné aux participants du protocole APPROX, ce score nous permet de
les classer avec précision dans les catégories enfants et adultes.
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Dictionaries are sociocultural objects. We take advantage of their structural fea-
tures for defining Skillex, a graph-based lexical score for measuring the semantic effi-
ciency of used verbs by human subjects describing specific actions. Assigned to par-
ticipants of the Approx protocol, this measure enables us to accurately classify them
into Children and Adults categories.

We first show in section 1 that the lexical networks constructed from resources of
various origins (two resources built by lexicographers: the Robert dictionary (Robert
and Rey, 1985) and the Larousse dictionary (Guilbert et al., 1971-1978); one resource
built by crowd sourcing: the Jeux De Mots (Lafourcade, 2007)), despite a surface
disagreement at links level, share a common topological structure. Assuming that this
structure reflects the semantic organisation of the lexicon shared by the members of a
linguistic community, we propose then in section 2 a model based on the exploration
of this specific structure to analyse and compare the semantic efficiency of language
productions of Children versus Adults. Section 3 contains concluding remarks and
presents our future works.

1. Structure of synonymy networks
Lexical resources can be modeled as graphs G = (V,E) where a set of n vertices

V encodes lexical entities (lemmas or word senses, syntactic frames...) and a set
of m edges E ⊆ PV

2 encodes a lexical relation between these entities. A burning
issue regarding these lexical networks is their apparent significant disagreement: for
exemple, in two standard synonymy graphs on the same language, G1 = (V,E1) and
G2 = (V,E2) a great proportion of pairs {x, y} ∈ PV

2 are linked in G1 ({x, y} ∈ E1)
but not in G2 ({x, y} /∈ E2): x and y are synonyms for G1 but not for G2. Such a
large amount of disagreement is not compatible with the assumption that synonymy
reflects a somewhat common understanding of the semantic structure of the lexicon
of a given language community. To resolve this apparent contradiction, one must look
at lexical networks from a broader perspective. Fig. 1 illustrates a toy example of
generalised edge disagreement between two graphs, despite a similar structure. The
structural similarity is only visible by looking at each of the graphs as a whole, as
opposed to comparing their edges one by one. The two graphs G1 and G2 do not have
any edge in common but still look very similar, because they both draw two dense
zones that encompass the same vertices: {1, 2, 3, 4, 11, 12, 13} and {4, 5, 6, 7, 8, 9,
10}.

The dense zones found in the toy example of Fig. 1 are actually a widespread
feature of terrain networks 1, as most of them are Hierarchical Small World (HSW)
networks that share four similar properties (Watts and Strogatz, 1998; Albert and
Barabasi, 2002; Newman, 2003; Gaume et al., 2010). They exhibit:

p1: A low density (not many edges);

1. Terrain networks are graphs that model real data gathered by field work, for example in
sociology, linguistics or biology. They contrast with artificial graphs (deterministic or random).
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Figure 1. Contradiction between local variability and overall similarity.

p2: Short paths (the average number of edges L on the shortest path between two
vertices is low);
p3: A high clustering rate C = 3 × number of triangles

number of connected triplets (locally densely con-
nected subgraphs can be found whereas the whole graph is globally sparse in edges);
p4: The distribution of their degrees can be approximated by a power law.

We show in section 1.1 that the lexical networks studied in this paper also have
HSW properties. So, as Fig. 1 suggests, an apparent disagreement between lexical
networks at links level does not necessarily imply structural incompatibility of their
data. By choosing an appropriate level of representation, it should be possible to
reconcile the information they convey into a global agreement on the synonymy they
model. In section 1.2, we describe lexical networks with an original method based on
random walks. Instead of characterising pairs of vertices according only to whether
they are connected or not, we measure their structural proximity by evaluating the
relative probability of reaching one vertex from the other via a short random walk.
This proximity between vertex is the basis on which we can measure the structural
quality of the surface divergence between two lexical networks because it outlines the
similar dense zones of the graphs.

1.1. Compare G1 = (V,E1) and G2 = (V,E2) by comparing the sets E1 and
E2 as «links bags» without structures

We illustrate our purpose in this section with the comparison of two lexical re-
sources, both built by lexicographers at quite the same time:

– Rob = (VRob,ERob) : The Robert (Robert and Rey, 1985) dictionary was
digitalised during an IBM / ATILF Research unit partnership 2. The electronic re-
source lists the synonyms of the various senses of lemmas. The vertices of the lexical
graph Rob that was built from it are the lemmas, not tagged by their various senses.
The pair {x, y} ∈ ERob if and only if one of the senses of x is considered synonymous

2. http://www.atilf.fr/spip.php?rubrique18.
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with one sense of y by the lexicographic team of Robert. For example the polysemous
verb causer is both synonymous with parler (speak) and engendrer (cause).

– Lar = (VLar,ELar) : The lexical graph Lar was built from the Larousse
dictionary (Guilbert et al., 1971-1978) like the Rob was.

We synthesise the characteristic of a graph regarding its HSW properties by a set of
figures called the pedigree of a graph. Table 1 provides the pedigrees of Rob and
Lar and shows that they are all typical HSW (Motter et al., 2002; De Jesus Holanda
et al., 2004; Gaume, 2004).

Lexical Graphs n m 〈k〉 C Llcc λ (r2)

Lar 22,066 73,091 6.62 0.19 6.36 -2.43 (0.90)

Rob 38,147 99,998 5.24 0.12 6.37 -2.43 (0.94)

Table 1. Pedigrees of lexical graphs: n and m are the number of vertices and edges, 〈k〉 is
the mean degree of the vertices, C is the clustering coefficient of the graph, Llcc is the average
shortest path between any two nodes of the largest connected component (subgraph in which
there exist at least one path between any two nodes), λ is the coefficient of the best fitting power
law of the degree distribution and r2 is the correlation coefficient of the fit, measuring how well
the data is modelled by the power law.

Given two graphsG1 = (V1, E1) andG2 = (V2, E2), we measure the similarity of
lexical coverage of G1 and G2 by the Jaccard index: J(G1, G2) = |V1∩V2|

|V1∪V2| . We then
have J(Rob, Lar) = 0.49. These two graphs therefore have a wide enough common
lexical coverage for the comparison between synonymy judgments they model to be
carried out on this common lexical coverage. So, to measure the agreement between
edges of G1 and G2, one first reduces the two graphs to their common vertices: G′1 =(
V ′ = (V1 ∩ V2), E′1 = E1 ∩ (V ′ × V ′)

)
and G′2 =

(
V ′ = (V1 ∩ V2), E′2 =

E2 ∩ (V ′ × V ′)
)
.

For each vertex pair {a, b} ∈ (V ′ × V ′), four cases are possible:

– {a, b} ∈ E′1
⋂
E′2: agreement on pair {a, b}, {a, b} is synonymous for G′1 and

for G′2;
– {a, b} ∈ E′1

⋂
E′2: agreement on pair {a, b}, {a, b} is neither synonymous for

G′1 nor for G′2;
– {a, b} ∈ E′1

⋂
E′2: disagreement on pair {a, b}, {a, b} is synonymous for G′1

but not for G′2;
– {a, b} ∈ E′1

⋂
E′2: disagreement on pair {a, b}, {a, b} is synonymous for G′2

but not for G′1.

A long tradition of graph comparison research consists in assessing if two graphs
are isomorphic. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a bijective function f : V1 7→ V2 such that, for any two vertices {u, v} of
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G1: {u, v} ∈ E1 ⇔
{
f(u), f(v)

}
∈ E2. So the research in this tradition consists in

looking for such an isomorphism. In the case that this paper proposes to study, nodes
are labeled and can only be put in correspondence across graphs if they have the same
label: the isomorphism is given, it is the identity function. Assessing whether two
graphs G1 = (V,E1) and G2 = (V,E2) are isomorphic would then only involve
verifying that E1 = E2.

Such a similarity is very basic: if no single edge differs, then the two graphs are
similar, else they are different. In order to soften the isomorphism approach, and
to provide a continuous, quantitative measure of how different two graphs are, sev-
eral approaches were proposed (see a review in, for example, (Gao et al., 2010)).
These methods are inspired by the edit distance of character strings proposed by
(Levenshtein, 1966). The graph edit distance is defined, between two graphs G1 =
(V1, E1) and G2 = (V2, E2), as the cheapest series of operations to make G1 iso-
morphic to G2. Operations are usually the simplest set of insertion, deletion and
substitution of nodes and edges. This set is subject to be extended according to the
data graphs attempt at modeling. For example, in the case of image segmentation,
(Ambauen et al., 2003) introduce operations such as node splitting and merging.

In the scope of this paper, since V1 = V2 = V , the only possible operations
will be the deletion or insertion of edges. If the cost of editing an edge is 1, then
the edit distance between G1 and G2 is: ED = |E1 ∩ E2| + |E2 ∩ E1|. Note that
ED ∈ [0, |E1| + |E2|]. This dissimilarity measure does not take into account the
number of edges of G1 and G2. Having to edit 10 edges to make two graphs of 15
edges isomorphic is not the same as having to edit 10 edges to make two graphs of
15,000 edges isomorphic. This edit distance has to be normalised:

GED(G1, G2) =
|E1 ∩ E2|+ |E2 ∩ E1|

|E1|+ |E2|
[1]

Now, GED(G1, G2) ∈ [0, 1]. This measurement on Lar′/Rob′ is:
GED(Lar′, Rob′) = 0.47. This shows that Lar′ and Rob′ are dissimilar : Larousse
and Robert dictionaries have only a weak agreement on which pairs of lemmas are syn-
onymous. This can be explained by the fact that the projection of the gradual notion
of near synonymy onto binary synonymy judgements leaves ample room for interpre-
tation, even if the judges are expert lexicographers as for the Larousse and Robert
standard dictionaries. In fact, independently built resources that describe the same lin-
guistic reality often show a weak agreement even when based on human judgements
under the same protocol (Murray and Green, 2004).

1.2. Compare G1 = (V,E1) and G2 = (V,E2) by comparing the structure
generated by E1 on V to the structure generated by E2 on V

GED is a quantitative measure which compares graph edge-by-edge. It does not
take their global structure into account, although it is very specific because they have
HSW properties. The presence or absence of an edge between a pair is a judgement
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on its synonymous nature that can be confirmed or contradicted by the topological
structure of the graph around it. In this section we describe an alternative quantitative
approach based on random walks that enables us to enrich edge information on pairs
with this confirmation measure.

If G = (V,E) is a reflexive 3 and undirected graph, let us define dG(u) = |{v ∈
V/{u, v} ∈ E}| the degree of vertex u in graph G, and let us imagine a walker
wandering on the graph G: at a time t ∈ N, the walker is on one vertex u ∈ V ; at time
t + 1, the walker can reach any neighbouring vertex of u, with uniform probability.
This process is called a simple random walk (Bollobas, 2002). It can be defined by a
Markov chain on V with a n× n transition matrix [G]:

[G] = (gu,v)u,v∈V with gu,v =


1

dG(u)
if {u, v} ∈ E,

0 else.

Since G is reflexive, each vertex has at least one neighbour (itself) thus [G]
is well defined. Furthermore, by construction, [G] is a stochastic matrix: ∀u ∈
V,
∑

v∈V gu,v = 1. The probability P t
G(u v) of a walker starting on vertex u to

reach a vertex v after t steps is:

P t
G(u v) = ([G]t)u,v [2]

One can then prove (Gaume, 2004), with the Perron-Frobenius theorem (Stewart,
1994), that if G is connected (i.e. there is always at least one path between any two
vertices), reflexive and undirected, then ∀u, v ∈ V :

lim
t→∞

P t
G(u v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V dG(x)

= πG(v) [3]

It means that when t tends to infinity, the probability of being on a vertex v at time t
does not depend on the starting vertex but only on the degree of v. In the following we
will refer to this limit as πG(v). The dynamics of the convergence of random walks
towards the limit (Eq. [3]) is heavily dependent on the starting node. Indeed, the
trajectory of the random walker is completely governed by the topology of the graph
in the vicinity of the starting node: after t steps, any vertex v located at a distance of
t links or less can be reached. The probability of this event depends on the number
of paths between u and v, and on the structure of the graph around the intermediary
vertices along those paths. The more interconnections between the vertices, the higher
the probability of reaching v from u. For example, if we take G1 = Rob and G2 =
Lar, and choose the three vertices u = éplucher (peel), r = dépecer (tear apart) and
s = sonner (ring), where:

3. I.e. each vertex is connected to itself. If such self-loops do not exist in the data, they may be
generally added without loss of information.
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• u and r are judged synonymous in Rob: {u, r} ∈ E1;
• u and r are judged not synonymous in Lar: {u, r} /∈ E2;
• r and s have the same number of synonyms in G1: dG1

(r) = dG1
(s) = d1;

• r and s have the same number of synonyms in G2: dG2(r) = dG2(s) = d2.

Then Equation [3] states that (P t
G1

(u r))1≤t and (P t
G1

(u s))1≤t converge to
the same limit: πG1(r) = πG1(s) = d1∑

x∈V1
dG1

(x) as do (P t
G2

(u r))1≤t and

(P t
G2

(u s))1≤t : πG2
(r) = πG2

(s) = d2∑
x∈V2

dG2
(x) . However the two series do

not converge with the same dynamics. At the beginning of the walk, when t is small,
one can expect that P t

G1
(u r) > P t

G1
(u s) and P t

G2
(u r) > P t

G2
(u s) because

éplucher (peel) is semantically closer to dépecer (tear apart) than to sonner (ring).
Indeed the number of short paths between éplucher (peel) and dépecer (tear apart) is
much greater than those between éplucher (peel) and sonner (ring).
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(b) G2 = Lar

Figure 2. Different convergence dynamics of P t
G(u v) to its limit for three cases of

u, v relation: (1) u and v are synonyms like éplucher (peel) and dépecer (tear apart)
in Rob; (2) u and v are not synonyms and are semantically distant like éplucher (peel)
and sonner (ring) in Rob and in Lar; (3) u and v are not synonyms but semantically
close like dépecer (tear apart) and éplucher (peel) in Lar.

Figure 2(a) shows the values of P t
G1

(u r) and P t
G1

(u s) versus t, and com-
pares them to their common limit. Figure 2(b) shows the values of P t

G2
(u r) and

P t
G2

(u s) versus t, and compares them to their common limit. These figures con-
firm our intuition that, since éplucher (peel) and dépecer (tear apart) are semantically
close, P t

G1
(u r) and P t

G2
(u r) decrease to their limit, even if, like in G2, r and s

are not synonymous.

The limit πG(v) does not actually provide any information about the proximity of
u and v in the graph, but on the opposite, it masks it with the importance of v in the
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graph. Therefore we define the t-confluence CONF t
G(u, v) between two vertices u,

v on a graph G as follows:

CONF t
G(u, v) =

P t
G(u v)

P t
G(u v) + πG(v)

[4]

CONF t
G actually defines an infinity of symmetrical vertex closeness measures, one

for each random walk length t. For clarity reasons, for the rest of the paper we choose
one closeness measure within this infinity: we set t with the following arguments:

– if t is too large : ∀u1, v1, u2, v2 ∈ V, CONF t
G(u1, v1) ≈ CONF t

G(u2, v2) ≈
0.5. This would hinder the distinction between pairs of vertices in a same higher
density zone from pairs in lower density zones;

– if t is too small : For any pair {u, v} for which the shortest path length in G′ is
greater than t, P t

G′(u v) = 0, thus CONF t
G(u, v) = 0. This does not indicate if the

pair {u, v} is in an higher or a lower density zone of G.

So, in the rest of this paper, t is set to t = 5 and we define CONFG =
CONF 5

G. We consider as “close” each pair of vertices {u, v} having a confluence
CONFG(u, v) greater than 0.5. In other words, u and v are close if the probability of
reaching v from u after a 5 step random walk is greater than the probability to be on v
after an infinite walk.

We have seen that the lexical networks are HSW, so they exhibit the properties p2
(short paths) and p3 (high clustering spleen). With a classic distance as the shortest
path between two vertices, all vertices would be close to each other in a lexical network
(because of the p2 property). On the contrary, CONFG allows us to identify the
vertices of a same cluster of G (because of the p3 property):

– if u and v are in a same higher density zone of G, P 5
G(u v) > πG(v) and thus

CONFG(u, v) > 0.5;
– if u and v are not particularly close or distant inG, P 5

G(u v) = πG(v) and thus
CONFG(u, v) ≈ 0.5;

– if u and v are not in a same higher density zone in G , P 5
G(u v) < πG(v) and

thus CONFG(u, v) < 0.5.

1.3. A controlled experimental setup with artificial graphs

We artificially build two types of pairs of graphs to compare :

– two graphs with 5 higher density zones : We first build a graph Ga = (V,Ea)
where V is the union of k = 5 groups of n = 50 vertices, and edges are drawn
randomly between vertices of the graph with two different probabilities. They are
drawn with a probability p1 = 0.5 between two vertices of the same group, and p2 =
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0.01 between vertices of two different groups. We then build a new graph Gb =
(V,Eb) by randomly choosing half of the edges ofGa, and a new graphGc = (V,Ec)
such that Ec = Ea \Eb. These 3 graphs are plotted in Fig. 3. Although Gb and Gc do
not have any edge in common, (Eb ∩ Ec = ∅), Gb and Gc exhibit 5 identical, local,
higher density zones;

– two random graphs : We first build a random graph GR
a = (V,ER

a ) such
|ER

a | = |Ea|. We then build a new graph GR
b = (V,ER

b ) by randomly choosing half
of the edges of GR

a , and a new graph GR
c = (V,ER

c ) such that ER
c = ER

a \ ER
b .

Neither GR
b nor GR

c have higher density zones.

(a) Ga = (V,Ea) (b) Gb = (V,Eb) (c) Gc = (V,Ec)

Figure 3. Artificial graphs with 5 identical, local, higher density zones.

– Since Eb ∩ Ec = ∅, Eb ∩ Ec = Eb and Ec ∩ Eb = Ec. Therefore,
GED(Gb, Gc) = |Eb∩Ec|+|Ec∩Eb|

|Eb|+|Ec| = |Eb|+|Ec|
|Eb|+|Ec| = 1. This would mean that these

two graphs are completely dissimilar, which is true in the sense that they have no
edges in common, however it is clearly wrong with respect to the topological “organ-
isation” they share. Indeed two vertices that are in the same relatively higher-density
zone in the first graph will also be in the same relatively higher density zone in the
other graph.

– Since ER
b ∩ ER

c = ∅, ER
b ∩ ER

c = ER
b and ER

c ∩ ER
b = ER

c . Therefore,

GED(GR
b , G

R
c ) =

|ER
b ∩ER

c |+|E
R
c ∩ER

b |
|ER

b |+|ER
c |

=
|ER

b |+|E
R
c |

|ER
b |+|ER

c |
= 1.

All quantitative measurements like GED, based only on the counting of the num-
ber of disagreements, have the drawback of only comparing graphs as “bag of edges”,
thus being insensitive to the topological contexts. But if we compare the distributions
of the confluence of conflicting edges in Gb vs Gc, in figure 4(a) on the one hand, and
in GR

b vs GR
c , in figure 4(b) on the other hand , the difference is striking.

Therefore we define µ(G1, G2) a measure of conflicting edges in G1 vs G2:

µ(G1, G2) =

(∑
{u,v}∈(E2∩E1)

CONFG1({u, v}) +
∑

{u,v}∈(E1∩E2)
CONFG2({u, v})

)
|E1 ∩ E2|+ |E2 ∩ E1|

Although GED(Gb, Gc) = GED(GR
b , G

R
c ) = 1, with µ, we can now see the differ-

ence : On 50 realisations µ(Gb, Gc) = 0.74 (with standard deviation std < 0.005)
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while µ(GR
b , G

R
c ) = 0.49 (std < 0.005). Quantitatively the difference between

Gb/Gc and GR
b /G

R
c is the same but it structuraly differs.
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Figure 4. Histogram of the set
{
CONFGc({u, v}) such that {u, v} ∈ (Eb ∩

Ec)
}⋃{

CONFGb
({u, v}) such that {u, v} ∈ (Ec ∩ Eb)

}
, compared to

the histogram of the set
{
CONFGR

c
({u, v}) such that {u, v} ∈ (ER

b ∩
ER

c )
}⋃{

CONFGR
b

({u, v}) such that {u, v} ∈ (ER
c ∩ ER

b )
}

.

1.4. Applications on lexical graphs

We begin by looking at the distribution of the confluence of conflicting edges in
Lar′ = (V ′, ELar′) vs Rob′ = (V ′, ERob′). We compare it to this same distribution
on pairs of equivalent random graphs Lar′R = (V ′, ER

Lar′) andRob′R = (V ′, ER
Rob′)

built such that: |ER
Lar′ ∩ ER

Rob′ | = |ELar′ ∩ ERob′ |, |ER
Lar′ ∩ ER

Rob′ | = |ELar′ ∩ ERob′ |,
|ER

Lar′ ∩ E
R
Rob′ | = |ELar′ ∩ ERob′ |.

By construction we have GED(Lar′, Rob′) = GED(Lar′R, Rob′R), but if we
compare the distributions of the confluence of conflicting edges in Lar′ vs Rob′, on
the one hand in Figure 5(a), and in Lar′R vs Rob′R, on the other hand in Figure 5(b),
the difference is striking.

Quantitatively, the difference between Lar′/Rob′ and Lar′R/Rob′R is the same:
GED(Lar′, Rob′) = GED(Lar′R, Rob′R) = 0.47, but it differs structurally
µ(Lar′, Rob′) = 0.80 while µ(Lar′R, Rob′R) = 0.24 (with 50 realisations: std <
0.005). There’s the same number of disagreements, but those disagreements are struc-
turally weak between Lar′ and Rob′, while they are structurally stronger between
Lar′R and Rob′R. This is what allows us to see the Figure 5 and that’s what measures
µ.

We now compare a set of lexical networks of various origins, resources built by
lexicographers and by crowd sourcing:

– Rob = (VRob,ERob) and Lar = (VLar,ELar): see section 1.1;
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(b) Lar′R/Rob′R

Figure 5. Histogram of the set
{
CONFRob′({u, v}) such that {u, v} ∈ (ELar′ ∩

ERob′)
}⋃{

CONFLar′({u, v}) such that {u, v} ∈ (ERob′ ∩ ELar′)
}

, compared
to the histogram of the set

{
CONFRob′R({u, v}) such that {u, v} ∈ (ELar′R ∩

ERob′R)
}⋃{

CONFLar′R({u, v}) such that {u, v} ∈ (ERob′R ∩ ELar′R)
}

– Jdm = (VJdm,EJdm) : The Jeux De Mots resource 4 is built from a form of
crowd sourcing, using a game described in (Lafourcade, 2007). Players must find as
many words as possible that are associated to a term presented to the screen, according
to a rule provided by the game. The aim is to find as many semantic associations as
possible amongst what other players have found, but that the concurrent player has
not found. Several rules can be proposed, including the request for listing as many
synonyms or quasi-synonyms as possible. The collected results in January 2014 build
a graph of words linked by typed semantic relations (according to the rules) that is
freely accessible. We work here on the sub-graph of synonymy relations 5.

Each of these resources is split by parts of speech (Nouns, Verbs, Adjectives) result-
ing in three different graphs, designated, for example for the Robert dictionary, as
follows: (ex: Rob ⇒ RobN = (VRobN , ERobN ), RobV = (VRobV , ERobV ), RobA =
(VRobA , ERobA)). Table 2 provides the pedigrees of these graphs and shows that they
are all typical HSW. In table 3 we compare 3 pairs of graphs by parts of speech.

Between the graphsLar,Rob, and Jdm, the surface measurementGED is always
between 0.45 and 0.51, indicating a low agreement at links level compared irrespec-
tive of their structural contexts. However the structural measure µ is always greater
than or equal to 0.70, which means that, despite the substantial proportion of local
disagreements, these graphs have a similar deep structure.

4. http://www.lirmm.fr/jeuxdemots/jdm-accueil.php.
5. This synonymy graph can be viewed here : http://autourdumot.fr/fr.V.peler.
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Lexical Graphs n m 〈k〉 C Llcc λ (r2)

Lar
Adjectives 5,510 21,147 7.68 0.21 4.92 -2.06 (0.88)
Nouns 12,159 31,601 5.20 0.20 6.10 -2.39 (0.88)
Verbs 5,377 22,042 8.20 0.17 4.61 -1.94 (0.88)

Rob
Adjectives 7,693 20,011 5.20 0.14 5.26 -2.05 (0.94)
Nouns 24,570 55,418 4.51 0.11 6.08 -2.34 (0.94)
Verbs 7,357 26,567 7.22 0.12 4.59 -2.01 (0.93)

Jdm
Adjectives 9,859 30,087 6.10 0.16 5.44 -2.24 (0.90)
Nouns 29,213 56,381 3.86 0.14 6.48 -2.66 (0.93)
Verbs 7,658 22,260 5.81 0.14 5.06 -2.08 (0.89)

Table 2. Pedigrees of lexical graphs (we refer to the legend of table 1 for the description of
the columns).

Rob/Lar Jdm/Lar Jdm/Rob

GED (µ) (µR) GED (µ) (µR) GED (µ) (µR)

A 0.45 (0.76) (0.34) 0.47 (0.71) (0.38) 0.51 (0.70) (0.29)
N 0.48 (0.70) (0.20) 0.48 (0.70) (0.19) 0.47 (0.70) (0.13)
V 0.48 (0.73) (0.40) 0.46 (0.70) (0.39) 0.47 (0.70) (0.37)

Table 3. To compare two lexical graphs G1/G2, one first reduces the two graphs
to their common vertices: G′1 =

(
V ′ = (V1 ∩ V2), E′1 = E1 ∩ (V ′ × V ′)

)
and

G′2 =
(
V ′ = (V1∩V2), E′2 = E2∩(V ′×V ′)

)
. Then, we build their equivalent random

graphs G′R1 and G′R2 and compute: GED = GED(G′1, G
′2), (µ) = µ(G′1, G

′2) and
(µR) = µ(G′R1 , G

′R
2 ). Each value (µR) on each of equivalent random graphs, is the

average with 50 realisations µ(G′R1 , G
′R
2 ) (all standard deviations std < 0.005).

2. Skillex

We saw in the previous section 1 that synonyms dictionaries are sociocultural ob-
jects which share a common deep structure, i.e., the same local densities. We make
the assumption that this deep structure reflects the shared semantic organisation of the
lexicon by members of a same linguistic community. In this section, we will exploit
this assumption to define an analytical tool for diagnosing properties of a mental lexi-
cal network based on language production. Instead of using psycholinguistics criteria
that must be analysed by a human hand (specificity, conventionality, imageability. . . )
to evaluate how efficient a verb is to label an action, we automatically compute the se-
mantic efficiency of verbs by mapping the semantics of labelled actions onto current
thesauruses and by exploring the specific structure of these thesauruses as complex
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networks. Thus, we propose a model to compute a generic score of semantic effi-
ciency, called Skillex, which combines two other efficiency measurements. Applied to
participants of Approx, a protocol for collecting action labellings, Skillex accurately
categorizes these participants into the two [Young Children/Adults] age groups.

State-of-the-art research about lexical networks and lexical acquisition process are
briefly reviewed in section 2.1. Then in section 2.2 we detail our model and its evalu-
ation in section 2.3, on the basis of the Approx protocol.

2.1. Lexical networks and lexical acquisition process
Firstly, recent research (Bowerman, 2005; Duvignau et al., 2012; Gaume et al.,

2008) has discovered two salient patterns in the verb productions of young children:

(a) verbs that, although semantically close to the expected conventional verb, don’t
match the labelled action on at least one of their semantic components;

(b) verbs that expect generic categories on their semantic components: many objects
fit in such categories.

On the other hand, several research projects have demonstrated a relation between
the structure of lexical networks and the lexical acquisition process. According to
(Steyvers and Tenenbaum, 2005), in lexical networks built from the Roget’s thesaurus,
WordNet and the USF word association norms (Nelson et al., 2004), vertex degrees
are correlated with:

– the age of acquisition (AoA) of English words (Morrison et al., 1997);
– the frequency of occurrence of such words in English, itself correlated with their

AoA (Kučera et al., 1967).

These findings are confirmed by a study of (De Deyne and Storms, 2008a), for the
Dutch language, on the basis of the graph extracted from the Dutch Word Association
norms (De Deyne and Storms, 2008b). The study also shows that both the clustering
coefficient in the word’s neighbourhood (distance 2) and its betweenness centrality
(measure of the centrality of a vertex in a graph) are correlated to its AoA.

2.2. Model
2.2.1. Theoritical motivations of the model

Our model is motivated by the parallel between (a) experimental results on seman-
tic acquisition of action verbs and (b) our hypotheses on HSW properties of synonymy
networks (Duvignau et al., 2004; Gaume et al., 2008):

– 1.a verbs produced by adults are more specific than those produced by children;
– 1.b specific verbs’ degrees are low (p4);
– 2.a action verbs produced by children are less appropriate to the labelled actions

than those produced by adults;
– 2.b in synonymy networks, verbs are brought closer if their meanings are closely

related (p3).



110 TAL. Volume 55 – no 3/2014

Rank RobV LarV JdmV

1 peler* (peel) décortiquer* (peel/shell) peler* (peel)
2 s’époiler* (shave) éplucher* (peel/pare) décortiquer* (peel/shell)
3 desquamer* (skin) peler* (peel) exfolier* (exfoliate)
4 écorcer* (put the bark off) écaler* (shell) épiler* (shave)
5 dépouiller* (skin/strip) écorcer* (put the bark off) éplucher* (peel/pare)
6 éplucher* (peel/pare) écosser (shell/pod) écorcer* (put the bark off)
7 écorcher* (skin) dépouiller (skin/strip) tondre* (mow)
8 enlever* (remove) plumer* (pluck) écorcher* (skin)
9 décortiquer (peel/shell) monder (blanch) dépouiller (skin/strip)

10 démascler (≈ pull the bark off) scruter (scrutinise) dépiler (remove hair from)
11 gemmer (≈ pull the gum off) raisonner (reason) cailler* (curdle)
12 baguer (ring) tamiser (sieve/sift) raser (shave)
13 inciser (lance) émonder (prune/blanch) écaler (shell)
14 désosser (bone) épinceter (pull the buds off) analyser (analyse)
15 dépiauter (skin) nettoyer (clean) voler (steal)
16 couper (cut) disséquer (dissect) désosser (bone)
17 voler (steal) retourner (turn over, around . . . ) écosser (shell/pod)
18 examiner (examine) époutir (pull impurity off a cloth) inciser (lance)
19 plumer (pluck) épointiller (pull the dirt off a sheet) érafler (scrape/graze)
20 épouiller (delouse) analyser (analyse) égratigner (scratch/graze)

Table 4. The 20 closest verbs to peler (peel) in RobV , in LarV and in JdmV (with
t = 5) (* for neighbours).

This model is based on two measures: (1) the degree of a verb in a synonymy
network and (2) a verb’s proximity to a lexico-semantic zone of a synonymy network
that is detailed in the next section.

2.2.2. Prox

Let us define a lexico-semantic zone of the graph G = (V,E) by a probability
distribution ∆ on V , its vertex set (more details on such a definition are given hereafter
in section 2.3.2). We then define the proximity of a verb v ∈ V to a lexico-semantic
zone defined by a probability distribution ∆ by:

proxG(v,∆) =
(∆[G]5)v

maxr∈V (∆[G]5)r
[5]

For example, table 4 provides the list of the 20 closest French verbs to peler (to peel)
in RobV , in LarV and in JdmV (∆ = δpeler, the certainty to be located on peler).

2.2.3. Efficiency of a verb

Let G = (V,E) be a verb synonymy graph, v ∈ V a verb and ∆a the probability
distribution on V that delimits the meaning of an action a. We define s(v,∆a) the
efficiency of verb v in relation to ∆a by:

s(v,∆a) =
proxG(v,∆a)

dG(v)
[6]
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Our model is based on the hypothesis that adults produce verbs that have a better
efficiency in relation to ∆a than the efficiency of verbs produced by children to label
the same action. The measures proxG(v,∆a) and dG(v) both play a meaningful part
in the efficiency in relation to the ∆a score:

– proxG(v,∆a): the greater the proximity of verb v to ∆a, the more semantically
appropriate the verb v is, to describe a;

– dG(v): the smaller the degree of verb v, the more specific the verb v.

2.2.4. Four scores

This section details how our model attributes four scores of lexical performance to
each individual, given a language L, a graphGL = (VL, EL), and a set of actionsA =
{a1, · · · , ai, · · · an}. Let ∆L = {∆L

a1
· · · ,∆L

ai
· · · ,∆L

an
} be the lexico-semantic

zones that correspond, inGL, to the actions ofA. Let x be an individual who produced
a set of verbsWai,x to label action ai. For each verb setWai,x such thatWai,x∩VL 6=
∅, the following figures are computed:

– D(Wai,x) is the mean 6 of the set {dG(v) | v ∈Wai,x ∩ VL}
– P (Wai,x) is the mean of the set {proxG(v,∆L

ai
) | v ∈Wai,x ∩ VL}

– S(Wai,x) is the mean of the set {s(v,∆L
ai

) | v ∈Wai,x ∩ VL}.

These three figures are the basis on which we compute the four scores of each partici-
pant x for the action category defined by A:

– Productiveness score NA(x): mean of {|Wa,x| | a ∈ A}
– Degree score DA(x): mean of {D(Wa,x) | a ∈ A and Wa ∩ VL 6= ∅}
– Prox score PA(x): mean of {P (Wa,x) | a ∈ A and Wa ∩ VL 6= ∅}
– Skillex score SA(x): mean 7 of {S(Wa,x) | a ∈ A}.

2.3. Evaluation
2.3.1. Approx protocol

The Approx protocol (Méligne et al., 2011; Duvignau et al., 2012) permits to
gather verbal production labeling an action. The Approx protocol is, on average, com-
pleted by a participant in 20 minutes, and enables us to compute a lexical performance
score for each participant.

2.3.1.1. Material and participants

The material (illustrated in figure 6) consists in sixteen 30-second action-films
without speech, that show acts of deterioration/separation of objects. In each film a
woman alters an object with the help of her hands or with an instrument, explicitly
showing an initial state and a final state.

6. Mean is for arithmetic mean.
7. When Wa,x ∩ VL = ∅ we assign S(Wa,x) = 0.



112 TAL. Volume 55 – no 3/2014

(a) Material : 16 movies of DETERIORATION-SEPARATION

(b) Tasks : 1-Naming & 2-Rewording

(c) Comparative analysis: between types of subjects (Ti) & between languages
(Lj).

Figure 6. The APPROX protocol.
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The Approx protocol is without cultural bias (Cheung et al., 2010), the films in-
clude sounds but no speech, the Approx protocol can therefore be used with different
people of different languages, different ages, with or without pathology. We focus
here on 2 groups of French native speakers 8:

– CF : 74 French young children (2-5 years old)
– AF : 76 French young adults (18-40 years old)

2.3.1.2. Procedure

The films are shown in random order to a participant. After each film, the ex-
perimenter asks 9 the participant what the woman did. Between each action film, a
distractor is shown to avoid perseveration effects. Results of participants who do not
watch all 16 films are not taken into account. Lexical action labels are extracted from
the elicited responses, and lemmatised. Compound labels are split according to their
components :

– simple verb + complement (e.g. to break into pieces→ to break + into pieces)
– simple verb + simple verb (e.g. to make broken→ to make + to break)

2.3.2. From action-stimuli to lexico-semantic zones

For French language F with the synonymy graph RobV = (VRobV , ERobV ) and
the 2 groups of participants: CF young children and AF young adults, a lexico-
semantic zone ∆RobV

a is the distribution of probability on VRobV that denotes, as
objectively as possible, a action-stimulus a of the protocol. To define this distri-
bution, a mixed 10 PopF sample of participants is gathered by randomly choosing
25 participants from CF and 25 from AF . For each verb v of VRobV and each ac-
tion a is attributed the frequency freqFa (v) with which it was used by participants of
PopF to label action a. The probability distribution ∆RobV

a , on VRobV , then defines
a’s lexico-semantic zone in RobV :

∀v ∈ VRobV , (∆
RobV
a )v =

freqFa (v)∑
s∈VRobV

, freq
F
a (s)

[7]

For French language F with the 2 groups of participants CF and AF , and for each
synonymy graph, LarV = (VLarV , ELarV ) and JdmV = (VJdmV

, EJdmV
), in the

same way we define respectively for each action a : (∆LarV
a ), (∆JdmV

a ).

2.3.3. Tasks

The two tasks are detailed using the French synonymy graph RobV =
(VRobV , ERobV ). The exact same procedures are done with the two other French syn-
onymy graphs LarV = (VLarV , ELarV ), JdmV = (VJdmV

, EJdmV
).

8. Participants do not have any cognitive impairment.
9. We use here only the first task : “What did the woman do?”
10. So that lexico-semantic zones do not induce a bias towards the adult or child age group.
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2.3.3.1. Task 1: Computing participant’s scores

We refer to the 16 action-stimuli of the protocol as A = {a1, · · · , ai, · · · , a16},
and to their corresponding lexico-semantic zones on VRobV as ∆RobV =
{∆RobV

a1
· · · ,∆RobV

ai
· · · ,∆RobV

a16
}. Three scores DRobV

A (x), PRobV
A (x) and

SRobV
A (x) are computed for each native French speaker participant to the Approx pro-

tocol on the action category “deterioration/separation of objects” denoted by A.

In order to evaluate our model on the basis of this task, we compare young chil-
dren’s scores to scores of adult participants: a significant difference would mean that
such scores accurately discriminate the two age groups [Children/Adults].

2.3.3.2. Task 2 : Automatic [Children/Adults] age group categorisation

It consists in measuring the accuracy of the automatic categorisation of the two age
groups CF and AF , on the basis of the three scores computed in task 1. With each of
the 3 scores, we use the k-means algorithm (k = 2) (Hartigan and Wong, 1979) to sep-
arate the set of participants into two categories. When considering the Degree score,
the category with the greatest centroid is assigned to the young children category, the
other to the adults category. Conversely, when considering the Prox score or the
Skillex score, the category with the greatest centroid is assigned to the adults cate-
gory, the other to the young children category.

The accuracy of the automatic categorisation is measured by the agreement rate
between the expected categories (CF and AF ) and the score-computed categories.

2.3.4. Results

2.3.4.1. Task 1 results

We used an ANOVA to measure how significant the difference between young
children’s and adults’ PROX scores is, and a non-parametric Man-Whitney-Wilcoxon
test to measure how significant the differences were between the Productiveness,
Degree and Skillex scores of young children and adults 11. Results are shown in
figures 7, and 8:

– Productiveness score: shows a significant difference between the produc-
tiveness scores of children and adults (W (150) = 4788, p < 0.001);

– Degree score: shows a significant difference between the degree scores of chil-
dren and adults, (FR-ROB: W (150) = 5252, p < 0.001; FR-LAR: W (150) = 4857,
p < 0.001; FR-JDM: W (150) = 5176, p < 0.001);

– Prox score: shows a significant difference between the Prox scores of children
and adults, (FR-ROB: W (150) = 22.46, p < 0.001; FR-LAR: W (150) = 63.19,
p < 0.001; FR-JDM: W (150) = 26.91, p < 0.001);

11. Since, according to the Shapiro-Wilk test, the distribution of the Productiveness,Degree
and Skillex scores are not normal distributions, ANOVA was not applicable.
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Figure 7. Productiveness scores of the [Children/Adults] age groups.

– Skillex score: shows a significant difference between the Skillex scores of chil-
dren and adults, (FR-ROB: W (150) = 5531, p < 0.001; FR-LAR: W (150) = 5467,
p < 0.001; FR-JDM: W (150) = 5551, p < 0.001).

The Productiveness, Degree, Prox and Skillex scores highlight a significant dif-
ference between the verb productions of young children and of adults, upon a task that
consists in labelling actions that show deteriorations or separations of objects, with the
three graphs RobV , LarV and JdmV .

2.3.4.2. Task 2 results

Task 2 aims to confirm that task 1 results are significant and consistent enough to
enable automatic categorisation of adults and children. These automatic categorisation
is shown in figures 9(a), 9(b), 9(c). It is evaluated by the rate of agreement between
automatically computed categories and expected categories, which is measured with
the Precision and κ, the Kappa of Cohen (Cohen, 1960):

– precision is the observed agreement probability po;
– the κ is defined as : κ = po−pe

1−pe
in which pe is the expected agreement probability

knowing (a) the distribution of individuals on the Adult and Child categories that were
built by the 2−mean algorithm and (b) the distribution of individuals on the expected
CF and AF groups.

In table 5 we show that the Skillex score categorises [Children/Adults] with a
excellent agreement (according to the scale of (Landis and Koch, 1977) independently
of the graph (κ = .93, κ = .88, κ = .91 respectively with RobV , LarV and JdmV )

2.4. Skillex on Mandarin
We apply the same procedure on the Mandarin with:

– CM : 29 Mandarin young children (2-5 years old)
– AM : 60 Mandarin young adults (18-30 years old)
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(a) Degree with RobV (b) Prox with RobV (c) Skillex with RobV

(d) Degree with LarV (e) Prox with LarV (f) Skillex with LarV

(g) Degree with JdmV (h) Prox with JdmV (i) Skillex with JdmV

Figure 8. Box-and-whisker diagrams: Degree, Prox, and Skillex scores of the
[Children/Adults] age groups with RobV , LarV and JdmV .

– One Mandarin synonymy graph: CcwV = (VCcwV
,ECcwV

): It is a graph
of verbs extracted from CilinCWN: a fusion of Chinese WordNet (CWN) 12 and a

12. Chinese WordNet is a lexical resource modelled on Princeton WordNet, with many novel
linguistic considerations for Chinese. It is proposed and launched by Huang et al. (Huang
et al., 2004), at the time of writing it contains 28,815 synonyms. It has been maintained and
extended at National Taiwan University, and available at http://lope.linguistics.ntu.
edu.tw/cwn2.
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GRAPH n=150 SCORE
Degree Prox Skillex Productiveness

with RobV Precision .83 .74 .97
κ .67 .48 .93

with LarV Precision .78 .75 .94 Precision: .71
κ .56 .49 .88 κ: .42

with JdmV Precision .85 .75 .95
κ .69 .50 .91

Table 5. 2-means clustering results on French: Degree, Prox, Skillex and
Productiveness.

GRAPH n=89 SCORE
Degree Prox Skillex Productiveness

with CcwV Precision .64 .84 .91 .44
κ .17 .62 .80 .03

Table 6. 2-means clustering results on Mandarin : Degree, Prox, Skillex and
Productiveness.

Chinese thesaurus TongYiCi CiLin (Cilin) 13. Data was processed similarly to the
way RobV , LarV and JdmV were built.

– Like for French, compound labels are split according to their components, more-
over, when the produced verb by a participant is a Mandarin resultative compound verb
(Li and Thompson, 1981), it is split according to: simple verb + result.

Table 6 and Figure 9(d) show the results on Mandarin. Table 5 and 6 suggest that
the main component (degree or prox) of the lack of efficiency in action labelling dur-
ing lexical acquisition depends on the language to acquire: (a) whereas, in Mandarin,
the Prox score categorises [Children/Adults] with a substantial agreement (accord-
ing to the scale of (Landis and Koch, 1977), κ = .62 with GCcw), this is less the case
in French (κ = .48, κ = .49, κ = .50 respectively with RobV , LarV and JdmV );
(b) whereas, in French, the Degree score categorises [Children/Adults] with an sub-
stantial agreement (κ = .67, κ = .56, κ = .69 respectively with RobV , LarV and
JdmV ), this is not the case in Mandarin (κ = .17 with CcwV ).

In fact, the Skillex score is the only score able to highlight differences of se-
mantic efficiency of action labelling between children and adults independently from
the language. It is the only score that accurately categorises participants into the two
[Children/Adults] age groups in both languages ( kappa > .80 : almost perfect agree-
ment).

13. The Tongyici Cilin (Mei et al., 1984) is a Chinese synonym dictionary known as a thesaurus
in the tradition of Roget’s Thesaurus in English. It contains about 70,000 lexical items.
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(a) On French, with RobV (b) On French, with LarV

(c) On French, with JdmV (d) On Mandarin, with CcwV

Figure 9. Automatic categorisation [Children/Adults] with 2-means clustering on
Skillex scores with RobV , LarV , JdmV for French and GCcw for Mandarin.

3. Conclusion and future works
In this paper, we first show that the lexical networks constructed from resources of

various origins are Hierarchical Small World, and despite a surface disagreement at
links level, share a common topological structure. We make the assumption that this
deep structure reflects the shared semantic organisation of the lexicon by members
of a same linguistic community. We then use of this deep structure as an artefact of
the humans’ representation of lexical knowledge for defining Skillex, a lexical score
for measuring the semantic efficiency of used verbs by human subjects describing
specific actions. Assigned to participants of the Approx protocol, this measure enables
us to accurately classify them into Children and Adults categories for Mandarin and
also for French. The Approx protocol is directly applicable to different languages
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and participant samples (adults, L1 (first language), L2 (second language), children,
participants with pathologies . . . ). Moreover, results do not significantly vary with
the lexical resources on which Skillex score computations are based. The participant’s
Skillex score computation is therefore robust to resource variation.

We focused in this paper on the comparative study between children and adults
on French and on Mandarin, but there is hope that Skillex can be successfully used in
other contexts for investigating humans’ representation of lexical knowledge. So, we
intend to further this initial study into four directions: (a) validate the deep structure
of synonym networks as an artefact of the humans’ representation of lexical knowl-
edge by using random walk-based measure to simulate elicited judgments of word
similarity by humans (Hill et al., 2014; Bruni et al., 2014), (b) to extend the analysis
to other languages, with the long term perspective of initiating a language typology
of lexical acquisition dynamics (i.e. with multilingual ressources like Wiktionary 14),
(c) to extend the protocol to other action categories (for example verbs of movement)
in order to compare semantic efficiency of humans’ productions in action labelling
tasks across action types, and (d) to extend the study to the analysis of pathologies:

• Various stages of the Alzheimer’s disease (Joubert et al., 2010). Building on
works of Méligne et al. (2011), we formulate the two following hypotheses: On the
basis of their Approx protocol verb production (first task only), participants can be
attributed a Skillex score that:

– H1.1: will accurately categorise participants into two [Moderate
Alzheimer/Older without pathology] groups;

– H1.2: will NOT enable their accurate categorisation into two [Moderate
Alzheimer/Child without pathology] groups;
• Asperger’s syndrome (Atwood, 1998). Building on works of Maffre et al.

(2012), we formulate the two following hypotheses: On the basis of their Approx pro-
tocol verb production (first task only), participants can be attributed a Skillex score
that:

– H2.1: will accurately categorise participants into two [Asperger Child/Child
without pathology] groups;

– H2.2: will NOT enable their accurate categorisation into two [Asperger
Child/Adult without pathology] groups.
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