
Recent Progress on Monotonicity

Thomas F. Icard, III1 and Lawrence S. Moss2

This paper serves two purposes. It is a summary of much work con-
cerning formal treatments of monotonicity and polarity in natural lan-
guage, and it also discusses connections to related work on exclusion
relations, and connections to psycholinguistics and computational lin-
guistics. The second part of the paper presents a summary of some
new work on a formal Monotonicity Calculus.

1 Introduction

It has been known since Aristotle that many entailment patterns be-
tween linguistic expressions can be derived by simple predicate replace-
ment. Monotonicity reasoning, involving a particular sort of predicate
replacement, has played an especially important role in the develop-
ment of logic and semantics, and continues to do so today.

Monotonicity is a pervasive feature of natural language, and it has
been linked to many fundamental aspects of linguistic processing, rea-
soning, and even grammar. In the late 1980s van Benthem (1986, 1991)
and Sánchez-Valencia (1991) defined proof systems for reasoning about
entailment using monotonicity in higher-order languages. Working in a
simply-typed language and building on the long line of work in cate-
gorial grammars, the idea behind the so-called Monotonicity Calculus
was to mark expressions of functional type with monotonicity informa-
tion, and use this in a proof system. Work on this topic has recently
been revived by computational linguists, and it has found its way into

1Department of Philosophy, Stanford University.
2Department of Mathematics, Indiana University, Bloomington. This work was

partially supported by a grant from the Simons Foundation (#245591 to Lawrence
Moss).

167

LiLT Volume 9
Perspectives on Semantic Representations for Textual Inference.
Copyright c� 2014, CSLI Publications.

168 / Thomas F. Icard, III and Lawrence S. Moss

important applications (see Section 4).
This paper o↵ers an overview of recent developments in the study

of monotonicity in natural language. Strictly speaking, monotonicity
(and its opposite antonicity) is a property of functions, and is therefore
a semantic notion. However, we will also be concerned with what is
usually called polarity, a syntactic notion. In fact, the Monotonicity
Calculus and related logical systems can be thought of as exploiting the
close connection between polarity and monotonicity. We use syntactic
markings to define proof systems whose soundness is guaranteed by the
correspondences between positive polarity and monotonicity on the one
hand, and negative polarity and antitonicity on the other. One of the
main contributions of this paper is to make these notions fully precise,
and to present a completeness result for the Monotonicity Calculus.

The outline of the paper is as follows. Section 2 is a less technical
introduction to the fundamental concepts involved. In Sections 2.1-2.3,
we introduce the notions of monotonicity, antitonicity, and polarity.
Using examples from natural language semantics and basic algebra,
we illustrate the use of marked types, and explain how expressions of
these types are interpreted model-theoretically. We also outline the fun-
damental algorithms used for marking parsed expressions with polarity
information. In Section 2.5, we discuss a variation on this approach,
called internalized polarity marking. Section 3 contains a short sum-
mary of recent work on extending monotonicity calculi to reasoning
about exclusion relations in addition to inclusion relations.

In Section 4 we o↵er a brief summary of recent work in psychology
and computational linguistics that has made critical use of earlier theo-
retical work on monotonicity. Finally Section 5 presents formal details
underpinning the Monotonicity Calculus, including explicit develop-
ment of a suitable type system (Section 5.1), a precise statement of the
proof rules (Section 5.4), and a discussion of soundness and complete-
ness (Section 5.5). We omit some technical details and proofs, which
appear in a companion manuscript in progress (Icard and Moss 2013).

2 Reasoning about Monotonicity

2.1 Basic Definitions and Examples

Monotonicity is a pervasive feature in natural language inference, and
it is not only interesting in its own right but is tied up with other
features of language. However, it is not always so easy to get a handle
on what monotonicity actually is, to say what it comes to semantically.
Perhaps the clearest explanation takes monotonicity to be a property of
functions defined on pre-orders. A pre-order is a pair (D,) consisting

Recent Progress on Monotonicity / 169

of a set D and a relation  on D which is reflexive (d  d for all d 2 D)
and transitive (if c  d and d  e, then also c  e). If we have two
(pre-)ordered domains (D1,1) and (D2,2), a function f : D1 ! D2

is monotonic if, whenever a 1 b we have f(a) 2 f(b). We say f is
antitonic if, whenever a 1 b it follows that f(b) 2 f(a).

This paper is concerned with two general examples: the first, per-
taining to language, is close to what we see in areas of formal semantics,
and is related to work in Montague grammar and the theory of gener-
alized quantifiers. The second is a mathematical example that in some
ways is a variation on the first.

Example 1. Consider a word like every. If we think of every as taking
two arguments, then intuitively it is a function antitonic in its first
argument and monotonic in its second argument. For a sentence such
as, Every aardvark sees a hyena, if we replace aardvark with the more
specific brave aardvark, the resulting sentence is entailed by the first:
Every brave aardvark sees a hyena. Likewise, if we replace hyena by the
less specific carnivore, then this sentence is also entailed: Every aardvark
sees a carnivore. Both of these facts can easily be seen to follow from the
standard interpretation of every as the subset relation on predicates.

Indeed, each quantifier in English has its own monotonicity profile,
where + means monotonic, � antitonic, and · neither monotonic nor
antitonic in general:

� every +
+ some +
� no �

+ not every �
· most +
· few �

· exactly n ·
+ at least n +
� at most n �

Here is how to read this notation, starting with the first example of
every. The idea is that in a sentence of the form every A B, if we
replace A by C ✓ A, then every A B entails every C B (Example 1).
Similarly if we replace B by D ◆ B, then every A B entails every A D.
The � indicates that the sentence as a whole is antitonic in A; similarly,
the + indicates that the sentence is monotonic in B. The monotonicity
profiles above are the strongest possible statements. That is, we could
have put · in all the profiles. But then this would mean that we failed
to recognize important information. To put things di↵erently, we can
read · as saying neither monotonic nor antitonic in general.

Expressions other than determiners also have interesting monotonic-
ity profiles. For instance, a preposition like ‘without’ is clearly antitonic:
without a doubt entails without a reasonable doubt. Moreover, we can

170 / Thomas F. Icard, III and Lawrence S. Moss

reason about expressions with embedded operators:
(1)

No aardvark without a keen sense of smell can find food
implies No aardvark without a sense of smell can find food

Here sense of smell is embedded under three operators: a, without, and
no. Since keen sense of smell “implies” sense of smell, it follows that
without a sense of smell “implies” without a keen sense of smell. Applying
no reverses this once more.

So far we are treating the “implies” relation between English expres-
sions informally. Between predicates this is assumed to be the “more
specific than” relation; between sentences it is the “entails” relation.
This can be made more precise by assigning semantic types to En-
glish expressions and interpreting typed expressions in appropriately
ordered domains. A precise type system will be defined later in Section
5.1. The following is a mathematical example, illustrating domains for
interpreting a simple mathematical language.

Example 2. Let D1 = D2 = R be the real numbers, and 1 = 2 = 
the ordinary “less than or equal to” relation on R. Then it is easy to
check that, e.g., as functions of a variable x, the functions 2x and 7+x
are monotonic, while �x is antitonic. As an example of monotonicty
reasoning, consider how one might determine which of the following
two expressions is larger: �(7 + 2�3) or �(7 + 2�4)? One way to do it
would simply be to evaluate both sides and then compare. This is not
of interest to us, because it avoids the general principles that are our
main topic. Instead, we can argue as follows:

3 < 4
�4 < �3 �x is antitone

2�4 < 2�3
2x is monotone

7 + 2�4 < 7 + 2�3
7 + x is monotone

�(7 + 2�3) < �(7 + 2�4)
�x is antitone

Naturally, linguistic examples are more relevant for our purposes
than mathematical examples. However, it will often simplify the pre-
sentation to see the mathematical examples.

2.2 Monotonicity in algebra via grammatical inference

Consider the function

f(v, w, x, y, z) =
x� y

2z�(v+w)
.

We intend this to be a function from five real numbers back to the
reals. Suppose we fix numerical values for the variables v, w, x, y, z,
and then we take each variable in turn, and (while keeping the others

Recent Progress on Monotonicity / 171

fixed) increase its value. For v, w, and x, the overall value goes up. For
y and z, it goes down. We would summarize all of the observations by:

f(v+, w+, x+, y�, z�).

The notations + and � are what we mean by polarities. Note that these
really are properties of occurrences of variables: a given variable might
have both positive and negative occurrences in a given function. For
example, consider x in (x+ 1)/(x+ 2).

Here is how we can think about this in terms close to the way formal
semantics works with the simply typed lambda calculus. We take a
single type r, and then we have function symbols

(2)
plus : r ! (r ! r) minus : r ! (r ! r)
times : r ! (r ! r) div2 : r ! (r ! r)

The variables v, w, . . ., z may be taken as constants of type r.
We should mention that the natural semantics of these symbols are

going to be higher-order one-place functions, rather than the more usual
binary functions. For example, [[plus]] is the function from R to functions
from R to itself which takes a real number a to the function �b.a + b.
So we would write (plus(x))(y) to indicate x+ y. Dropping the paren-
theses and writing plus x y allows one to read through the higher-order
functions, but o�cially they are still going to be there. See Example 10
for more on the semantics of our syntax for algebraic expressions. We
also must mention that div2 is not supposed to be one-place version
of the usual division operation. The idea is that div2(x)(y) should be
x ÷ 2y, not x/y. This complication is to make everything monotone.
We obtain terms in Polish notation:
(3)

div2 : r ! (r ! r)

minus : r ! (r ! r) x : r

minus x : r ! r y : r

minus x y : r

div2 minus x y : r ! r

minus : r ! (r ! r) z : r

minus z : r ! r t

minus z plus v w : r

div2 minus x y minus z plus v w : r

where t above is minus z plus v w with the derivation

(4)

minus : r ! (r ! r) z : r

minus z : r ! r

plus : r ! (r ! r) v : r

plus v : r ! r w : r

plus v w : r

minus z plus v w : r

The term in (3) corresponds to the term at the beginning of this sec-
tion, (x� y)/2z�(v+w), and the term in (4) corresponds to the subterm
z � (v +w). We are presenting a derivation of the term in the style fa-
miliar from categorial grammar (CG), and we assume that the reader

172 / Thomas F. Icard, III and Lawrence S. Moss

has some familiarity with these ideas. In fact, we will only appeal to
the elimination rules (the application of functions to arguments) in this
paper, which will mostly be suppressed.

We are interested in a term corresponding to f from above. For
reasons of space, we leave the type information implicit:

(5)

div2

minus x
minus x y
minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w

Polarity determination The central question is whether we can de-
termine the polarities of the variables from the tree representation. Here
is one presentation of the algorithm proposed by van Benthem (1986).

1. Label the root with +.
2. Propagate notations up the tree. The right branches of nodes for

div2 and minus of type r flip notations. Otherwise, we maintain
the notations as we go up the tree.

For example, here is how this works with the term in (5):

(6)

div2+

minus+ x+

(minus x)+ y�

(minus x y)+

(div2 minus x y)+

minus� z�

(minus z)�

plus+ v+

(plus : v)+ w+

(plus : v w)+

(minus z plus v w)�

(div2 minus x y minus z plus v w)+

Notice that the polarity markings on the variables agree with what we
saw before: f(v+, w+, x+, y�, z�).

The algorithm was first proposed in categorial grammar in van Ben-
them (1986) to formalize the + and � notation (he used " for + and #
for �). His proposal was then worked out by Sánchez-Valencia (1991).

2.3 New types

We have seen the function symbols plus, . . ., div2 in (2) along with their
types as higher order functions. In the polarity determination algorithm
described above, we started with the type declarations in (2) and then
used the extra monotonicity features of the lexical items.

However, we could also proceed in a di↵erent manner. We could
record additional monotonicity/antitonicity information concerning our
symbols into the types. For example, minus is monotone in its first
argument and antitone in its second. We therefore elaborate on (2)

Recent Progress on Monotonicity / 173

with a di↵erent set of type declarations:

(7)
plus : r

+! (r
+! r) minus : r

+! (r
�! r)

times : r
+! (r

+! r) div2 : r
+! (r

�! r)

We can be more general by using the types in (7) directly. We are
therefore reconsidering the syntax of the algebraic expressions. For ex-
ample, we revisit (4) in this new regime:

minus : r
+! (r

�! r) z : r

minus z : r
�! r

plus : r
+! (r

+! r) v : r

plus v : r
+! r w : r

plus v w : r

minus z plus v w : r

We wish to understand the connection of the new syntactic types
to something in the semantics, and so we introduce new type domains.
These will be preorders, not simply unstructured sets.

Dr = R, the real numbers with the usual order 
D

r
+!r

= the monotone functions from Dr to Dr

D
r

�!r
= the antitone functions from Dr to Dr

D
r

+!(r
+!r)

= the monotone functions from Dr to D
r

+!r

D
r

+!(r
�!r)

= the monotone functions from Dr to D
r

�!r

The natural interpretations of the functions plus, minus, etc., belong
to the appropriate domains. However, we will not be concerned with
the precise functions these terms denote, only with whether they are
monotone or antitone. Notice all of our functions in this example are
either monotone or antitione.

The issue once again is how to determine the polarities of the individ-
ual occurrences. We re-state the bottom-up (root-to-leaves) algorithm
that we saw before, this time in a more general form. (In our statement,
the root is at the “bottom” of the tree, and the parents are “above”
their child.)

1. Label the root with +.
2. Propagate notations up the tree.

(a) If a node is labeled ` and its parents are of type �
+! ⌧ and

�, then both parents are labeled `.

(b) If a node is labeled ` and its parents are of type �
�! ⌧ and

�, then the former parent is to be labeled ` and the latter
parent is to be labeled �`, that is, the flipped version of `.

The point is to present the algorithm using only the + and � signs
on the arrows, rather than the particular lexical items used. That is, the

174 / Thomas F. Icard, III and Lawrence S. Moss

+ and � signs on the type arrows encode all the information that the
polarity algorithm would use. We simply ignore anything else we might
know about these functions. All inference is driven by monotonicty
information alone.

A variation on the polarity determination presented here was pro-
posed by van Eijck (2007), who observed that the same result can be
achieved by marking nodes in the syntax tree based on whether they
respect or flip the markings.

2.4 Operations which are neither monotone nor antitone

Not every operation of interest is monotone or antitone. We have al-
ready seen that the semantics of most would be neither monotone nor
antitone in its first argument. For an easy mathematical example, con-
sider the absolute value function |x| : R ! R. To continue our treat-

ment, we take a function symbol abs : r
·! r. We write

·! because,
while the interpretation is a function, we cannot classify this interpre-
tation as monotone or antitone. More formally, we can say that the
interpretation of abs belongs to the set Dr given as follows:

D
r

·!r
= the set of all functions from Dr to Dr

That is, all we know about abs is that it is some function from R to R.
We can extend the algorithm above in a straightforward way. Per-

haps the most elegant extension involves considering the set M =
{+,�, ·} of markings on the arrows to be an algebraic structure, using
the operation � defined in the table below:

� + � ·
+ + � ·
� � + ·
· · · ·

This tiny algebra is the basis of much work on natural logic (van Ben-
them 2008; Sánchez-Valencia 1991; van Eijck 2007; Zamansky et al.
2006). We can generalize the bottom-up algorithm in point 2(b):

2(b) If a node is labeled ` and its parents are of type �
m! ⌧ and �,

then the former parent is to be labeled ` and the latter parent is
to be labeled m � `.

2.5 Internalized types

At this point, we have seen several ways to determine polarities in a
parse tree given by a categorial grammar. Either way, the determina-
tion of polarities is an external feature of the syntax tree, something
determined by an algorithm. Instead of complicating the architecture

Recent Progress on Monotonicity / 175

of grammar, we could complicate the particular grammar that we use
and achieve the same thing. We introduce negative signs on types, to
denote opposite preorders. And we allow a lexical item to have more
than one type. (This is standard in categorial grammar.) We use the
following lexicon:

v, w, x, y, z : r
plus : r ! (r ! r)
minus : r ! (�r ! r)
times : r ! (r ! r)
div2 : r ! (�r ! r)

v, w, x, y, z : �r
plus : �r ! (�r ! �r)
minus : �r ! (r ! �r)
times : �r ! (�r ! �r)
div2 : �r ! (r ! �r)

Here is an explanation of what the types refer to, along the lines of
what we did above.

Dr = R, the real numbers with the usual order 
D�r = R, the real numbers with the opposite order �
Dr!r = the monotone functions from Dr to Dr

Dr!�r = the monotone functions from Dr to D�r
= the antitone functions from Dr to Dr

D�r!(r!�r) = the monotone functions from D�r to Dr!�r

A term corresponding to z/2x�y parses as

div2 : r ! (�r ! r) z : r

div2 z : �r ! r

minus : �r ! (r ! �r) x : �r
minus x : r ! �r y : r

minus x y : �r
div2 z minus x y : r

The parse tree automatically indicates the polarities. For example, the
term as a whole is antitone in x, since its type is �r; there is no parse of
the term which has x : r as a leaf, even though this typing is available
in the grammar. Similarly, the term is monotone in y and z. The point
here is that there is no need to have a separate algorithm for polarity
determination.

For linguistic reasons for this internalized line of work, see Dowty
(1994). For more on this flavor of monotonicity in categorial grammar,
see Moss (2012).

In the rest of this paper, we are not going to discuss the internalized
approach. One reason for this is that we are interested in presenting an
account that also allows functions to be labeled as neither monotone
nor antitone, as explained above in Section 2.4.

176 / Thomas F. Icard, III and Lawrence S. Moss

2.6 Monotonicity reasoning

Up until now, we have mainly been concerned with developing tools
which allow one to look at a syntactic representation and see which
positions are monotone, which antitone, and which neither. But this is
only the beginning. As we mentioned at the outset of this paper, much
of the interest in monotonicity is connected with inference.

Here is an example of what we are after in this regard; the formal
details will appear in Section 5 below. Suppose that we have acquired
some lexical monotonicity information, for example that

run  move
cat  animal

We also assume we have the monotonicity information that we codify
in the typing for the determiner every and for a transitive verb like
see. Independent of how an agent would learn any of this information,
we explain how these facts could be exploited in simple reasoning. For
instance, how is it that

(8)
Everything which sees every cat runs

implies Everything which sees every animal moves

Indeed, we would like the inference to be formalized in the same kind of
proof-theoretic manner that we saw with derivation trees in categorial
grammar in the first place; these are derivations in natural deduction.
The di↵erence is that in addition to inference between sentences, we
want a general notion of  between items of any syntactic category.
What we have written here is on the level of noun phrases, and on the
VP level it would be

see every animal  see every cat

This is the first step in our semi-formal derivation below, going from
the assumption (the leaf of the tree) to the line below it.

cat  animal

see every animal  see every cat

Everything which sees every cat runs  Everything which sees every animal runs

Notice that both steps are a kind of antitonicity: the positions of animal
and cat have switched. Going further, we might like to combine the
derivation above with one involving runs and moves to give an account
of the inference in (8). By the monotonicity of the second argument of
every, we have:

runs  moves

Everything which sees ev. animal runs  Everything which sees ev. animal moves

Finally, if we let

Recent Progress on Monotonicity / 177

t = Everything which sees every cat runs

u = Everything which sees every animal runs

v = Everything which sees every animal moves

then from t  u (first derivation) and u  v (second derivation), we
derive t  v, i.e., the entailment in (8).

All of these steps can be formalized in a Monotonicity Calculus that
we shall see in Section 5. Here is a preview of the rules:

(Refl)
t  t

t  u u  v
(Trans)

t  v
u  v

(Mono)
t[u+]  tv u

u  v
(Anti)

tv u  t[u�]
s  t

(Point)
s(u)  t(u)

See Section 5 for details. The names are for the evident abbreviations:
Refl for reflexive, Trans for transitive, Mono for monotone, Anti
for antitone, and Point for pointwise.

Finally, note that in natural language this kind of reasoning is not
limited to predicate restriction and expansion. It also includes reasoning
about events, locations, times, sums, and more general mereological
domains. All of these have natural associated pre-orders (often with
more structure), and we can consider monotone and antitone functions
over such domains. For instance, lives in is monotonic with respect to
the “part-of” relation on locations, whereas lasts more than is antitonic
with respect to the “subinterval” relation on times. Moreover, these
interact with the quantifiers in the expected ways. For instance:

2 hours  6 hours

more than 6 hours  more than 2 hours

play that lasts more than 6 hours  play that lasts more than 2 hours

Every play. . .more than 2 hrs is too long  Every play. . .more than 6 hrs is too long

For simplicity, our natural language examples will be based on the sim-
ple model of individuals, predicates and properties (sets of individuals),
quantifiers, and so on. But it is important to point out that the sort of
reasoning we are describing is quite general.

3 Reasoning about Exclusion

Monotonicity reasoning certainly does not exhaust the inferential pat-
terns that follow from the standard logical interpretations of natural
language expressions. An obvious question is whether we can go fur-
ther with the “surface reasoning” approach of marking types with use-
ful inferential information. Recent work by MacCartney (2009) and

178 / Thomas F. Icard, III and Lawrence S. Moss

MacCartney and Manning (2009) has shown that many new inferen-
tial patterns can be derived by tracking how functional expressions
project exclusion relations, in addition to the inclusion relations on
which monotonicity reasoning is based. It was then shown in Icard
(2012) that the resulting system can be understood formally as an ex-
tension of the Monotonicity Calculus, with more type markings and
correspondingly more classes of functions refining the classes of mono-
tonic and antitonic functions.

A simple example of an inference that depends on exclusion is:

Every porcupine is nocturnal) Not every porcupine is diurnal.

Notice that nocturnal and diurnal do not stand in an inclusion relation,
nor do every and not every. Thus, we cannot perform replacements as
in the examples above. For that we need to know how the exclusion
relations between such expressions are projected in di↵erent contexts.

The important observation, essentially made first in Keenan and
Faltz (1984), is that type domains have more structure than an arbi-
trary pre-order. The relevant structure here is that of a bounded dis-
tributive lattice. This is a tuple X = (X,_,^,?,>), where X is a set, _
and ^ are commutative, associative, and idempotent operations which
distribute over each other, and ? and > satisfy the identities ?^x = ?,
?_ x = x, >^ x = x, >_ x = >. For instance, Dt is the smallest non-
trivial bounded distributive lattice = ({0, 1},+, · , 0, 1); and the
bounded distributive structure for predicates is the “powerset algebra”
(}(E),[,\, ;, E). In fact, whenever D⌧ is a bounded distributive lat-
tice, so is D�!⌧ . All of this holds for the smaller class of “Boolean”
lattices as well, but we do not need to make use of complements here.

Following MacCartney (2009) (as presented in Icard (2012)), we in-
troduce the following set of relations, which are well-defined on elements
of any bounded distributive lattice X = (X,_,^,?,>):

x  y : x ^ y = x

x � y : x _ y = x

x|y : x ^ y = ?
x ^ y : x _ y = >

We write x ⌘ y if both x  y and x � y; write x f y if both x|y and
x ^ y (and we say that x and y are mutually exclusive); and write x#y
for the universal (uninformative) relation on X. Thus we define the set
R of relations to be: {⌘,,�,f, |,^,#}.
Example 3. The predicates square and circular stand in the ‘|’ relation
since the set of square things and the set of circular things are disjoint.

Recent Progress on Monotonicity / 179

In the space of quantifier meanings, we have more than five ^ fewer
than eight, since at least one of these holds of every two sets. Finally,
animate stands in the ‘f’ relation to inanimate, since these are mutually
exclusive and exhaustive.

Monotone functions preserve the basic inequalities  and �, while
antitone functions reverse them. Now that we have introduced several
new relations, what classes of functions do we need to predict the re-
lation between two complex expressions that di↵er only with respect
to some subexpressions whose relation is known? That is, supposing
uRv, what do we need to know about t in order to determine for which
R0 2 R we have t[u]R0t[v]? It turns out, some familiar refinements of
the classes of monotonic and antitonic functions are su�cient:

Definition 1. Suppose f : X! Z is a function on lattices.

f is additive if f(x _ y) = f(x) _ f(y).

f is multiplicative if f(x ^ y) = f(x) ^ f(y).

f is anti-additive if f(x _ y) = f(x) ^ f(y).

f is anti-multiplicative if f(x ^ y) = f(x) _ f(y).

That additivity and multiplicativity refine monotonicity follows from
the easy observation that the following three conditions are equiva-
lent: (a) f is monotonic; (b) f(x) _ f(y)  f(x _ y); (c) f(x ^ y) 
f(x) ^ f(y). Similarly, anti-additivity and anti-multiplicativity refine
antitonicity since the following three are equivalent: (a) f is antitonic;
(b) f(x _ y)  f(x) ^ f(y); (c) f(x) _ f(y)  f(x ^ y).

It has been observed, at least since Zwarts (1981), that, for instance,
no is anti-additive in both of its arguments, while every is anti-additive
in its first argument and multiplicative in its second argument:

No aardvark eats kelp or carrots ⌘
No aardvark eats kelp and no aardvark eats carrots

Every animal is a child and a grandchild ⌘
Every animal is a child and every animal is a grandchild

In fact, all of these function classes are exemplified by expressions in
English. We introduce a new set of type markings ⌃ extending M:

⌃ = {·,+,�,�,�,�,�,�, }.
Terms labeled with � will be additive; those with � anti-additive; �
corresponds to multiplicative; � to anti-multiplicative; � corresponds
to additive and multiplicative (for an expressions like is); finally, is
reserved for expressions that are anti-additive and anti-multiplicative,
nearly amounting to outright negation.

180 / Thomas F. Icard, III and Lawrence S. Moss

The important observation for understanding exclusion-based infer-
ences like those above is that these function classes “project” the rela-
tions inR in predictable ways. For instance, from the fact that nocturnal
f diurnal and the fact that every is multiplicative, we can conclude:

Every porcupine is nocturnal | Every porcupine is diurnal

If every were merely monotone in its second argument, this relation
would not necessarily hold. Indeed, we can say explicitly what the
“projectivity” behavior for each type of function is (MacCartney 2009).
With R 2 R and ' 2 ⌃, the projection of R under ', written [R]', is
the strongest R⇤ 2 R such that, whenever xRy and f is a '-function,
we must have f(x)R⇤f(y). The projectivity behavior of these function
classes is summarized below.

[] v w f | ^
+ v w # # #� v w ^ # ^
� v w | | #
� v w f | ^

[] v w f | ^
� w v # # #� w v | # |
� w v ^ ^ #
 w v f ^ |

The final ingredient of exclusion reasoning is a join operation ./,
where R ./ R0 is understood to be the strongest relation R⇤ 2 R such
that whenever xRy and yR0z, it follows that xR⇤z:

./ v w f | ^
v v # | | #
w # w ^ # ^
f ^ | ⌘ w v
| # | v # v
^ ^ # w w #

We now have enough to finish deriving the example above, that No
porcupine is diurnal follows from Every porcupine is nocturnal. We first
observed that Every porcupine is nocturnal | Every porcupine is diurnal.
Moreover, we have every f not every, and in particular Every porcupine
is diurnal f Not every porcupine is diurnal. Since the join | ./ f = ,
we can conclude Every porcupine is nocturnal  Not every porcupine
is diurnal. Summarizing in a natural-deduction-style proof, where t =
Every porcupine is diurnal, s = Every porcupine is nocturnal, and r = Not
every porcupine is nocturnal:

nocturnal f diurnal
t|s

every f not every
sf r

(| ./ f = )
t  r

To treat more complex cases that involve embeddings under multiple
functional expressions, as in

Recent Progress on Monotonicity / 181

No porcupine that misses a warning sign is safe 
Some porcupine that misses an important warning sign is in danger

we must understand the extension of the composition (�) operator from
M to ⌃ which we saw in Section 2.4. The structure (⌃, �) forms a
monoid, with identity element � (Icard 2012). For example, from the
fact that a is additive, misses is antitonic, and no is anti-additive and
anti-multiplicative, we can conclude that No porcupine who misses a []
is safe is monotonic in [], since in fact � �� �= +.

4 Applications

The systems and algorithms sketched above have found applications in
psychology of language and computational linguistics. Before turning
to formal foundations of the Monotonicity Calculus, we first o↵er an
overview of some of the areas where these systems have proven useful.

4.1 Psychological

Monotonicty has been implicated in a number of psychological phe-
nomena in language processing and language-based reasoning tasks.
To take a simple example, consider the following sentence (inspired by
an example in Geurts and van der Slik (2005)):

(a) Most Americans who know a foreign language speak it at home.

A typical speaker may not be able to judge under what conditions such
a sentence will be true. Does it hold in a situation where most Ameri-
cans who know two foreign languages speak only one of them at home?
Or is it su�cient that most Americans know at least one of the lan-
guages they speak at home? Or need they speak most of the languages
they know at home? Contrast this apparent underdeterminacy with the
patent fact that the sentence in (a) entails that in (b).

(b) Most who know a foreign language speak it at home or at work.

In some sense, it does not matter which of the readings above is cor-
rect. This entailment holds on all of them. Relatedly, while there are
significant logical di↵erences between the quantifiers most and every,
Oaksford and Chater (2001) have shown that inference patterns like

most X Y Y  Z
most X Z

and
every X Y Y  Z

every X Z
,

of which the inference from (a) to (b) is an instance, seem to be equally
easy for subjects, despite the di↵erence in logical complexity. One might
take such evidence to suggest people sometimes are able to recognize
entailments on the basis of these general monotonicity patterns.

182 / Thomas F. Icard, III and Lawrence S. Moss

Geurts (2003) has taken this idea further, demonstrating how a sim-
ple processing model based on a calculus closely related to what we
outline here can explain many aspects of Oaksford and Chater’s (1999)
meta-analysis of syllogistic reasoning. For instance, among valid syllo-
gisms those that require two applications of the monotonicity rule (our
(Mono) below in Section 5.4) turn out to be more di�cult for subjects
than those that require only one, all other things equal. Generally, the
results of this work are suggestive, if also preliminary.

One of the most intriguing aspects of monotonicty from a psycho-
linguistic point of view is the robust correspondence between anti-
tone contexts and the syntactic distribution of a class of expressions
called negative polarity items (NPIs). Perhaps the simplest generaliza-
tion about these expressions—which include as examples in English at
all, yet, any, a wink, . . .—is that they seem to appear almost solely in
(locally) antitone contexts. For instance, while Everyone found any ev-
idence is ungrammatical, No one found any evidence is perfectly gram-
matical. In fact, one of the intended uses of the internalized schema
(Dowty 1994; Moss 2012) sketched above in Section 2.5 is to define
categorial grammars that properly govern the syntactic distribution of
NPIs. Thus, the monotonicity markings play a double role of licensing
monotonicity inferences, as well as restricting which expressions will
typically be recognized or generated by a grammar.

Within the class of NPIs, Zwarts (1981) and others have distin-
guished several subclasses of NPIs based on the strength of their pre-
ferred syntactic environments. Weak NPIs like any appear in arbitrary
antitone contexts; strong NPIs, e.g., in years, require anti-additive con-
texts; while super-strong NPIs such as one bit require anti-additive and
anti-multiplicative contexts. Thus, curiously, the correspondence be-
tween logical features and grammaticality extends to exclusion-based
reasoning as well, in light of Section 3. Extending the internalized
schema from monotonicity and antitonicity to internalized markings for
exclusion relations, so as to govern the syntactic distribution of weak,
strong, and super strong NPIs, is an interesting avenue for future work.

The exact nature of the generalizations about NPIs has been a mat-
ter of some controversy, as they also appear in questions and other
contexts that are not antitone in any straightforward sense, e.g. Do you
have any evidence?. Giannakidou (2011) contains an up-to-date sum-
mary of the data and theoretical proposals, as well as references to
the literature on NPIs. There is some preliminary experimental work
on this topic. Chemla et al. (2011), for example, suggest that speak-
ers’ perceived judgments of monotonicity may be better predictors of
their grammaticality judgments than, say, the “true” logical facts about

Recent Progress on Monotonicity / 183

monotonicity in a given formalization. See also Szabolcsi et al. (2008)
for experimental work on the link between antitonicity and negative po-
larity. It is an intriguing question why there should be such a close, if
not perfect, correspondence at all between these logical features licens-
ing monotonicity inferences and issues of which sentences are judged as
well-formed. To our knowledge, this is still somewhat mysterious.

4.2 Computational

The computational problem of recognizing textual entailment (RTE)—
that is, automatically determining which strings of text intuitively fol-
low from which other strings of text—is an integral part of natural lan-
guage processing. RTE is implicated in other critical natural language
understanding tasks, including question answering, search, summariza-
tion, translation, and many others. The general RTE task is quite a
di�cult problem. Determining whether one claim follows from another
can depend on just about any aspect of human knowledge, experience,
and understanding. Just consider what might be required to recognize
that The floor is very slippery follows from The floor is made of teflon and
coated with motor oil. Other plausible entailments may be controversial
to begin with: does it follow from Freedonia possesses enriched uranium
that Freedonia is developing nuclear weapons? Many examples of this sort
do show up in RTE contests and test suites, and certainly one would
like to have an approach that works in open-ended domains. However,
one of the intriguing observations from a logician’s point of view is that
a wide range of entailments follow distinct patterns—monotonicity be-
ing one of the most notable—and the basic world knowledge necessary
may not go beyond simple lexical relations available from WordNet or
some other lexical database. It seems reasonable to take advantage of
these general “logical” patterns, that is, patterns validated on the basis
of form alone, whenever possible.

MacCartney and Manning (2009) have developed an RTE system
that includes monotonicity reasoning as the central component. Their
“NatLog” system begins with some basic linguistic preprocessing: to-
kenization, parsing, named entity recognition, and so on. The system
also runs a monotonicty marking algorithm like those outlined in Sec-
tion 2, and builds on related work by Nairn et al. (2006) on so-called
implicativity. In the end, NatLog makes a guess about the relation be-
tween the premise text and the hypothesis text using a sequence of
edits bridging the two texts. Testing the system on the PASCAL RTE
Challenge data (Dagan et al. 2005), NatLog outperformed the state-of-
the-art Stanford RTE System on precision, though it fell far short on
recall. The Stanford System is based on a maximum entropy classifier,

184 / Thomas F. Icard, III and Lawrence S. Moss

which learns to make predictions from labeled text pairs using hand-
coded features. Interestingly, a hybrid of the two systems outperformed
both NatLog and the Stanford System on overall accuracy, suggesting
that an integrated approach incorporating both statistical learning and
logical reasoning may be desirable. The most detailed explanation of
NatLog can be found in MacCartney (2009).

Given the importance and prevalence of monotonicity in ordinary
reasoning, maintaining a list of expressions together with their mono-
tonicity information promises to be useful. However, doing this manu-
ally may become quite cumbersome, particularly if we want to use the
same basic algorithms and tools across multiple languages. Danescu
et al. (2009) have taken a first step in addressing this by showing how
antitone contexts in particular can be learned automatically. The trick
is to capitalize on the close correspondence between antitone contexts
and the distribution of NPIs, sketched above in Section 4.1. Intuitively,
the more often an expression co-occurs with NPIs, the more likely it
is to create antitone contexts. Using a list of well-established NPIs,
Danescu et al. (2009) collect candidate expressions w by determining
whether the following inequality holds, where cNPI(w) is the number
of times w co-occurs with an NPI, c(w) is the count of w in the corpus,
and W is the lexicon:

cNPI(w)
P

w02W cNPI(w0)
>

c(w)
P

w02W c(w0)
.

That is, the frequency of occurrences of w with NPIs should be greater
than what we would expect from the frequency of w occurrences in the
overall corpus. Their algorithm has good precision (80%), and most
importantly, they discover a long list of antitone expressions that had
not appeared on previous inventories. The algorithm has even been
extended to achieve co-learning of antitone contexts and NPIs, e.g.
for languages where extensive lists of NPIs are not already established
(Danescu and Lee 2010). See also Cheung and Penn (2012) for related
work. Note finally that in view of the connection between the inference
patterns based on exclusion relations (Section 3) and subclasses of NPIs
(Section 4.1), these methods could also be used to discover subclasses
of antitone operators—anti-additive and anti-multiplicative—based on
co-occurrence with weak, strong, and superstrong NPIs.

Generally, we believe that the formal investigation of logical and
mathematical aspects of these systems for natural reasoning should be
developed alongside these applied projects. Each stands to gain from
insights the other can provide.

Recent Progress on Monotonicity / 185

5 Formal Treatment

The centerpiece of this paper is a formal development of what we have
seen. The material here is based on Icard and Moss (2013).

5.1 Types and Domains

Definition 2. As above, let M = {+,�, ·}. We call M the set of
markings, and we use m to denote an element of M.

Definition 3. Let B be a set of base types. Working over some fixed
set B and therefore suppressing mention of it, the full set of types T is
defined as the smallest superset of B, such that whenever �, ⌧ 2 T , so
is �

m! ⌧ , for each m 2M.

Expressions of type �
+! ⌧ will denote monotone functions, those

of type �
�! ⌧ antitone functions, and those of type �

·! ⌧ arbitrary
functions. We therefore have a natural preorder onM, wherebym v m0

i↵ m = m0 or m0 = ·. This ordering can be used to define a natural
preorder on T . Intuitively � � ⌧ will mean that anything of type � could
also be considered as of type ⌧ . So for function spaces, we take � to be
“antitone in the domain argument and monotone in the codomain.”

Example 4. In standard Montague semantics, we take B to be {e, t}.
(However, recall from Section 2.6 that the work here extends to types
for locations, times, sums, and other natural language categories with
ordered domains.) In our example from algebra, we took it to be {r}.
Definition 4 (� on types). Define � 2 T ⇥ T to be least such that
⌧ � ⌧ , and whenever �0 � � and ⌧ � ⌧ 0, and m v m0, we have

�
m! ⌧ � �0

m0
! ⌧ 0.

Example 5. We return to the linguistic example, using base types e
and t. We abbreviate e

·! t by p (for “property”). A determiner (quan-
tifier) such as every might be interpreted as an element of a marked

type p
�! (p

+! t). In some sense, this is the most specific type we could

assign to every. But it could also be considered of type p
�! (p

·! t),

for example, or even p
·! (p

·! t). Note that according to Def. 4,

p
�! (p

+! t) � p
·! (p

·! t).

The same holds for the type of some: p
+! (p

+! t) � p
·! (p

·! t), and

no: p
�! (p

�! t) � p
·! (p

·! t).

Definition 5 (" and _ on types). We endow M with the obvious
upper semilattice structure, writing m1 _m2 for m1 if m1 = m2, and ·
otherwise. (Again, the dot · is one of the markings, hence an element of

186 / Thomas F. Icard, III and Lawrence S. Moss

M.) " is the smallest relation on types, and _ is the smallest function
on types, with the properties that for all �, ⌧1, and ⌧2:

1. � " �, and � _ � = �.

2. If ⌧1 " ⌧2, then (�
m1! ⌧1) " (� m2! ⌧2) for all m1,m2 2M, and

(�
m1! ⌧1) _ (�

m2! ⌧2) = �
m1_m2�! (⌧1 _ ⌧2).

We define � 7! �̂ on T by �̂ = � for � basic, and (�
m! ⌧)̂ = �

·! ⌧̂ .

Lemma 1. " is an equivalence, and �̂ is the least upper bound in �
of the (finite) "-equivalence class of �.

As an ordered set, (T ,�) has some undesirable properties. For example,
there are pairs of types that have incomparable upper bounds. These
pathologies are largely “tamed” by Definition 5.

Example 6. Returning to Ex. 5, we have

p
�! (p

+! t) " p
+! (p

+! t) " p
�! (p

�! t).

The least upper bound for this "-equivalence class is p
·! (p

·! t).
Intuitively, any expression of any of these types can just as well be
considered an expression of type p

·! (p
·! t), the type of an arbitrary

generalized quantifier.

Up until now, we have been dealing with the basics of the type
system. We have yet to go into details on the syntax of higher-order
terms. But before we do this, it will be informative to give the intended
models for our languages. We call these standard structures.

Definition 6 (Structures). A standard structure is a system S =
{D⌧}⌧2T of preorders (called type domains), one for each type ⌧ 2 T .
We write D⌧ = (D⌧ ,⌧) for the domain of type ⌧ . For the base types
� 2 B there is no requirement on D� . For complex types �

m! ⌧ , we
have several requirements:

1. D
�

+!⌧
is the set of all monotone functions from D� to D⌧ .

2. D
�

�!⌧
is the set of all antitone functions from D� to D⌧ .

3. D
�

·!⌧
is the set of all functions from D� to D⌧ .

4. For all markings m 2M, all types �, ⌧ 2 T , and all f, g 2 D
�

m!⌧
,

we have f 
�

m!⌧
g if and only if f(a) ⌧ g(a) for all a 2 D�. This

is called the pointwise order.

Example 7. With B = {e, t}, usually one takes De to be an arbitrary
set, made into a discrete preorder : x  y i↵ x = y. Dt is usually taken
to be the two-element order 0  1. Then we get a standard structure by
defining D� by recursion on complex types. For example, D

(e
·!t)

·!t
will

Recent Progress on Monotonicity / 187

be the set of all functions from D
e

·!t
to Dt, D(e

·!t)
+!t

will be the set of

monotone functions, and D
(e

·!t)
�!t

will be the set of antitone functions.

In all cases, these are taken to be preorders using the pointwise order.
Continuing the algebra example, we take Dr to be R = (R,), the

real numbers with the usual order.

Incidentally, we speak of standard structures because one could in-
stead interpret the language that we shall soon define on a more general
class of structures (e.g., so called “Henkin models”). This is sometimes
useful, but for our purposes in this paper the standard structures are
su�cient, and the general definition is rather complicated.

We clearly have a natural embedding from D� to D⌧ whenever � � ⌧ .
This captures the sense in which anything of type � could also be
considered of type ⌧ . When two types are related by ", their respective
domains can both be embedded in a single domain. Since objects in this
domain will be ordered, it will make sense to define ordering statements
between expressions of "-related types in the formal language.

5.2 Language and Interpretation

Definition 7 (Unlabeled Typed Terms). We begin the syntax with a
set Con of constants together with a function type : Con! T . The set
T of typed terms t : ⌧ is defined recursively, as follows:

1. If c 2 Con, then c : type(c) is a typed term.

2. If t : �
m! ⌧ and u : ⇢ are typed terms and ⇢ � �, then t(u) : ⌧ is

a typed term.

Example 8. For an example pertaining to algebra, we take Con and
type to be as given in (7), and with several more symbols

abs : r
·! r

0, 1, 2 : r

Example 9. Here is a set of typed constants pertinent to natural
language. We take plural nouns like cat, person, . . . : p. Also, we take
determiners (dets)

every : p
�! (p

+! t)

not every : p
+! (p

�! t)

some : p
+! (p

+! t)

no : p
�! (p

�! t)

most : p
·! (p

+! t)

exactly n : p
·! (p

·! t)

Transitive verbs like see could have type (p
+! t)

+! t. Then sentences

188 / Thomas F. Icard, III and Lawrence S. Moss

of the form det+noun+verb+det+noun would correspond to terms of
type t. (See Example 14.)

The typings of the determiners illustrate the use of this schema most
clearly. They are reflections of the monotonicity phenomena that we
have already seen. The observation that every is antitonic in its first
argument and monotone in its second argument is exactly what the

typing p
�! (p

+! t) expresses.

A term is an object t such that there is a type ⌧ with t : ⌧ . We assume
that our notations arrange that every term has exactly one type. We
interpret this language in a type domain as expected.

Definition 8 (Denotation). For each term t : ⌧ , and for each ⌧ 0 ⌫ ⌧ ,
we define [[t]]S⌧ 0 by induction on t.

1. The semantics begins with values [[c]]S⌧ . We require that [[c]]S⌧ be-
long to D⌧ .

2. If t : �
m! ⌧ and u : �0 with �0 � �, then [[t(u)]]S⌧ = [[t]]S

�
m!⌧

�

[[u]]S�0

�

.

In all cases, where t : ⌧ � ⌧ 0, we let [[t]]S⌧ 0 = [[t]]S⌧ .
Frequently we omit the superscript S.

Example 10. Let B = {r}, and S be the standard structure defined
as follows. We take Dr to be (R,). We take [[plus]] to be the function
from R to functions from R to itself which takes a real number a to
the function �b.a + b. For example, [[plus]](67)(�3) = 64. We have to
check that [[plus]] really belongs to D

r
+!(r

+!r)
. This means: For each a,

[[plus]](a) is a monotone function: If b  b0, then a+b  a+b0. Moreover,

the function from R to (R +! R) taking a to [[plus]](a) is itself monotone.
This means that if a  a0, then for all b, a + b  a0 + b. We similarly
use

[[minus]](a)(b) = a� b
[[times]](a)(b) = a⇥ b
[[div2]](a)(b) = a÷ 2b

[[abs]](a) = |a|

[[0]] = 0
[[1]] = 1
[[2]] = 2

It is now a fact of arithmetic that our semantics is appropriate in the
sense that [[c]] 2 D� whenever c : � is part of the lexicon. That is, we
have a bona fide semantics of all constants.

We then may work out the semantics of all terms. For example,

[[plus 1 1]] = [[plus]]([[1]])([[1]])
= [[plus]](1)(1)
= 2.

Recent Progress on Monotonicity / 189

5.3 Labeled terms

Because our typed terms may involve subterms within the scope of
multiple functions, it is useful to label subterm occurrences to make
clear what position that term is in. In fact, we make crucial use of this

labeling in our proof system. For instance, if t : �
�! ⌧ and u : ⇢

�!
�, then in t(u(v)) : ⌧ , subterm v : ⇢ is in a monotone position. We
have seen the simple algebra of markings (M, �) in Section 2.4, and
the definition below captures the result of the monotonicity marking
algorithms we outlined in Section 2.

Definition 9 (Labeled Terms). Suppose u is a subterm occurrence in
t. We shall find some l 2M which indicates the polarity of u inside t,
and call it the label of the occurrence of u in t. We shall write this as
t[ul]. The definition is by recursion on terms:

1. If u = t, then u[u+]; that is, the label of u is + in u ;

2. If s[ul], then s(v)[ul]; that is, subterms of a functor inherit their
labels from the functor itself.

3. If v[ul] and s : ⌧
m! �, then s(v)[um�l]; that is, an occurrence of

u in an argument v of an application s(v) has label m � l in the
overall term s(v), where m is the label on the arrow in

m!, and l
is the label of the occurrence inside v.

Example 11. Let us compute the polarity of cat inside see every cat.
The occurrence of cat inside itself is positive: cat[cat+]. Recall that the

type of every is of the form �
�! ⌧ . (Its type is p

�! (p
+! t).) So the

polarity of cat inside every cat is � � + = �. That is, every cat[cat�].
Finally, a look at the type of verbs shows that see every cat[cat�].

It is also sensible to shorten the notation a bit and write every [cat�]
and see every [cat�]. In the same way, we would have see some [cat+]
and see most [cat·].

Example 12. We have already seen several di↵erent definitions of the
polarity operation. In particular, Example 6 shows that

div2 minus [x+] [y�] minus [z�] plus [v+] [w+].

Lemma 2 (Soundness of Labeling Scheme). Suppose t : ⌧ and u : ⇢
is a subterm occurrence of t such that t[ul] with subterm u labeled by
l 2 {+,�}. Then for any structure S, supposing [[u]]⇢̂ ⇢̂ [[v]]⇢̂:

1. If l = +, then [[t]]⌧ ⌧ [[tv u]]⌧ ;

2. If l = �, then [[tv u]]⌧ ⌧ [[t]]⌧ .

Here tv u is the term that results from substituting v for the occurrence
of u in t. In other words, if a subterm occurrence is labeled by + (�),

190 / Thomas F. Icard, III and Lawrence S. Moss

it is indeed in a monotone (antitone) position. This is the crucial point
about the correspondence between polarity and monotonicity.

5.4 Monotonicity Calculus

We are interested in proof relations between sets of inequalities � and
individual inequality statements s  t. As discussed above, we allow
inequality statements between terms whose types are "-related, since
these are exactly the terms that should be -comparable semantically.

Definition 10 (Satisfaction). Where s : � and t : ⌧ , and if � " ⌧ , we
write S |= s  t if [[s]]�̂ �̂ [[t]]�̂. We shall always use � to denote a
set of statements of the form u  v. We write � ✏ s  t if, whenever
S ✏ u  v for all statements u  v 2 �, also S ✏ s  t.

Definition 11 (Monotonicity Calculus). The Monotonicity Calculus
is given by the following rules:

(Refl)
t  t

t  u u  v
(Trans)

t  v
u  v

(Mono)
t[u+]  tv u

u  v
(Anti)

tv u  t[u�]
s  t

(Point)
s(u)  t(u)

If � is a set of statements of the form u  v, we say � ` s  t if
s  t 2 �, or there is a proof of s  t from inequalities in � using the
rules above.

Example 13. It might be amusing to see that some facts of arithmetic
can now be derived from assumptions. For example,

{0  1, 1  2} ` minus 1 1  minus 2 0.

That is, if we assume (the facts about numbers) that 0  1 and 1  2,
and if we work in our logic, and in particular if we assume the typing
of minus that we have seen, then we can prove that 1� 1  2� 0:

1  2

minus [1+]  minus 2
(Mono)

minus 1 1  minus 2 1
(Point)

0  1

minus 2 [1�]  minus 2 0
(Anti)

minus 1 1  minus 2 0
(Trans)

We need our set of assumptions � = {0  1, 1  2} because the
assertions in it are not true in all structures that we could conceivably
use to interpret the language. The point of the calculus is not to tell us
specific facts about numbers but rather to allow us to infer generalities,
assertions which hold in all models of some set of assumptions. This is
the standard account of model-theoretic consequence used in semantics.

Recent Progress on Monotonicity / 191

Example 14. Let � contain every : p
�! (p

+! t)  most : p
·! (p

+! t),
cat : p  animal : p, and child : p  person : p. Below is a small
derivation in the calculus:

cat  animal

every [animal�]  every cat
(Anti) every  most

every cat  most cat
(Point)

every animal  most cat
(Trans)

every animal runs  most cat runs
(Point)

Example 15. We can also fruitfully combine the numerical example
with the linguistic one. We take the set B of base types to be {e, t, r}.
We use all the syntax which we have already seen, and also

at least : r
�! (p

+! (p
+! t))

at most : r
+! (p

�! (p
�! t))

more than : r
�! (p

+! (p
+! t))

less than : r
+! (p

�! (p
�! t)).

Then the natural set � of assumptions would include

0  1, 1  2, . . . , more than  at least, less than  at most,
some  at least 1, at least 1  some

For example, we could prove

more than three people walk  at least two people walk.

All three of the above examples use only unembedded versions of
the (Mono) and (Anti) rules. That is, we could have stated these rules

as follows, where t : �
+! ⌧ , s : �

�! ⌧ , and u, v : �0 � �.
u  v

(Mono⇤)
t(u)  t(v)

u  v
(Anti⇤)

s(v)  s(u)

It is then easily shown that the more common presentations of the rules,
viz. (Mono) and (Anti), can be derived from the system with (Mono⇤)
and (Anti⇤) instead. It is an interesting question, which of these is
more psychologically natural or computationally sensible: deriving la-
belings for terms as in Section 5.3 above, or restricting application of
the monotonicity and antitonicity rules to only atomic function sym-
bols? We leave this as an open question for future work.

5.5 Soundness and Completeness

A natural question about any axiomatic system is whether it is sound
and complete with respect to an intended class of interpretations.
Soundness means that every inequality which is proved in the calculus
holds in all of the interpretations we are considering, no matter what

192 / Thomas F. Icard, III and Lawrence S. Moss

the meanings of the individual lexical items. Completeness is the con-
verse; it says that the calculus is strong enough to derive (from a set �
of assumptions) all of the inequalities true in all models of �.

Theorem 1 (Soundness of the Monotonicity Calculus). If � ` s  t,
then � |= s  t. (For the proof see Icard and Moss (2013).)

Completeness—the statement that � |= s  t implies � ` s  t—we
have proven in some special cases (Icard and Moss 2013). For instance,
when we consider a wider class of structures than those defined above
in Def. 6, the result holds. We also conjecture that it holds for this
smaller class of standard structures based on hierarchies of functions,
as defined here.

We also should point out that in many applications, one is not inter-
ested in truth in all possible models but rather in truth in all “reason-
able” models. For instance, in the linguistic example, when we think
of the inferential patterns of determiners, many important patterns go
beyond monotonicity (and even the extension to reasoning about exclu-
sion relations). We did not incorporate de Morgan’s laws, so we will not
be able to infer someone does not cry from not everyone cries. To men-
tion another source of incompleteness, from Pat is a clarinetist, it follows
that everyone who likes every clarinetist likes Pat, and even everyone who
likes everyone who likes Pat likes everyone who likes every clarinetist. Our
calculus as it stands is not strong enough to derive these. Furthermore,
we have no way to use variables. For example, in the algebra example,
we might like to include a numerical variable x : r and take � to contain
x  abs(x). Then we could deduce things like

minus 0 1  abs minus 0 1.

Indeed, there are some linguistic applications involving introduction
rules and “hypothetical reasoning” in extended categorial grammars,
which make crucial use of variables and lambda abstraction.3 We leave
such extensions of the formalism developed here for future work.

6 Conclusion

Monotonicity is an important concept in the study of logic and lan-
guage. We hope to have shown some of the reasons for this, both from
a linguistic point of view and from a logical point of view. There are
certainly many extensions to pursue beyond what we have discussed,
both regarding psycholinguistic aspects of monotonicty and polarity,
and regarding more expressive logical systems.

3See Zamansky et al. (2006) for a natural logic system similar to what we present
here, but based on Lambek Calculus.

Recent Progress on Monotonicity / 193

From the point of view of language technology, in Section 4 we de-
scribed some of the exciting recent work applying ideas and algorithms
from logic, viz. Monotonicity Calculus, to practical tasks in natural
language processing, particularly for the problem of recognizing tex-
tual entailment. In turn, some of the logical work we described, e.g. in
Section 3, was inspired by practical work in computational linguistics.
It is our hope, and our prediction, that this trend of mutual influence
will continue well into the future.

References

Chater, Nick and Mike Oaksford. 1999. The probability heuristics model of
syllogistic reasoning. Cognitive Psychology 38:191–258.

Chemla, Emmanuel, Vincent Homer, and Daniel Rothschild. 2011. Modular-
ity and intuitions in formal semantics: the case of polarity items. Linguis-
tics and Philosophy 34(6):537–570.

Cheung, Jackie and Gerald Penn. 2012. Unsupervised detection of downward-
entailing operators by maximizing classification certainty. In 13th Confer-
ence of the European Chapter of the Association for Computational Lin-
guistics.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2005. The PASCAL
Recognizing Textual Entailment Challenge. In Proceedings of the PASCAL
Challenges Workshop on Recognizing Textual Entailment .

Danescu, Cristian and Lillian Lee. 2010. Don’t ‘have a clue’? Unsupervised
co-learning of downward-entailing operators. In Proceedings of ACL.

Danescu, Cristian, Lillian Lee, and Richard Ducott. 2009. Without a ‘doubt’?
Unsupervised discovery of downward-entailing operators. In Proceedings
of NAACL HLT .

Dowty, David. 1994. The role of negative polarity and concord marking in
natural language reasoning. In Proceedings of Semantics and Linguistic
Theory (SALT) IV .

Geurts, Bart. 2003. Reasoning with quantifiers. Cognition 86(3):223–251.

Geurts, Bart and Frans van der Slik. 2005. Monotonicity and processing load.
Journal of Semantics 22.

Giannakidou, Anastasia. 2011. Negative and positive polarity items. In
C. Maienborn, K. von Heusinger, and P. Portner, eds., Semantics: An
International Handbook of Natural Language Meaning . Wouter de Gruyter.

Icard, Thomas F. 2012. Inclusion and exclusion in natural language. Studia
Logica 100(4):705–725.

Icard, Thomas F. and Lawrence S. Moss. 2013. A complete calculus of mono-
tone and antitone higher-order functions. Unpublished ms.

Keenan, Edward L. and Leonard M. Faltz. 1984. Boolean Semantics for
Natural Language. Springer.

194 / Thomas F. Icard, III and Lawrence S. Moss

MacCartney, Bill. 2009. Natural Language Inference. Ph.D. thesis, Stanford
University.

MacCartney, Bill and Christopher D. Manning. 2009. An extended model
of natural logic. In Proceedings of the Eighth International Conference on
Computational Semantics (IWCS-8).

Moss, Lawrence S. 2012. The soundness of internalized polarity marking.
Studia Logica 100(4):683–704.

Nairn, Rowan, Cleo Condoravdi, and Lauri Karttunen. 2006. Computing
relative polarity for textual inference. In Proceedings of ICoS-5 (Inference
in Computational Semantics). Buxton, UK.

Oaksford, Mike and Nick Chater. 2001. The probabilistic approach to human
reasoning. Trends in Cognitive Sciences 5:349–357.

Sánchez-Valencia, Victor. 1991. Studies on Natural Logic and Categorial
Grammar . Ph.D. thesis, Universiteit van Amsterdam.

Szabolcsi, Anna, Lewis Bott, and Brian McElree. 2008. The e↵ect of negative
polarity items on inference verification. Journal of Semantics 25(4):411–
450.

van Benthem, Johan. 1986. Essays in Logical Semantics. Reidel, Dordrecht.

van Benthem, Johan. 1991. Language in Action: Categories, Lambdas, and
Dynamic Logic, vol. 130 of Studies in Logic. Elsevier, Amsterdam.

van Benthem, Johan. 2008. A brief history of natural logic. In M. N. M.
M. Chakraborty, B. Löwe and S. Sarukkai, eds., Logic, Navya-Nyaya and
Applications, Homage to Bimal Krishna Matilal . London: College Publi-
cations.

van Eijck, Jan. 2007. Natural logic for natural language. In B. ten Cate and
H. Zeevat, eds., 6th International Tbilisi Symposium on Logic, Language,
and Computation. Springer.

Zamansky, A., N. Francez, and Y. Winter. 2006. A ‘natural logic’ infer-
ence system using the Lambek calculus. Journal of Logic, Language, and
Information 15(3):273–295.

Zwarts, Frans. 1981. Negatief polaire uitdrukkingen I. In GLOT , vol. 4,
pages 35–132.

