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Abstract

This paper describes our automatic speech recognition sys-
tem for IWSLT2014 evaluation campaign. The system is
based on weighted finite-state transducers and a combina-
tion of multiple subsystems which consists of four types of
acoustic feature sets, four types of acoustic models, and N-
gram and recurrent neural network language models. Com-
pared with our system used in last year, we added additional
subsystems based on deep neural network modeling on filter
bank feature and convolutional deep neural network model-
ing on filter bank feature with tonal features. In addition,
modifications and improvements on automatic acoustic seg-
mentation and deep neural network speaker adaptation were
applied. Compared with our last year’s system on speech
recognition experiments, our new system achieved 21.5%
relative improvement on word error rate on the 2013 English
test data set.

1. Introduction

TED talks are presentations to audience with wide topics
related to Technology, Entertainment and Design (TED) in
spontaneous speaking style [1]. Automatically transcribing
TED talks with automatic speech recognition (ASR) tech-
nique is still a challenging task. The difficulties are due to
the large variations of TED speech caused by many factors,
for example, variations caused by disfluency, emotion, noise
distortions, as well as variations caused by accent and ages
of speakers. In this paper, we describe our ASR system for
the English TED ASR track of the 2014 IWSLT evaluation
campaign.

The system is a further development of our 2012 and
2013 ASR systems which utilized lots of state of the art tech-
nologies [2, 3]. An overview of our ASR system is depicted
in Figure 1. In this figure, there are several processing blocks.
The test TED talks were provided without any acoustic seg-
mentation information. For convenience of processing and
decoding, an automatic acoustic segmentation was first ap-
plied. Based on the segmentation, acoustic features were ex-
tracted. Next, decoding was applied on four types of acoustic
models to produce decoding lattices, and rescoring was used
on the N-best lists generated by the lattices. Based on the N-
best lists, a ROVER processing was used to get the first pass
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ROVER result. Based on the first pass ROVER result, the
language model adaptation and acoustic model adaptation
were done. Then decoding and rescoring were done again
with the adapted LM and acoustic models. Furthermore, the
second pass ROVER was conducted. The adaptation, decod-
ing, rescoring, and ROVER were done for several rounds.

Compared with the system we used in last year, new con-
tributions are (1) refined acoustic segmentation algorithm;
(2) deep neural network (DNN) acoustic model trained based
on new types of acoustic features; (3) convolutional DNN
(CNN-DNN) acoustic model trained based on filter bank fea-
ture concatenating with pitch feature. Besides these main
changes, several other modifications were also added which
showed performance improvement.

The rest of this paper is organized as follows. Sections 2
and 3 introduce the acoustic modeling and the language mod-
eling. Section 4 describes the automatic acoustic segmenta-
tion algorithm. Section 5 introduces the decoding processing
which includes LM rescore and N-best ROVER procedures.
Experimental results as well as discussion of the results are
given in Section 6. Conclusion is given in Section 7 .

2. Acoustic Modeling
2.1. Training Corpus

Three types of data corpus were used in training the acous-
tic models (as shown in table 1). 81.1 hours of Wall Street
Journal (WSJ), 62.9 hours of HUB4 English Broadcast news
which obtained from the Linguistic Data Consortium, and
167.8 hours of processed 760 TED talks crawled from its
online web site published before 2011 (with SailAlign soft-
ware for extracting text-aligned acoustic segments). WSJ is
read speech, HUB4 is spontaneous broadcast news speech
and TED is lecture style speech.

2.2. Feature Extraction

Four types of acoustic feature sets were extracted to build
acoustic models. The first type of feature set is Mel-
frequency cepstral coefficient (MFCC), which was extracted
with a 25 ms Hamming window that was shifted at 10 ms
intervals. The MFCC feature consisted of 12 MFCCs, log-
arithmic power (log-power), and their first and second or-
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Figure 1: Overview of the NICT ASR system.

der derivatives. The dimensions of the acoustic feature vec-
tors were 39. Then 7 adjacent frames were concatenated
(3 on each side of the current frame) to make context de-
pendent feature vectors. By applying a linear discriminate
analysis (LDA), the concatenated feature vector was com-
pressed to 40 dimensions. The 40-dimension vector was fur-
ther decorrelated with a maximum likelihood linear transfor-
mation (MLLT). In addition, a feature space maximum likeli-
hood linear regression (fMLLR) was also applied in speaker
adaptive training (SAT) stage. The second type of acoustic
feature set is a perceptual linear predictive cepstrum (PLP)
feature, the same procedures as done on the MFCC feature
were applied. The third type of feature set is log Mel filter
bank feature or FBANK features. It has been shown to im-
prove the performance of DNN based acoustic modeling than
MFCC feature [4]. The fourth type of acoustic feature set is
combination of FBANK feature with tonal feature. Although
English is not a tonal language, it showed improvement in
DNN modeling if tone feature is incorporated as an addi-
tional feature in acoustic modeling [5]. In both the third and
fourth types of feature sets, the first and second time deriva-
tions of these features were utilized in acoustic modeling. In
addition, because these two types of feature sets were used
in different DNN architectures, their FBANK feature dimen-
sions were also different. This will be explained in acoustic
model training in next subsection.

2.3. Acoustic models and training

Four types of acoustic models were built in our system, they
were FBMMI, SGMM, DNN and CNN-DNN acoustic mod-
els. To train these models, we first trained a basic context
dependent triphone HMM model with GMM output proba-
bility. The final acoustic model has 7922 triphone tied states
with 160180 Gaussian components. For improving the ba-
sic model, we further applied feature space maximum like-
lihood linear regression (fMLLR) for speaker adaptive train-
ing. This SAT-HMM/GMM model was used as a baseline
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for FBMMI, SGMM, DNN and CNN-DNN acoustic model
training.

The FBMMI is a discriminative training with feature
space boosted maximum mutual information (FBMMI) cri-
terion [6]. The subspace GMM (SGMM) model was trained
by clustering the Gaussians from the triphone HMM/GMM
model. In addition, the FBMMI was also conducted on
SGMM for discriminative training. The FBMMI and SGMM
acoustic models were trained by two types of feature sets,
MEFCC and PLP. Therefore, four acoustic models were ob-
tained.

Two types of DNN architectures were used for acoustic
modeling. One is feedforward DNN (hereafter it is called
as DNN). Another is convolutional DNN in which the in-
put layer is with convolutional operator while other layers
are feedforward DNN (hereafter it is called as CNN-DNN).
In DNN training, a frame-based cross-entropy criterion was
first applied in the first stage, then a sequential discriminative
training based on a state level minimum Bayesian risk crite-
rion (sSMBR) was adopted for the second stage training [7].
In CNN-DNN training, only the frame-based cross-entropy
criterion was used. For training the DNN and CNN-DNN,
different types of feature sets were used. For MFCC and
PLP feature sets, the DNN architecture was configured as:
300-2100*5-7922, i.e., input layer was with 300 neurons, 5
hidden layers with 2100 neurons for each, and 7922 neurons
in the output layer. The input layer feature was transformed
by LDA from 15 consecutive frames of either MFCC or PLP
feature (from SAT-HMM/GMM model). For FBANK fea-
ture used in DNN, 24 Mel filter banks were used (hereafter
as FBANK?24 feature type). The DNN was configured as:
1080-2100%5-7922.

In CNN-DNN modeling, compared with DNNs, CNN re-
stricts the network architecture with local connections and
weight sharing so that it can explores local correlation in fea-
ture processing [8]. Our CNN-DNN has one convolutional
layer with convolution and polling operations. The config-
uration of the convolutional layer as: 128 filters with filter
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Table 1: Details of acoustic model training data

’ Corpus \ Hours \ Type \ Data ‘

WSJ | 81.1 Read |LDC93S6B, LDC9%4S13B
HUB4 | 62.9 |Broadcast| LDC97S44, LDC98S71
TED |167.8| Lecture | 760 talks (Before 2011)

size and shift as 9 and 1 for each. In the pooling layer, local
averaging and sub-sampling were performed to reduce the
resolution of the feature map and the sensitivity of the out-
put to input shifts and distortions. The pooling width and
shift was set to 2 and 2, respectively. The output from the
pooling layer was further processed with feedforward DNN
with 4 hidden layers (2100 neurons in each layer), and one
output layer (7922 neurons). In training the CNN-DNN,
FBANK feature with tone feature set was used. 40 Mel filter
banks and 3 dimensional tone features were used (hereafter
as FBANK40+Pitch feature type).

2.4. Speaker Adaptation for DNN

In our system, speaker adaptation on DNN AMs were ap-
plied. The adaptation was operated on the third hidden layer
of the DNNs based on our previous work [9]. The adapta-
tion data was selected based on word confidence from de-
coding results (confidence threshold 0.7 was chosen in our
study). Different from last year’s adaptation processing, the
adaptation data was selected based on the ROVER result. In
order to overcome the overtraining problem in adaptation, a
L2 regularization on the model parameters was utilized. 4
rounds adaptation were conducted on the DNN models. In
each adaptation, the learning rate was set to 0.001, the num-
ber of training epoches were set to 20.

3. Language Modeling
3.1. Training data

Table 2 shows the data for training language models. It con-
tains two categories of textual corpora that are allowed by
the IWSLT evaluation campaign. One is in-domain corpus
TED talk transcripts supplied by the IWSLT2014 committee,
another are out-of-domain corpora. For the out-of-domain
corpora, News Commentary V7 and Europarl V6 provided
by the IWSLT2014 committee were used for LM training
without selections, but English Gigawords and News Shuffle
were further selected for the training. All of these data were
normalized (or pre-processed) by using a non-standard-word
expansion tools [10], so that all those non-standard words
such as abbreviation, numbers etc, were converted to sim-
ple words. For examples, words "CO2” and ”95%” were
converted to "CO two” and ninety five percent.” Duplicated
sentences were removed during this normalization process.
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Table 2: Training data of language models.

’ Category \ Corpus \ Tokens ‘
In-domain | TED Talks 3.2M
NewsCommentary V7 4.6M
Out-of Europarl V7 50.0M

domain English Gigawords 5th ed. 217G

News Shuffle 732.8M

3.2. Domain adapted n-gram LM

The first pass of speech decoding was performed using a
domain adapted n-gram LM. The adapted LM was built by
interpolating a in-domain n-gram and several adaptation n-
grams. The in-domain n-gram was constructed by using the
in-domain data, and the adaptation n-grams were constructed
by using the selected sentences from the out-of-domain cor-
pora. However, since there are many sentences in the out-of-
domain that are highly mismatched to the TED domain, these
sentences will be harmful to LM if they are added to train-
ing data. Therefore, we built adaptation LMs by selecting
adequate training sentences from two of the out-of-domain
corpora - English Gigawords and News Shuffle. Since the
News Commentary data and the Europarl are relative small,
no selection was conducted on them.

The sentence selection was based on a cross-entropy dif-
ference metric [11] which was biased towards sentences that
were both similar to the in-domain data and unlike the aver-
age of the out-of-domain data. Here, the similarity and un-
likeness were measured by the sentence entropy (or perplex-
ity) with respect to in-domain LM and out-of-domain LM,
respectively. Detailed description about this selection algo-
rithm can be referred in [12]. Finally, about 30.0M sentences
(560M tokens) from the English Gigaword data, and 7.6M
sentences (143.8M tokens) were selected.

Using the SRILM toolkit [13], the modified Kneser-Ney
smoothed n-grams (n=4) were constructed for in-domain LM
using the TED corpus, and for adaptation LMs accordingly
using the selected sentences, the News Commentary V7 data
and the Europarl V7 data. The domain adapted LM was
achieved by linearly interpolating these n-grams, with the de-
velopment set defined in the IWSLT evaluation campaign for
optimization. In all these training process, a vocabulary of
123K words from the CMU Pronunciation Dictionary [14]
and the TED corpus was used.

3.3. Topic adapted n-gram LM

The second pass of speech decoding was conducted using a
topic adapted LM constructed by the recognition results of
the first decoding pass. The sentence selection for the topic
adapted LM was conducted in the same way as for the do-
main adapted LM. The data sources for selection were still
the English Gigawords and the News Shffled, however, the
recognition results obtained from the first decoding pass were
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used as the seed data for selection. The sentence cross en-
tropy was measured between two n-gram LMs, one was built
by using recognition results of all talks in the first decoding
pass, another was built by using 2000 sentences randomly
selected from the resource data. Finally, 61.7M sentences
(246.7M tokens) were selected from the English Gigawords,
and 3.8M sentences (65.7M tokens were selected from the
News Shuffle. Two n-grams (n=4) were built by using these
sentences individually. The topic adapted LM was then con-
structed by linearly interpolating these two LMs, other two
LMs built respectively by the News Commentary and Eu-
roparl, (for these two corpora, no sentence selections are con-
ducted with them), and the in-domain LM.

3.4. RNNLM

In this system, N-best list rescoring was adopted and per-
formed using a recurrent neural network(RNN) LM [15]. In
our RNN, the number of units in the hidden layer and classes
in the output layer were 480 and 300, respectively. Back-
propagation Through Time (BPTT) with truncated time order
5 was used in RNN training. The training data for the RNN
was the same as that for the domain adapted n-gram LM de-
scribed above. To decrease the training time, only one-tenth
of the selected out-of-domain sentences were used for the
training.

4. Automatic Segmentation

In this year’s evaluation, the whole TED talks in the test
data set were provided without any acoustic segmentation
information. For convenience of decoding and rescoring,
acoustic segmentation was first done. A combination method
of a voice activity detection (VAD) algorithm and acoustic
event detection (AED) algorithm was utilized for this pur-
pose. In designing the VAD algorithm, signal power en-
ergy and spectral centroid features were used. In AED, five
GMMs corresponding to five acoustic events (speech, mu-
sic, applause, laugh and background noise) mostly appeared
in lecture speech were trained in this study. MFCC feature
was used in GMM training, and the diagonal GMM consists
16 mixtures was used in AED. The acoustic segmentation
was done based on merging the detection results of VAD and
GMM. In merging, a hang-over scheme with minimum du-
rations of non-speech event as 800ms, and minimum dura-
tion of speech event as 160ms was applied. Based on the
segmented utterances, the feature extraction, decoding and
ROVER were carried out in recognition experiments.

5. Decoding and ROVER

5.1. Decoding System

Two types of WEST-based decoders were used. One is Kaldi
decoder, the other is NICT SprinTra decoder. The Kaldi
decoder was used for FBMMI and SGMM acoustic model
based decoding, and SprinTra decoder was utilized for DNN
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and CNN-DNN acoustic model based decoding.

In decoding with Kaldi decoder, a small 4-gram LM was
first used to produce word lattice. Then a large 4-gram LM
was applied for rescoring on the word lattice. For improving
the performance, the RNN LM was further applied on the
N-best list for rescoring. In decoding with NICT SprinTra
decoder, the large 4-gram LM was directly used. Based on
the decoding word lattice, RNN LM was also used on the
N-best list for rescoring.

5.2. N-best ROVER

A N-best recognizer output voting error reduction (ROVER)
algorithm was applied to combine all the subsystems for
further improving the performance. This year, subsystems
with four types of acoustic models (FBMMI, SGMM, DNN
and CNN-DNN) and four types of feature sets (MFCC, PLP,
FBANK24, FBANK40+Pitch) were combined in ROVER
processing. For each subsystem, 50-best lists from 4-gram
LM and RNN LM rescoring processing were used. In
ROVER, the combination weights were selected based on our
experimental results on the development data set.

6. Experimental Results
6.1. DNN Speaker Adaptation

The algorithm of speaker adaptation used in this year is sim-
ilar to last year’s system. But the adaptation data selection is
different from last year’s system. In last year’s system, the
adaptation data set was picked up based on the DNN decod-
ing result. Considering that ROVER result is always better
than one of the DNN decoding result, the adaptation data was
selected based on the ROVER result in this year. For compar-
ison of the two adaptation data selection methods, we showed
the results in Figure 2. The decoding/rescoring results are
also included for comparison. In our 2013 system, after the
first pass ROVER, topic adaptation on LM was conducted.
With the adapted LM, we could obtain 0.4% improvement
for both 2011 and 2012 test data sets on DNN based decod-
ing. Then the adaptation data was selected based on this
DNN decoding result. In this year, we simply changed the
adaptation data selection method based on word confidence
calculated in the ROVER step. From the decoding results,
0.7% and 0.9% improvements were obtained for 2011 and
2012 test data sets, respectively. With this new process, our
speaker adaptation on DNN can be done for multiple rounds
for obtaining better performance. Table 3 shows the results
of N-rounds DNN speaker adaptation process. The results
showed that consistent improvements were obtained with 4-
rounds DNN adaptation for each feature set separately. How-
ever, no further improvement was obtained for ROVER result
with fifth round adaptation.
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Figure 2: The adaptation process and evaluation results
(WER %) of 2013, 2014 system. The feature of decod-
ing/rescoring results are MFCC, The ROVER consists of FB-
MMI, SGMM, DNN acoustic models with feature MFCC
and PLP.

Table 3: Contribution of N-rounds adaptation; Decod-

ing/rescoring results are listed for DNN with feature MFCC,

PLP and FBANK; The ROVER consits of all the subsystems.
subsystem | MFCC PLP | FBANK |ROVER \

DNN-baseline | 16.0/14.8 | 16.3/15.3 | 15.2/14.6 | 12.7
Istround |12.3/11.8|12.3/11.9|12.7/12.2| 11.6
2ndround [11.7/11.4(11.7/11.4]11.9/11.6| 11.2
3rdround |11.5/11.3|11.4/11.2|11.6/11.4| 11.1
4thround |[11.3/11.2|11.3/11.1|11.4/11.3] 11.1

6.2. Searching Beam and ROVER Weights

Increasing the searching beam width in decoding always
helps to improve the performance but at the cost of increas-
ing searching time. In our experiments, we set beam width
to 13 (the same as in last year) for both Kaldi and SprinTra
decoders in the first few steps of decoding. In the last DNN
adaptation step, the beam width was set to 17 which resulted
in 0.1% improvement in the WER.

In ROVER processing, the combination weights were
set as 1:1:2 for FBMMI, SGMM and DNN in last year.
After adding the DNN-FBANK?24 and CNN-DNN acous-
tic model based subsystems, the combination weights were
re-investigated based on the development data set. Differ-
ent combination weight sets were set for ROVER: 1:1:3:3
for FBMMI, SGMM, DNN, CNN-DNN for the first pass
ROVER and 1:1:7:1 for N-round pass ROVER (N=2,3.4,5).

6.3. Contributions of Subsystems

Table 4 shows the results on 2013 test data set with different
combinations of subsystems in the first pass ROVER. With
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Table 4: Contribution of each subsystems(first pass
ROVER); data set: 2013 test data set
’ subsystem \sysl \sysZ\sys3\sys4\sysS\sys6\sys7\sy58‘

FBMMI | O O OO O
SGMM | O O O 10 O
DNN-mfcc OlO1TO1TOlO10O10O
DNN-plp O|l0O]O0]0]0]10 |0
DNN-fbank O OO 0O
CNN-DNN O Ol 0O

[ WER(%) [18.1]14.5]13.8]13.4[13.1]13.1]1

[\

9[12.7]

Table 5: Contribution of each subsystems(the fifth pass
ROVER), with topic adapted LM and speaker adaptation for
DNN models; data set: 2013 test data set

’ subsystem \ sysl \ sys2 \ sys3 \ sys4 \ sys5 \ Sys6 \ sys7 \ sys8 ‘

FBMMI | O O OO O
SGMM | O O 010 O
DNN-mfcc OlO1TO1TOlO10O10O
DNN-plp O|l0O]O0]0]0]10 |0
DNN-fbank O OO 0O
CNN-DNN O O 0O
] WER(%) \ 17.8 \ 11.1 \ 11.1 \ 11.0\ 11.1 \ 11.1 \ 11.1 \ 11.0\

the subsystems used in last year (sys3), we obtained 13.8%
WER. 1.1% absolute improvement was obtained after adding
the DNN-FBANK?24 and CNN-DNN based subsystems in
ROVER. Also from this table, we can see that although DNN
and CNN-DNN subsystems obtained quite low WER, taking
the FBMMI and SGMM based subsystems in ROVER pro-
cessing still helped to improve the performance (about 0.2%
improvement).

Table 5 shows the results of the fifth pass ROVER step.
In this step, the LM and DNN acoustic model were adapted
with the methods described in the previous section. Different
to the first pass ROVER result, we obtained almost the same
result by only combing DNN acoustic model based subsys-
tems with or without the FBMMI, SGMM and CNN-DNN
based subsystems.

6.4. Summary of Results

Table 6 shows the summary of our ASR system comparing
with last year’s official best rest for 2011, 2012, and 2013
test data sets. Compared to last year’s official result, this year
ASR approach achieved a better performance. The automatic
segmentation, combination of new subsystems in ROVER,
and multi-rounds speaker adaptation contributed the most
of the improvements. After 4-rounds speaker adaptation on
DNN acoustic models, there was no further improvement in
final ROVER processing. For this year’s test set, we obtained
8.4% WER.
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Table 6: The final results (WER %) of the test sets: 2011,
2012, 2013 and 2014.(* means using NICT’s references)
[ tst2011 [ tst2012 [ tst2013 | tst2014 ]|
Official best(2013)| 7.9 8.6 13.5 -
NICT 2014 6.5% 7.0% 10.6 8.4

7. Conclusions

In this study, we describe our ASR system for the IWSLT
2014 evaluation campaign. Our ASR system consists of
four types of acoustic models (FBMMI, SGMM, DNN and
CNN-DNN), four types of acoustic features (MFCC, PLP,
FBANK?24 and FBANK40+Pitch), and two types of LMs
(N-gram and RNN). Several improvements were conducted,
such as new acoustic models, automatic segmentation, and
DNN speaker adaptation. The results of our proposed ap-
proaches demonstrate a better performance than that of last
year.
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