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Abstract
This paper describes the speech recognition systems of IOIT
for IWSLT 2014 TED ASR track. This year, we focus on
improving acoustic model for the systems using two main
approaches of deep neural network which are hybrid and bot-
tleneck feature systems. These two subsystems are combined
using lattice Minimum Bayes-Risk decoding. On the 2013
evaluations set, which serves as a progress test set, we were
able to reduce the word error rate of our transcription systems
from 27.2% to 24.0%, a relative reduction of 11.7%.

1. Introduction
The International Workshop on Spoken Language Transla-
tion (IWSLT) is a yearly scientific workshop, associated with
an open evaluation campaign on spoken language transla-
tion. One part of the campaign focuses on the translation
of TED Talks, which are a collection of public lectures on
a variety of topics, ranging from Technology, Entertainment
to Design. As in the previous years, the evaluation offers
specific tracks for all the core technologies involved in spo-
ken language translation, namely automatic speech recogni-
tion (ASR), machine translation (MT), and spoken language
translation (SLT).

The goal of the ASR track is the transcription of audio
coming from unsegmented TED and TEDx talks, in order
to interface with the machine translation components in the
speech-translation track. The quality of the resulting tran-
scriptions are measured in word error rate (WER).

In this paper we describe the speech recognition systems
which we participated in the TED ASR track of the 2014
IWSLT evaluation campaign. This year, our system is a fur-
ther development of our last year’s evaluation system [1], and
focuses on improving acoustic model using deep neural net-
work. There are two main approaches for incorporating ar-
tificial neural networks in acoustic modeling today: hybrid
systems and tandem systems. In the hybrid approach, a neu-
ral network is trained to estimate the emission probabilities
for Hidden Markov Models (HMM) [2]. In contrast, tandem
systems use neural networks to generate discriminative fea-
tures as input values for the common combination of Gaus-
sian Mixture Models (GMM) and HMMs. One of the com-
mon tandem system uses the activations of a small hidden
layer (“bottleneck features”, BNF [3]).

The organization of the paper is as follows. Section 2
describes the data that our system was trained on. This is fol-
lowed by Section 3 which provides a description of the way
to extract deep bottleneck features. An overview of the tech-
niques used to build our acoustic models is given in Section
4. Dictionary and language model are presented in Section
5. We describe the automatic segmentation process in Sec-
tion 6. Our decoding procedure and results are presented in
Section 7.

2. Training Corpus
For acoustic model training, we used TED talk lectures
(http://www.ted.com/talks) as training data. Approximately
220 hours of audio, distributed among 920 talks, were
crawled with their subtitles, which were deliberately used
for making transcripts. However, the provided subtitles do
not contain the correct time stamps corresponding with each
phrase as well as the exact pronunciation for the words spo-
ken, which lead to the necessity for long-speech alignment.

Segmenting the TED data into sentence-like units used
for building a training set was performed with the help of
SailAlign tool [4] which helps us to not only acquire the tran-
script with exact timing, but also to filter non-spoken sounds
such as music or applauses. A part of these noises are kept
for noise training while most of them are abolished. After
that, the remained audio used for training consists of around
160 hours of speech.

3. Deep Bottleneck Features
In this work, we applied the deep neural network architec-
ture for bottleneck feature extraction (DBNFs) as in [5] [6]
and depicted in Figure 1. The network consists of a variable
number of moderately large, fully connected hidden layers
and a small bottleneck layer which is followed by an addi-
tional hidden layer and the final classification layer.

The Mel-frequency cepstral coefficients (MFCCs) fea-
tures were used as input of deep neural network, which con-
tain 39 coefficients including 12 cepstral coefficients, 1 en-
ergy coefficient added with delta and double-delta features
were extracted after windowing with the window size of 25
milliseconds and frame shift of 10 milliseconds. Then they
were pre-processed using the approach in [7] that is called
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splicing speaker-adapted features with 40 dimensions. This
features for each frame were stacked with 9 adjacent sam-
ples, resulting in a total of 360 dimensions. For pre-training
the stack of auto-encoders, mini-batch gradient descent with
a batch size of 128 and a learning rate of 0.01 was used. In-
put vectors were corrupted by applying masking noise to set
a random 20% of their elements to zero. Each auto-encoder
contained 1024 hidden units and received 1 million updates
before its weights were fixed and the next one was trained on
top of it.
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Figure 1: Deep Network Architecture for Bottleneck Fea-
tures

The remaining layers were then added to the network,
with the bottleneck layer consisting of 39 units, another
hidden layer and output layer containing 4,500 context-
dependent HMM states. Again, gradients were computed
by averaging across a mini-batch of training examples; for
fine-tuning, we used a larger batch size of 256. The learn-
ing rate was decided by the newbob schedule: for the first
epoch, we used 0.008 as the learning rate, and this was kept
fixed as long as the increment in cross-validation frame accu-
racy in a single epoch was higher than 0.5%. For the subse-
quent epochs, the learning rate was halved; this was repeated
until the increase in cross-validation accuracy per epoch is
less than a stopping threshold, of 0.1%. The activations of
the 39 bottleneck units are stacked over an 9-frame context
window and reduced to a dimensionality of 40 using linear
discriminant analysis (LDA) and maximum likelihood linear
transformation (MLLT).

4. Acoustic Model
4.1. Baseline Acoustic Model

Baseline HMM/GMM acoustic model were performed with
the Kaldi developed at Johns Hopkins University [8]. Nine
consecutive MFCC feature frames were spliced to 40 dimen-
sions using linear discriminant analysis (LDA) and maxi-
mum likelihood linear transformation (MLLT) that is a fea-
ture orthogonalizing transform, was applied to make the fea-

tures more accurately modeled by diagonal-covariance Gaus-
sians.

All models used 4,500 context-dependent state and
96,000 Gaussian mixture components. The baseline sys-
tems were built, follow a typical maximum likelihood acous-
tic training recipe, beginning with a flat-start initialization
of context-independent phonetic HMMs, followed by tri-
phone system with 13-dimensional MFCCs plus its deltas
and double-deltas and ending with tri-phone system and
LDA+MLLT.

4.2. Hybrid Acoustic Model

For the hybrid network training, we used the same techniques
that described in the deep bottleneck feature section. The net-
work architecture, we settled with a stacked 5 auto-encoders
containing 1024 units each. Its input was used the same with
DBNFs network, MFCCs feature were pre-processed and
stacked over a 9 adjacent frames. 4,500 context-dependent
target states were used for supervised training that is the
number of tied states in the respective baseline systems.

5. Dictionary and Language Model
The word set contains 131,137 words. The lexicon was
built based on the Carnegie Mellon University (CMU) Pro-
nouncing Dictionary v0.7a; the phoneme set contains 39
phonemes. This phoneme (or more accurately, phone) set
is based on the ARPAbet symbol set developed for speech
recognition uses. The vowels may carry lexical stress, rang-
ing from no stress, primary stress to secondary stress.

For language modeling, the in-domain data was provided
by organizer and 1/8 of Giga corpus was also utilized by fil-
tering it according to the Moore-Lewis approach [9]. Both
two datasets were normalized using the normalization toolkit
from CMU. The vocabulary used to train language models is
the same as in the lexicon. The training data for language
model is summarized in Table 1.

Table 1: Training data for language modeling for English
ASR Task.

Data Number of sentences Number of tokens
TED 156,460 2,708,816

1/8 Giga 2,565,687 56,488,064

We trained 3-gram language model using SRILM toolkit
with the modified interpolated Knesey-Ney smoothing tech-
nique [10] from each of data set. These were then combined
using linear interpolation as follows:

P (w|h) = λ1P1(w|h) + λ2P2(w|h) + ...+ λnPn(w|h)

Where λ1, λ2, ..., λn are the interpolation weights which
were chosen to maximize the likelihood of a held out TED
data set.
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6. Auto Segmentation

The evaluation data has only provided unsegmented audio
data since last year. Therefore, in our works the LIUM Di-
arization toolkit [11] was used to divide the talk into small
sentence-like segments. Figure 2 provides a general descrip-
tion on the diarization process. First, 13 MFCC features were
extracted from the long audio file. After that, a Viterbi de-
coding is performed to generate a segmentation. Some of
segment boundaries produced by the Viterbi decoding fall
within words. These boundaries are adjusted by applying a
set of rules defined experimentally. Detection of gender and
bandwidth is then done using a GMM for each of the 4 com-
binations of gender (male / female) and bandwidth (narrow
/ wide band). Finally, GMMbased speaker clustering is car-
ried out to map each speech segment to the corresponding
speaker.

Unsegmented audio 
Feature Extraction 

(MFCCs 13) 

Segmentation based on 

Viterbi Decoding Speech Detection 

Gender and Bandwitdth 

detection 

Speaker clustering 

(GMM based) 

Segmented audio 

Figure 2: Deep Network Architecture for Bottleneck Fea-
tures

Comparing automatic and manual segmentation, the dis-
parity in word error rates is disclosed in Table 2. It is notable
that the automatic speech detection caused approximately
2 percent loss of the spoken audio, resulted in inevitably
decreasing the error rates, presented by deletions. Experi-
ments conducted with tst2013 data illustrated that the WER
increased 10% relatively, compared with the same data sets
which are manually segmented. The segmentation cannot be
guaranteed to be precise at the beginning or the end of the
sentence, the output segments are sometime incomplete sen-
tence, or incomplete phrases, which affects recognition re-
sults. Last year, we proposed a type of recurrent neural net-
work language model(RNNLM) [1] to resolve this problem.
We did not use RNNLM this year because of time consum-
ing.

7. Decoding Procedure and Results
During development, we evaluated our system using the
2012 development set and 2013 test set that released by the
IWSLT organizers.
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Figure 3: The full decoder architecture

Figure 3 shows the complete decoding architecture. Af-
ter feature extraction step, followed by decoding with the
baseline system to estimate the transformations for speaker
adaptation (fMLLR algorithm), we operate two parallel de-
coding sequences for the tandem and hybrid acoustic models.
For each model, the complete process consists of a decoding
with the trigram LM using Kaldi decoder tool. Lattices out-
put from the this pass were combined using Lattice Minimum
Bayes-Risk (MBR) decoding as described in [12]

Table 2: English ASR results for various acoustic models and
segmentation types (manual, auto)

System WER(%)
dev2012 tst2013 tst2013 auto

Baseline 30.0 36.1 –

Last year 22.9 29.5 27.2

DBNFs(S1) 19.5 23.8 25.7

Hybrid(S2) 20.0 23.6 25.3

S1+S2 18.7 22.7 24.0

Table 2 lists the performance of our systems in terms of
the word error rate (WER). Regarding the performance of the
baseline system, the WER is 30.0% on dev2012 and 36.1%
on tst2013. The second row is the number of the best sys-
tem from last year [1] where we applied state-of-the-art tech-
niques for acoustic model without deep neural network. Re-
sults for applying deep bottleneck features are listed on third
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row of the table. As we can see the results, the DBNF num-
bers are about 10% absolute (about 33% relative) better than
the baseline numbers on both sets. The hybrid DNN/HMM
combination also outperforms baseline setup with similar re-
sults to DBNFs number. The last row on the table shows
the final system combination results of DBNFs and Hybrid
systems that gives a further 1% absolute WER reduction as
compared to the best single system.

8. Conclusions
In this paper, we presented our English LVCSR systems, with
which we participated in the 2014 IWSLT evaluation. The
acoustic model was improved using deep neural network for
this year evaluation. On the 2012 development set for the
IWSLT lecture task our system achieves a WER of 18.7%,
and a WER of 24.0% on the 2013 test set.

In the future, we intend to improve language model using
deep neural network as in [1] as well as apply a hybrid DNN
on top of deep bottleneck features [6] and multi-lingual net-
work training approaches [13] to improve acoustic model for
the systems.
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