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Abstract

We present a project on machine transla-
tion of software help desk tickets, a highly
technical text domain. The main source of
translation errors were out-of-vocabulary
tokens (OOVs), most of which were either
in-domain German compounds or techni-
cal token sequences that must be preserved
verbatim in the output. We describe our ef-
forts on compound splitting and treatment
of non-translatable tokens, which lead to a
significant translation quality gain.

1 Problem Setting

In this paper we focus on statistical machine trans-
lation of a highly technical text domain: software
help desk tickets, or put simply – bug reports.
The project described here was a collaboration be-
tween the University of Zurich and Finnova AG
and aimed at developing an in-domain translation
system for the company’s bug reports from Ger-
man into English. Here we present a general de-
scription of the key project results, the main prob-
lems we faced and our solutions to them.

Technical texts like bug reports present an in-
creased challenge for automatic processing. In ad-
dition to having a highly specific lexicon, there
is often a large amount of source code snippets,
form and database field identifiers, URLs and other
“technical” tokens that have to be preserved in the
output without translation – for example:

Ger: siehe auch ecl kd042 de crm basis
MP-MAR-11, kapitel 9.2.1.1

Eng: see also ecl kd042 de crm basis
MP-MAR-11, chapter 9.2.1.1

c© 2014 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

While these technical tokens need no transla-
tion, our baseline system also suffers from a large
number of out-of-vocabulary tokens (OOVs) that
should be translated. The concatenative morphol-
ogy of German compounds is a classical prob-
lem for machine translation, as it leads to an in-
creased vocabulary and exacerbates data sparsity
(Koehn and Knight, 2003). In our case the prob-
lem is inflated due to the domain-specific com-
pound terms like Tabellenattribute (table attribute)
or Nachbuchungen (subsequent postings): many of
these are not seen in the smaller in-domain paral-
lel corpus and they are too specific to be present in
general-domain corpora.

Technical tokens like URLs and alphanumeric
IDs do not require translation and should be trans-
ferred into the output verbatim. However, since
they are also unknown to the translation system,
they still present a number of problems. They
are often broken by tokenization and not restored
properly by subsequent de-tokenization. Also,
splitting a technical token into several parts might
result in the internal order of those parts broken.
Even tokens that are correctly preserved in their
original form can cause problems: if they are un-
known to the language model, the model strongly
favours permutations of the output in which OOVs
are grouped together.

In the following section we give a description of
our project and baseline system. We then turn to
the problem of OOVs, and focus on handling the
technical tokens that require no translation in Sec-
tion 3, and on compound splitting strategies in Sec-
tion 4. Experimental results constitute Section 5.

2 Translating Help Desk Tickets

The aim of our project was to develop an in-
domain translation system for translating help desk
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Token Type Regular Expression Examples
DB and form field IDs [A-Z0-9][A-Z0-9_/-]*[A-Z0-9] BEG DAT BUCH
numbers -?[0-9]+([.’][0-9]+)? -124.30, 1’000
UNIX paths and URLs ([ˆ ():]*/){2,}[ˆ ():]* /home/user/readme.txt
code with dots, e.g. java [ˆ :.]{2,}(\.[ˆ :.]{2,})+ java.lang.Exception

Table 1: Examples of technical tokens and regular expressions for their detection.

tickets from German to English for use in a post-
editing work-flow.

The company had a set of manual translations
from the target domain, which enabled us to
use statistical machine translation (SMT). The in-
domain parallel corpus composed of these transla-
tions consisted of 227 000 parallel sentences (2.8
/ 3.2 million German/English tokens). Additional
monolingual English data for the same domain was
also available (141 000 sentences, 1.9 million to-
kens). As a baseline we used the Moses framework
(Koehn et al., 2007) with settings identical to the
baseline of WMT shared tasks (Bojar et al., 2013).

To increase the vocabulary of the system we
added some publicly available general-domain and
out-of-domain parallel corpora: Europarl (Koehn,
2005), OPUS OpenSubtitles (Tiedemann, 2012)
and JRC-Acquis (Steinberger et al., 2006). Each
of these is at least 10 times bigger than our in-
domain corpus. To prefer in-domain translations
in case of ambiguity, we combined all the available
corpora via instance weighting using TMCombine
from the Moses framework (Sennrich, 2012).

Despite the vast amount of general-domain data,
the improvement over an in-domain system is rel-
atively small: from 21.9 up to 22.3 BLEU points.1

This best confirms that our target domain is highly
specific. In fact, general-domain data actually
hurts translation performance if its size is greater
and no domain adaptation is performed: a simple
concatenation of the same corpora without weight-
ing causes a drop in translation quality to 21.3
BLEU points.

A post-editing set-up with our translation sys-
tem resulted in an average efficiency gain of 30%
over a pure translation work-flow, raising the num-
ber of ticket translations per hour from 4.5 to 5.9.
In the next sections, we describe further attempts
to improve translation quality by addressing dif-
ferent types of OOVs in the system.

1Measured on a test set of 1000 randomly held-out sentences,
detokenized and re-cased.

3 Preserving Technical Tokens

The main problems with technical tokens that do
not require translation are preserving their orthog-
raphy and internal order, and placing them at the
correct position in a sentence.

Most of these tokens are highly regular, which
means that they can be detected with regular ex-
pressions and handled separately. We designed
a set of regular expressions for that purpose and
tagged them with the type of tokens that they de-
tect. Table 1 presents some examples of the regular
expressions and detected tokens. 8.8% of the to-
kens are identified as “technical”, with the largest
group being upper-case database and form field
IDs (4.0% of the tokens) and numbers (1.6% of
the tokens).

We use XML mark-up to mark all technical to-
kens (consequently referred to as masking), and
pass masked tokens unchanged through all compo-
nents of our translation pipeline, i.e. the tokenizer,
lowercaser, and the Moses decoder. While mask-
ing ensures that the masked tokens themselves are
preserved, their position in the output is deter-
mined by the decoder. We observed that the n-
gram language model that we use for decoding is
poor at modelling the position of unknown words,
preferring translation hypotheses where unknown
words are grouped together, often at the beginning
or end of the sentence.

As a solution to this issue, we change the trans-
lation pipeline as follows:

• the input text is tokenized and the detected
technical tokens are reduced to a single con-
stant token __TECH__.

• the translation is done on reduced text; the
phrase table, lexical reordering and the lan-
guage model are trained on corpora with re-
duced technical expressions.

• after the translation step, the reduced expres-
sions are restored based on the input text and
the word alignment between the input and the
output, which is reported by the decoder.
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This way, the original form of the technical tokens
is preserved explicitly, and the feature functions of
the translation pipeline do not have to deal with
additional unknown input (the approach will be re-
ferred to as 1-token reduction).

An alternative variant we explored is to repre-
sent each token sequence with its type (like JAVA,
DATE, URL, etc.) instead of a single token TECH.
A higher level of detail could be useful to model
differences in word order between different kinds
of technical tokens. Also, in case a sentence
contains maskable tokens of different types, this
reduces the number of duplicate tokens between
which the model cannot discriminate (this alterna-
tive will be referred to as type reduction).

4 Compound splitting

The German language has a productive compound-
ing system, which increases vocabulary size and
exacerbates the data sparsity effect. Many com-
pounds are domain-specific and are unlikely to be
learned from larger general-domain corpora. Com-
pound splitting, however, has the potential to also
work on our in-domain texts.

We evaluate two methods of compound split-
ting. Koehn and Knight (2003) describe a purely
data-driven approach, in which frequency statis-
tics are collected from the unsplit corpus, and
words are split so that the geometric mean of
the word frequencies of its parts is maximized.
Fritzinger and Fraser (2010) describe a hybrid ap-
proach, which uses the same corpus-driven selec-
tion method to choose the best split of a word
among multiple candidates, but instead of consid-
ering all character sequences to be potential parts,
they only consider those splits that are validated by
a finite-state morphology tool.

The motivation for using the finite-state mor-
phology is to prevent linguistically implausible
splittings such as Testsets→ Test ETS. We use the
Zmorge morphology (Sennrich and Kunz, 2014),
which combines the SMOR grammar (Schmid et
al., 2004) with a lexicon extracted from Wik-
tionary.2 With this hybrid approach, we only con-
sider nouns for compound splitting; with the data-
driven approach on the other hand we have no con-
trol over which word classes are split.

2http://www.wiktionary.org

Source: erweiterung tabellen TX VL und TXTSVL .
Reference: extension of tables TX VL and TXTSVL .
Masking: extension of tables TX VL TXTSVL and .
Reduction: extension of tables TX VL and TXTSVL .

Table 2: An example of the effect of reducing: the
correct order of technical tokens is preserved.

5 Experiments and Results

We evaluated our experiments on a held-out in-
domain test set. Translation quality is judged
using the MultEval package (Clark et al., 2011)
and its default automatic metrics (BLEU, TER
and METEOR); the package implements the met-
rics and performs statistical significance testing
to account for optimizer instability. We per-
form three independent tuning runs, and use 95%
as the significance threshold. Statistically non-
significant results are shown in italics. Since to-
kenization differs between experiments, we com-
pare de-tokenized and re-cased hypothesis and ref-
erence translations.

As baseline, we use the weighted combination
of in-domain and other corpora, described in Sec-
tion 2. All modifications to tokenization and com-
pound splitting are done on all included training
corpora, both in-domain and others.

Masking the detected technical tokens yields
large quality gains over default tokenization:

BLEU METEOR TER
Baseline 22.3 26.1 62.2
Masking 25.1 27.6 56.8

The system with masking better matches the
length of the reference translation than the base-
line (99.5% vs. 103.7%); this can be attributed to
the technical tokens being broken in the baseline
and not fixed by the default de-tokenization.

The reduced representation of technical tokens
brings a small improvement:

BLEU METEOR TER
Just masking 25.1 27.6 56.8
1-token reduction 25.5 27.7 56.4
Type reduction 25.4 27.7 56.6

A manual inspection supports the hypothesis
that the reduced representation improves word or-
der for sentences with multiple OOVs; see Table 2
for an example. Representing the expressions with
their type, however, does not seem to have any ad-
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ditional effect: statistically it is indistinguishable
from 1-token reduction.

Compound splitting yields gains of 0.8–1 BLEU
when evaluated separately from technical token re-
duction:

BLEU METEOR TER
Just masking 25.1 27.6 56.8
Data-driven split 26.1 28.9 55.1
Hybrid split 25.9 28.6 55.4

In contrast to the results reported by Fritzinger
and Fraser (2010), we observe no gains of the hy-
brid method over the purely data-driven method
by Koehn and Knight (2003). We attribute this
to the fact that domain-specific anglicisms such
as Eventhandling (event handling) and Debugmel-
dung (debug message) are unknown to the mor-
phological analyzer, but are correctly split by the
data-driven method.

Finally, we obtain the best system by combining
masking, 1-token reduction and data-driven seg-
mentation.

BLEU METEOR TER
Just masking 25.1 27.6 56.8
1-token reduction 25.5 27.7 56.4
Data-driven split 26.1 28.9 55.1
Full combination 26.5 29.0 54.1

To conclude, we have shown that the modelling
of OOVs has a large impact on translation quality
in technical domains with high OOV rates. Over-
all we observed an improvement of 4.2 BLEU, 2.9
METEOR and 8.1 TER points over the baseline.

In this paper, we focused on two types of OOV
tokens: German compounds that can be split into
their components, and technical tokens that need
no translation. While our modelling of both these
types was successful both individually and in com-
bination, in the general case the handling of dif-
ferent types of OOVs are not necessarily indepen-
dent steps. Also, additional strategies for handling
OOVs may be required in other domains and lan-
guage pairs, e.g. transliteration of named entities.
Robustly choosing the right strategy for each OOV
token independently of the domain could be the
target of future research.
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