
An Efficient Two-Pass Decoder for SMT Using Word Confidence
Estimation

Ngoc-Quang Luong Laurent Besacier
LIG, Campus de Grenoble

41, Rue des Mathématiques,
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Abstract

During decoding, the Statistical Machine
Translation (SMT) decoder travels over all
complete paths on the Search Graph (SG),
seeks those with cheapest costs and back-
tracks to read off the best translations. Al-
though these winners beat the rest in model
scores, there is no certain guarantee that
they have the highest quality with respect
to the human references. This paper ex-
ploits Word Confidence Estimation (WCE)
scores in the second pass of decoding to
enhance the Machine Translation (MT)
quality. By using the confidence score of
each word in the N-best list to update the
cost of SG hypotheses containing it, we
hope to “reinforce” or “weaken” them re-
lied on word quality. After the update, new
best translations are re-determined using
updated costs. In the experiments on our
real WCE scores and ideal (oracle) ones,
the latter significantly boosts one-pass de-
coder by 7.87 BLEU points, meanwhile
the former yields an improvement of 1.49
points for the same metric.

1 Introduction

Beside plenty of commendable achievements, the
conventional one-pass SMT decoders are still not
sufficient yet in yielding human-acceptable trans-
lations (Zhang et al., 2006; Venugopal et al., 2007).
Therefore, a number of methods to enhance them
are proposed, such as: post-editing, re-ranking
or re-decoding, etc. Post-editing (Parton et al.,
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2012) is in fact known to be a human-inspired
task where the machine post edits translations in
a second automatic pass. In re-ranking (Zhang
et al., 2006; Duh and Kirchhoff, 2008; Bach et al.,
2011), more features are integrated with the exist-
ing multiple model scores for re-selecting the best
candidate among N-best list. Meanwhile, the re-
decoding process intervenes directly into the de-
coder’s search graph (SG), driving it to the optimal
path (cheapest hypothesis).
The two-pass decoder has been built by several
discrepant ways in the past. Kirchhoff and Yang
(2005); Zhang et al. (2006) train additional Lan-
guage Models (LM) and combine LM scores with
existing model scores to re-rank the N-best list.
Also focusing on the idea of re-ranking, yet Bach
et al. (2011); Luong et al. (2014) employ sen-
tence and word confidence scores in the second
pass. Meanwhile, Venugopal et al. (2007) do a first
pass translation without LM, but use it to score the
pruned search hyper-graph in the second pass.
This work concentrates on a second automatic pass
where the costs of all hypotheses in the decoder’s
SG containing words of the N-best list will be
updated regarding the word quality predicted by
Word Confidence Estimation (Ueffing and Ney,
2005) (WCE) system. In single-pass decoding, the
decoder searches among complete paths (i.e. those
cover all source words) for obtaining the optimal-
cost ones. Essentially, the hypothesis cost is a
composite score, synthesized from various SMT
models (reordering, translation, LMs etc.). Al-
though the N-bests beat other SG hypotheses in
term of model scores, there is no certain clue that
they will be the closest to the human references.
As the reference closeness is the users’ most piv-
otal concern on SMT decoder, this work estab-
lishes one second pass where model-independent
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scores related to word confidence prediction are in-
tegrated into the first-pass SG to re-determine the
best hypothesis. Inheriting the first pass’s N-best
list, the second one involves three additional steps:

• Firstly, apply a WCE classifier on the N-best
list to assign the quality labels (“Good” or
“Bad”) along with the confidence probabili-
ties for each word.

• Secondly, for each word in the N-best list, up-
date the cost of all SG’s hypotheses contain-
ing it by adding the update score ( see Section
3.2 for detailed definitions).

• Thirdly, search again on the updated SG for
the cheapest-cost hypothesis and trace back-
ward to form the new best translation.

Basically, this initiative originates from an intu-
ition that all parts of hypotheses corresponding to
correct (predicted) words should be appreciated
while those containing wrong ones must be weak-
ened. The use of novel decoder-independent and
objective features like WCE scores is expected to
raise up the better candidate, rather than accept-
ing the current sub-optimal one. The new decoder
can therefore use both real and oracle word con-
fidence estimates. In the next section, we intro-
duce the SG’s structure. Section 3 depicts our
approach about using WCE scores to modify the
first-step SG. The experimental settings and re-
sults, followed by in-depth analysis and compar-
ison to other approaches are discussed in Section 4
and Section 5. The last section concludes the paper
and opens some outlooks.

2 Search Graph Structure

The SMT decoder’s Search Graph (SG) can be
roughly considered as a “vast warehouse” storing
all possible hypotheses generated by the SMT sys-
tem during decoding for a given source sentence.
In this large directed acyclic graph, each hypoth-
esis is represented by a path, carrying all nodes
between its begin and end ones, along with the
edges connecting adjacent nodes. One hypothe-
sis is called complete when all the source words
are covered and incomplete otherwise. Starting
from the empty initial node, the SG is gradually
enlarged by expanding hypotheses during decod-
ing. To avoid the explosion of search space, some
weak hypotheses can be pruned or recombined. In

order to facilitate the access and the cost calcula-
tion, each hypothesis H is further characterized by
the following fields (we can access the value of the
field f of hypothesis H by using the notion f(H)):

• hyp: hypothesis ID

• stack: the stack (ID) where the hypothesis is
placed, also the number of foreign (source)
words translated so far.

• back: the backpointer pointing to its previous
cheapest path.

• transition : the cost to expand from the pre-
vious hypothesis (denoted by pre(H)) to this
one.

• score: the cost of this hypothesis. Apparently,
score(H) = score(pre(H)) + transition.

• out: the last output (target) phrase. It is worth
to accentuate that out can contain multiple
words.

• covered: the source coverage of out, repre-
sented by the start and the end position of the
source words translated into out.
• forward: the forward pointer pointing to the

cheapest outgoing path expanded from this
one.

• f-score: estimated future cost from this par-
tial hypothesis to the complete one (end of the
SG).

• recombined: the pointer pointing to its re-
combined1 hypothesis.

Figure 1 illustrates a simple SG generated for the
source sentence: “identifier et mesurer les fac-
teurs de mobilization”. The attributes “t” and
“c” refer to the transition cost and the source
coverage, respectively. Hypothesis 175541 is ex-
tended from 57552, when the three words from
3rd to 5th of the source sentence (“les fac-
teurs de”) are translated into “the factors of”
with the transition cost of −8.5746. Hence,
its cost is: score(175541) = score(57552) +
transition(175541) = −16.1014+(−8.5746) =
−24.6760. Three rightmost hypotheses: 204119,
204109 and 198721 are complete since they cover
all source words. Among them, the cheapest-cost

1In the SG, sometimes we recombine hypotheses to reduce
the search space in a risk-free way. Two hypotheses can be
recombined if they agree in (1) the source word covered so
far (2) the last two target words generated, and (3) the end of
the last source phrase covered.
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Figure 1: An example of search graph representation

one2 is 198721, from which the model-best trans-
lation is read off by following the track back to the
initial node 0: “identify the causes of action .”.

3 Our Approach: Integrating WCE
Scores into SG

In this section, we present the idea of using addi-
tional scores computed from WCE output (labels
and confidence probabilities) to update the SG. We
also depict the way that update scores are defined.
Finally, the detailed algorithm followed by an ex-
ample illustrates the approach.

3.1 Principal Idea

We assume that the decoder generates N best hy-
potheses T = {T1, T2, ..., TN} at the end of the
first pass. Using the WCE system (which can only
be applied to sequences of words - and not directly
to the search graph - that is why N best hypotheses
are used), we are able to assign the j-th word in the
hypothesis Ti, denoted by tij , with one appropriate
quality label, cij ( e.g. “G” (Good: no translation
error), “B” (Bad: need to be edited)), followed
by the confidence probabilities (Pij(G), Pij(B) or
P (G), P (B) for short). Then, the second pass is
carried out by considering every word tij and its
labels and scores cij , P (G), P (B). Our principal
idea is that, if tij is a positive (good) translation,
i.e. cij = “G′′ or P (G) ≈ 1, all hypotheses
Hk ∈ SG containing it in the SG should be “re-
warded” by reducing their cost. On the contrary,
those containing negative (bad) translation will be
“penalized”. Let reward(tij) and penalty(tij)

2It is important to note that the concept cheapest cost hy-
pothesis means that it has the highest model’s score value. In
other words, the higher the model score value, the “cheaper”
the hypothesis is.

denote the reward or penalty score of tij . The new
transition cost of Hk after being updated is for-
mally defined by:

transition′(Hk) = transition(Hk) +{
reward(tij) if tij = good translation

penalty(tij) if otherwise

(1)

The update finishes when all words in the N-best
list have been considered. We then re-compute the
new score of complete hypotheses by tracing back-
ward via back-pointers and aggregating the tran-
sition cost of all their edges. Essentially, the re-
decoding pass reorders SG hypotheses in term of
the more “G” words (predicted by WCE system)
they contain, the more cost reduction will be made
and consequentially, the more opportunity they get
to be admitted in the N-best list. The re-decoding
performance depends largely on the accurateness
of confidence scores, or in other words, the WCE
quality.

It is vital to note that, during the update process,
we might face a phenomena that the word tij (cor-
responds to the same source words) occurs in dif-
ferent sentences of the N-best list. In this case, for
the sake of simplicity, we process it only at its first
occurrence (in the highest rank sentence) instead
of updating the hypotheses containing it multiple
times. In other words, if we meet the exact tij
once again in the next N-best sentence(s), no fur-
ther score update will be done in the SG.

3.2 Update Score Definitions
Defining the update scores is obviously a nontriv-
ial task as there is no correlation between WCE
labels and the SG costs. Furthermore, we have no
clue about how proportional the SMT model and
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WCE (penalty or reward) scores should share in or-
der to ensure that both of them will be appreciated.
In this article, we propose several types of update
scores, deriving from the global or local cost.

3.2.1 Definition 1: Global Update Score
In this type, an unique score derived from the

cost of the current best hypothesis H∗ (by the first
pass) is used for all updates. We propose to com-
pute this score by two ways: (a) exploiting WCE
labels {cij}; or (b) only WCE confidence prob-
abilities {P (G), P (B)} will matter, WCE labels
are left aside.
Definition 1a:

penalty(tij) = −reward(tij) =

α ∗ score(H∗)

#words(H∗)

(2)

Where #words(H∗) is the number of target words
in H∗, the positive coefficient α accounts for
the impact level of this score on the hypothe-
sis’s final cost and can be optimized during ex-
periments. Here, penalty(tij) gets negative sign
(since score(H∗) < 0) and will be added to the
transition cost of all hypotheses containing tij in
case where this word is labelled as “B”; whereas
reward(tij) (same value, opposite sign) is used in
the other case.
Definition 1b:

update(tij) = α ∗ P (B) ∗ score(H∗)

#words(H∗)

−β ∗ P (G) ∗ score(H∗)

#words(H∗)

= (α ∗ P (B)− β ∗ P (G)) ∗ score(H∗)

#words(H∗)

(3)

Where P (G), P (B) (P (G) + P (B) = 1) are
the probabilities of “Good” and “Bad” class of
tij . The positive coefficient α and β can be tuned
in the optimization phase. In this definition, the
fact that update(tij) is a reward (reward(tij))
or a penalty (penalty(tij)) will depend on tij’s
goodness. Indeed, we have: update(tij) =
reward(tij) if update(tij) > 0, which means:
α∗[1−P (G)]−β∗P (G) < 0 (since score(H∗) <
0), therefore P (G) > α

α+β . On the contrary, if
P (G) is under this threshold, update(tij) takes a
negative value and therefore becomes a penalty.
3.2.2 Definition 2: Local Update Score

The update score of each (local) hypothesis Hk

depends on its current transition cost, even when

they cover the same word tij . Similarly to Defini-
tion 1, two sub-types are defined as follows:
Definition 2a:

penalty(tij) = −reward(tij) =
α ∗ transition(Hk)

(4)

Definition 2b:
update(tij) = α ∗ P (B) ∗ transition(Hk)

−β ∗ P (G) ∗ transition(Hk)

= (α ∗ P (B)− β ∗ P (G)) ∗ transition(Hk)
(5)

Where transition(Hk) denotes the current tran-
sition cost of hypothesis Hk, and the mean-
ings of coefficient α (Definition 2a) or α, β
(Definition 2b) are analogous to those of Defini-
tion 1a (Definition 1b), respectively.

3.3 Re-decoding Algorithm
The below pseudo-code depicts our re-decoding
algorithm using WCE labels (Definition 1a and
Definition 2a).

Algorithm 1 Using WCE labels in SG decoding
Input: SG = {Hk}, T = {T1, T2, ..., TN}, C = {cij}
Output: T

′
= {T

′
1 , T

′
2 , ..., T

′
N}

1: {Step 1: Update the Search Graph}
2: Processed← ∅
3: for Ti in T do
4: for tij in Ti do
5: pij ← position of the source words aligned to tij
6: if (tij , pij) ∈ Processed then
7: continue; {ignore if tij appeared in the previ-

ous sentences}
8: end if
9: Hypos← {Hk ∈ SG| out(Hk) 3 tij}

10: if (cij = “Good′′) then
11: for Hk in Hypos do
12: transition(Hk) ← transition(Hk) +

reward(tij) {reward hypothesis}
13: end for
14: else
15: for Hk in Hypos do
16: transition(Hk) ← transition(Hk) +

penalty(tij) {penalize hypothesis}
17: end for
18: end if
19: Processed← Processed ∪ {(tij , pij)}
20: end for
21: end for
22: {Step 2: Trace back to re-compute the score for all

complete hypotheses}
23: for Hk in Final (Set of complete hypotheses) do
24: score(Hk)← 0
25: while Hk 6= initial hypothesis do
26: score(Hk)← score(Hk) + transition(Hk)
27: Hk ← pre(Hk)
28: end while
29: end for
30: {Step 3: Select N cheapest hypotheses and output the

new list T
′
}
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Rank Cost Hypotheses + WCE labels
1 -29.9061 identify the cause of action .

G G G G B B
2 -40.0868 identify and measure the factors of mobilization

G G G G G G G

Table 1: The N-best (N=2) list generated by the SG in Figure 1 and WCE labels

Figure 2: Details of update process for the SG in Figure 1. The first loop (when 1st rank hypothesis is
used) is represented in red color, while the second one is in blue. For edges with multiple updates, all
transition costs after each update are logged. The winning cost is also emphasized by red color.

The algorithm in case of using WCE confidence
probabilities (Definition 1b and Definition 2b) is
essentially similar, except the update step (from
line 10 to line 18) is replaced by the following part:

for Hk in Hypos do
transition(Hk)← transition(Hk) + update(tij)

end for

During the update process, the pairs includ-
ing the visited word tij and the position of its
aligned source words pij is consequentially admit-
ted to Processed, so that all the analogous pairs
(t

′
ij , p

′
ij) occuring in the latter sentences can be

discarded. For each tij , a list of hypotheses in the
SG containing it, called Hypo, is formed, and its
confidence score cij (orP (G)) determines whether
all members Hk in Hypo will be rewarded or pe-
nalized. Once having all words in the N-best list
visited, we obtain a new SG with updated tran-
sition costs for all edges containing them. The
last step is to travel over all complete hypotheses
(stored in Final) to re-compute their scores and
then backtrack the cheapest-cost hypothesis to out-
put the new best translation.
These above depictions can be clarified by tak-
ing another look at the example in Figure 1: from
this SG, the N-best list (for the sake of simplic-

ity, we choose N = 2) is generated as the single-
pass decoder’s result. According to our approach,
the second pass starts by tagging all words in the
list with their confidence labels, as seen in Ta-
ble 1. Then, the graph update process is per-
formed for each word in the list, sentence by sen-
tence, which details are tracked in Figure 2. In
this example, we apply Definition 1a to calcu-
late the reward or penalty score, with α = 1

2 ,
resulting in: penalty(tij) = −reward(tij) =
1
2 ∗

−29.9061
6 = −2.4922. Firstly, all hypothe-

ses containing words in the 1st ranked sentence
are considered. Since the word “identify” is la-
beled as “G”, its corresponding edge (connecting
two nodes 0 and 1) is rewarded and updated with
a new cost : tnew = told + reward = −1.8411 +
2.4922 = +0.6511. On the contrary, the edge be-
tween two nodes 121252 and 182453 is penalized
and takes new cost: tnew = told + penalty =
−5.8272 + (−2.4922) = −8.3194, due to the
bad quality of the word “action”. Obviously, the
edges having multiple considered words (e.g. the
one between nodes 19322 and 121252) will be up-
dated multiple times, and the transition costs af-
ter each update can be also observed in Figure 2 (
e.g. t1, t2, etc). Next, when the 2nd-best is taken
into consideration, all repeated words (e.g. “iden-
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tify”, “the” and “of”) are waived since they have
been visited in the first loop, whereas the remain-
ing ones are identically processed. The only un-
touched edge in this SG corresponds to the word
“mobilizing”, as this word does not belong to the
list. Once having the update process finished, the
remaining job is to recalculate the final cost for ev-
ery complete path and returns the new best transla-
tion: “identify and measure the factors of mobi-
lization” (new cost = −22.6414).

4 Experimental Setup

4.1 Datasets and SMT Resources
From a dataset of 10,881 French sentences, we
applied a Moses-based SMT system to generate
their English hypotheses. Next, human translators
were invited to correct MT outputs, giving us the
post editions. The set of triples (source, hypothe-
sis, post edition) was then divided into the training
set (10000 first triples) and test set (881 remaining
ones). The WCE model was trained over all 1-best
hypotheses of the training set. More details on our
WCE system can be found in next section.

The N-best list (N = 1000) with involved align-
ment information is also obtained on the test set
(1000 * 881 = 881000 sentences) by using Moses
(Koehn et al., 2007) options “-n-best-list” and
“-print-alignment-info-in-n-best”. Besides, the
SGs are extracted by some parameter settings: “-
output-search-graph”, “-search-algorithm 1” (us-
ing cube pruning) and “-cube-pruning-pop-limit
5000” (adds 5000 hypotheses to each stack). They
are compactly encoded under a plain formatted
text file that is convenient to transform into user-
defined structures for further processing. We then
store the SG for each source sentence in a sepa-
rated file, and the average size is 43.8 MB.

4.2 WCE scores and Oracle Labels
We employ the Conditional Random Fields (Laf-
ferty et al., 2001) (CRFs) as our machine learn-
ing method, with WAPITI toolkit (Lavergne et al.,
2010), to train the WCE model. A number of
knowledge resources are employed for extracting
the system-based, lexical, syntactic and semantic
characteristics of word, resulting in the total of 25
major feature types as follows:

• Target Side: target word; bigram (trigram)
backward sequences; number of occurrences
• Source Side: source word(s) aligned to the

target word

• Alignment Context (Bach et al., 2011): the
combinations of the target (source) word and
all aligned source (target) words in the win-
dow ±2
• Word posterior probability (Ueffing et al.,

2003)

• Pseudo-reference (Google Translate): Does
the word appear in the pseudo reference?

• Graph topology (Luong et al., 2013): num-
ber of alternative paths in the confusion set,
maximum and minimum values of posterior
probability distribution

• Language model (LM) based: length of the
longest sequence of the current word and its
previous ones in the target (resp. source) LM.
For example, with the target word wi: if the
sequence wi−2wi−1wi appears in the target
LM but the sequence wi−3wi−2wi−1wi does
not, the n-gram value for wi will be 3.

• Lexical Features: word’s Part-Of-Speech
(POS); sequence of POS of all its aligned
source words; POS bigram (trigram) back-
ward sequences; punctuation; proper name;
numerical

• Syntactic Features: null link (Xiong et al.,
2010); constituent label; depth in the con-
stituent tree

• Semantic Features: number of word senses in
WordNet.

In the next step, the word’s reference labels (or
so-called oracle labels) are initially set by using
TERp-A toolkit (Snover et al., 2008) in one of
the following classes: “I’ (insertions), “S” (sub-
stitutions), “T” (stem matches), “Y” (synonym
matches), “P” (phrasal substitutions), “E” (exact
matches) and are then regrouped into binary class:
“G” (good word) or “B” (bad word). Once hav-
ing the prediction model, we apply it on the test
set (881 x 1000 best = 881000 sentences) and get
needed WCE labels along with confidence prob-
abilities. In term of F-score, our WCE system
reaches very promising performance in predicting
“G” label (87.65%), and acceptable for “B” label
(42.29%). Both WCE and oracle labels will be
used in experiments.

4.3 Experimental Decoders

We would like to investigate the WCE’s contribu-
tions in two scenarios: real WCE and ideal WCE
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(where all predicted labels are totally identical to
the oracle ones). Therefore, we experiment with
the seven following decoders:

• BL: Baseline (1-pass decoder)

• BL+WCE(1a, 1b, 2a, 2b): four 2-pass de-
coders, using our estimated WCE labels and
confidence probabilities to update the SGs,
and the update scores are calculated by Defi-
nition (1a, 1b, 2a, 2b).

• BL+OR(1a, 2a): two 2-pass decoders, com-
puting the reward or penalty scores by Defi-
nition (1a, 2a) on the oracle labels

It is important to note that, when using oracle la-
bels, Definition 1b becomes Definition 1a and
Definition 2b becomes Definition 2a, since if a
word tij is labelled as “G”, then P (G) = 1 and
P (B) = 0, and vice versa. In order to tune the
coefficients α and β, we carry out a 2-fold cross
validation on the test set. First, the set is split
into two equivalent parts: S1 and S2. Playing the
role of a development set, S1 will train the param-
eter(s) which then be used to compute the update
scores on S2 re-decoding process, and vice versa.
The optimization steps are handled by CONDOR
toolkit (Berghen, 2004), in which we vary α and
β within the interval [0.00; 5.00] (starting point is
1.00), and the maximum number of iterations is
fixed as 50. Test set is further divided to launch ex-
periments in parallel on our cluster using an open-
source batch scheduler: OAR (Nicolas and Joseph,
2013). This mitigates the overall processing times
on such huge SGs. Finally, the re-decoding results
for them are properly merged for evaluation.

5 Results

Table 2 shows the translation performances of
all experimental decoders and their percentages
of sentences which outperform, remain equivalent
or degrade the baseline hypotheses (when match
against the references, measured by TER). Re-
sults suggest that using oracle labels to re-direct
the graph searching boosts dramatically the base-
line quality. BL+OR(1a) augments 7.87 points
in BLEU, and diminishes 0.0607 (0.0794) point
in TER(TERp-A), compared to BL. Meanwhile,
with BL+OR(2a), these gains are 7.67, 0.0565 and
0.0514 (in that order). Besides, the contribution of
our real WCE system scores seems less prominent,
yet positive: the best performing BL+WCE(1a)

increases 1.49 BLEU points of BL (0.0029 and
0.0136 gained for TER and TERp-A). More re-
markable, tiny p-values (in the range [0.00; 0.02],
seen on Table 2) estimated between BLEU of each
BL+WCE system and that of BL relying on Ap-
proximate Method (Clark et al., 2011) indicate that
these performance improvements are significant.
Results also reveal that the use of WCE labels
are slightly more beneficial than that of confidence
probabilities: BL+WCE(1a) and BL+WCE(2a)
outperform BL+WCE(1b) and BL+WCE(2b). In
both scenarios, we observe that the global update
score (Definition 1) performs more fruitfully com-
pared to the local one (Definition 2).

For more insightful understanding about WCE
scores’ acuteness, we make a comparison with
the best achievable hypotheses in the SG (ora-
cles), based on the “LM Oracle” approximation
approach presented in (Sokolov et al., 2012). This
method allows to simplify the oracle decoding to
the problem of searching for the cheapest path on
a SG where all transition costs are replaced by
the n-gram LM scores of the corresponding words.
The LM is built for each source sentence using
uniquely its target post-edition. We update the SG
by assigning all edges with the LM back-off score
of the word it contains (instead of using the current
transition cost). Finally, we combine the oracles of
all sentences yielding BLEU oracle of 66.48.

To better understand the benefit of SG re-
decoding, we compare the obtained performances
with those from our previous attempt in using
WCE for N-best list re-ranking (green zone of Ta-
ble 2). The idea is to build sentence-level fea-
tures starting from WCE labels, then integrate
them with existing SMT model scores to recal-
culate the objective function value, thus re-order
the N-best list (Luong et al., 2014). Both ap-
proaches are implemented in analogous settings,
e.g. identical SMT system, WCE system, and
test set. Results suggest that the contribution of
WCE in SG re-decoding outperforms that in N-
best re-ranking in both “oracle” or real scenar-
ios. BL+OR(1a) overpasses its corresponding ora-
cle re-ranker BL+OR(Nbest RR) in 2.08 points of
BLEU, diminishes 0.0253 (0.0280) in TER(TERp-
A). Meanwhile, BL+WCE(1a) wins real WCE
re-ranker BL+WCE(Nbest RR) in 1.03 (BLEU),
0.0015 (TER), 0.0103 (TERp-A). These achieve-
ments might originate from the following reasons:
(1) In re-ranking, WCE scores are integrated at
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Systems Performance Comparison to BL p-
BLEU ↑ TER ↓ TERp-A ↓ Better (%) Equivalent (%) Worse (%) value

BL 52.31 0.2905 0.3058 - - - -
BL+WCE(1a) 53.80 0.2876 0.2922 28.72 57.43 13.85 0.00
BL+WCE(1b) 53.24 0.2896 0.2995 26.45 59.26 14.29 0.00
BL+WCE(2a) 53.32 0.2893 0.3018 23.68 60.11 16.21 0.02
BL+WCE(2b) 53.07 0.2900 0.3006 22.27 55.17 22.56 0.01
BL+OR(1a) 60.18 0.2298 0.2264 62.52 24.36 13.12 -
BL+OR(2a) 59.98 0.2340 0.2355 60.18 28.82 11.00 -
BL+OR(Nbest RR) 58.10 0.2551 0.2544 58.68 29.63 11.69 -
BL+WCE(Nbest RR) 52.77 0.2891 0.3025 18.04 68.22 13.74 0.01
Oracle BLEU score BLEU = 66.48 (from SG)

Table 2: Translation quality of the conventional decoder and the 2-pass ones using scores from real or
“oracle” WCE, followed by the percentage of better, equivalent or worse sentences compared to BL

sentence level, so word translation errors are not
fully penalized; and (2) in re-ranking, best trans-
lation selection is limited to N-best list, whereas
we afford the search over the entire updated SG
(on which not only N-best list paths but also those
contain at least one word in this list are altered) .

6 Conclusion and perspectives

We have presented a novel re-decoding approach
for enhancing the SMT quality. Inherited the re-
sult from the first pass (N-best list), we predict
words’ labels and confidence probabilities, then
employ them to seek a more valuable (cheaper)
path over SGs throughout the re-decoding stage.
While “oracle” WCE labels extraordinarily lifts
the MT quality up (to reach the oracle score),
real WCE achieves also the positive and promis-
ing gains. The method sharpens WCE increasing
contributions in every aspect of SMT. As future
work, we focus on estimating in more detail the
word quality using MQM3 metric as error typol-
ogy, making WCE labels more impactful. Besides,
the update scores used in this article would be fur-
ther considered towards the consistency with SMT
graph scores to obtain a better updated SG.
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