Incorporating Paraphrasing in Translation Memory Matching and
Retrieval

Rohit Gupta and Constantin Orasan
RGCL, Research Institute of Information and Language Processing,
University of Wolverhampton, Stafford Street,
Wolverhampton WV11LY, UK
{R.Gupta, C.Orasan}@wlv.ac.uk

Abstract

Current Translation Memory (TM) sys-
tems work at the surface level and lack se-
mantic knowledge while matching. This
paper presents an approach to incorpo-
rating semantic knowledge in the form
of paraphrasing in matching and retrieval.
Most of the TMs use Levenshtein edit-
distance or some variation of it. Generat-
ing additional segments based on the para-
phrases available in a segment results in
exponential time complexity while match-
ing. The reason is that a particular phrase
can be paraphrased in several ways and
there can be several possible phrases in a
segment which can be paraphrased. We
propose an efficient approach to incor-
porating paraphrasing with edit-distance.
The approach is based on greedy approx-
imation and dynamic programming. We
have obtained significant improvement in
both retrieval and translation of retrieved
segments for TM thresholds of 100%, 95%
and 90%.

1 Introduction

Translation Memories (TMs) are tools commonly
used by professional translators to speed up the
translation process. The concept of TM can be
traced back to 1978 when Peter J. Arthern pro-
posed the use of a translation archive (Arthern,
1978). A TM system helps translators by retriev-
ing previously translated segments to extract the
relevant match for reuse. TMs also help them in
© 2014 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

maintaining the consistency with previous work
and use of appropriate terminology. Lagoudaki
(2006) surveyed the use of TMs by professional
translators in 2006, and 721 out of 874 (82.5%)
replies confirmed the use of a TM.

Although, extensive research has been done in
Natural Language Processing (NLP) with empha-
sis on improving the performance of automatic
Machine Translation (MT), there is not much re-
search on improving the TM systems by using
NLP techniques. So far, most of the research in
TM has been carried out mostly in industry with
more focus on improving user interface and user
experience in general rather than employing lan-
guage technology to improve matching and re-
trieval. Recent research (Koehn and Senellart,
2010; Zhechev and Genabith, 2010) on TM fo-
cus more on improving machine translation using
TMs.

The TMs currently used by translators find
matches for a given segment on the basis of sur-
face form. This means that even if a paraphrased
segment is available in the TM, the TM systems
have no way to retrieve such segments. In this pa-
per we try to mitigate this problem by using ex-
isting paraphrase databases. To achieve this, we
have incorporated paraphrasing in the TM match-
ing process. A trivial approach to incorporating
paraphrasing would be to generate all the possible
segments based on paraphrases available. How-
ever in this approach the number of segments in-
creases exponentially and hence can not be applied
in our task. This paper proposes a greedy approxi-
mation and dynamic programming technique to in-
corporate paraphrasing in the matching algorithm.

2 Paraphrasing for TM
2.1 Existing Work

The idea of incorporating paraphrasing or semantic
features at the conceptual level is not new. Work
done by (Pekar and Mitkov, 2007) and (Mitkov,
2008) explores the issues in TM systems. Al-
though these works present good insight into TM
systems and their limitations, there is no feasi-
ble practical implementation proposed to improve
them. Another work (Utiyama et al., 2011) in-
corporates paraphrasing into TM. This approach
uses a statistical framework to integrate paraphras-
ing which requires corpora from the same domain
with an abundance of similar segments. The down-
side of this approach is that it requires genera-
tion of all the additional segments based on para-
phrases which is inefficient both in terms of time
and space. In addition, the approach was used
to get exact matches only. In SMT, Onishi et al.
(2010) and Du et al. (2010) use paraphrasing lat-
tice to improving MT by gaining more coverage.

2.2 Need for Paraphrasing

Current TM systems work on the surface level with
no linguistic information. Because of this often
the paraphrased segments available in the TM are
either not retrieved or retrieved with a very low
threshold and are ranked incorrectly among the re-
trieved segments. The lack of semantic knowledge
in the matching process also leads to cases where,
for the same similarity score shown by the system,
one segment may require little effort while another
requires more in terms of post editing. For ex-
ample, even though segments like “the period laid
down in article 4(3)” and “the duration set forth in
article 4(3)” have the same meaning, the one seg-
ment may not be retrieved for another in current
TM systems as having only 57% similarity based
on edit-distance as implemented in OmegaT'. In
this case we can see that one segment is a para-
phrase of the another segment. To mitigate this
limitation of TM, we propose an approach to in-
corporating paraphrasing in TM matching without
compromising the beauty of edit-distance which
has been trusted by translators, translation service
providers and TM developers over the years.

'OmegaT is an open source TM available form

http://www.omegat.org

2.3 PPDB:The Paraphrase Database

The PPDB 1.0 paraphrases database (Ganitkevitch
et al., 2013) contains lexical, phrasal and syntactic
paraphrases automatically extracted using a large
collection of parallel corpora. This database comes
in six sizes (S, M, L, XL, XXL, XXXL) where S is
the smallest and XXXL is the largest. The smaller
packages contain only high precision paraphrases,
while the larger ones aims at more coverage. We
have used lexical and phrasal paraphrases of “L”
size for our approach. The reason for choosing L
size was to retain the quality of segments retrieved
using paraphrasing and at the same time gain some
coverage.

2.4 Classification of Paraphrases

We have classified paraphrases obtained from
PPDB 1.0 into four types for our implementation
on the basis of the number of words in the source
and target phrases. These four categories are as
follows:

1. Paraphrases having one word on both the
source and target sides, e.g. “period”
=“duration”

2. Paraphrases having multiple words on both
sides but differing in one word only, e.g. “in
the period” = “during the period”

3. Paraphrases having multiple words as well as
same number of words on both sides, e.g.
“laid down in article” = “set forth in article”

4. Paraphrases in which the number of words on
the source and target sides differ, e.g. “a rea-
sonable period of time to” = “a reasonable
period to”

As we have already pointed out, a trivial ap-
proach to implementing paraphrasing along with
edit-distance is to generate all the paraphrases
based on the paraphrases available and store these
additional segments in the TM. This approach is
highly inefficient both in terms of time and space.
For example, for a TM segment which has four
different phrases where each phrase can be para-
phrased in five more possible ways, we get 1295
(6* -1) additional segments (still not consider-
ing that these phrases may contain paraphrases
as well) to store in the TM, which is inefficient
even for small TMs. To handle this problem,

each class of paraphrases is processed in a differ-
ent manner. In our classification, Type 1 are one-
word paraphrases and Type 2 can be reduced to
one-word paraphrases after considering the con-
text when storing in the TM. For Type 1 and Type
2, we get the same accuracy as the trivial method
in polynomial time complexity (see Section 3 for
details). Paraphrases of Type 3 and Type 4 require
additional attention because they still remain mul-
tiword paraphrases after reduction and greedy ap-
proximation is needed to implement them in poly-
nomial time.

3 Our Approach

A general approach for TM matching and retrieval
is as follows:

1. Read the Translation Memories available
2. Read the file that needs to be translated

3. Preprocess the input file, apply filter for dif-
ferent file formats and identify the segments

4. For each segment in the input file search for
the most similar segment in TM and retrieve
the most similar segment if above a prede-
fined threshold

5. For each segment in the input file display the
input segment along with the most similar
segment to the translator for post-editing

There are two options for incorporating para-
phrasing in this pipeline: paraphrase the input or
paraphrase the TM. For our approach we have cho-
sen to paraphrase the TM. There are many reasons
for this. First, once a system is set up, the user can
get the retrieved matches in real time; second, TMs
can be stored in company servers and all process-
ing can be done offline; third, the TM system need
not be installed on the user computer and can be
provided as a service.

For our implementation we used the open source
TM tool OmegaT, which uses word-based edit-
distance with cost 1 for insertion, deletion and
substitution. We have employed OmegaT edit-
distance as a baseline and adapted this to incorpo-
rate paraphrasing so that at a later stage we can add
this feature in OmegaT without compromising the
confidence users have in OmegaT fuzzy matches.

Our approach can be briefly described as the fol-
lowing steps:

. Read the Translation Memories available

. Collect all the paraphrases from the para-

phrase database and classify them according
to the classes presented in Section 2.4

. Store all the paraphrases for each segment in

the TM in their reduced forms according to
the process presented in Section 3.1

. Read the file that needs to be translated

. For each segment in the input file get the po-

tential segments for paraphrasing in the TM
according to the filtering steps of Section 3.2
and search for the most similar segment based
on approach described in Section 3.3 and re-
trieve the most similar segment if above a pre-
defined threshold

3.1 Storing Paraphrases

The paraphrases are stored in the TM in
their reduced forms as after capturing para-
phrases for a particular segment we have al-
ready considered the context and there is no
need for it to be considered again while cal-
culating edit-distance. ~We store only the
longest uncommon substring instead of the
whole paraphrase. This reduced paraphrase
is stored with the source word where the un-
common substring starts. We refer to this
source word as “token”. Table 1 shows the
TM source segment (TMS), paraphrases cap-
tured for this segment (TMP) and paraphrases
stored in their reduced form (TMR). In this
case, the token “period” stores the two para-
phrases “duration” and “time” and the token
“laid” stores the two paraphrases “referred to”
and “provided for by”. For Type 3 and Type 4
the paraphrase source length (represented by
s in Table 1) is also stored along with the
paraphrase (represented by ¢p in Table 1). In
this case, length “2” for “laid down” is stored
with paraphrase “referred to” and length “3”
for “laid down in” is stored along with para-
phrase “provided for by”.

3.2 Filtering

Before processing begins, for each input seg-
ment certain filtering steps are applied in or-
der to speed up the process. The purpose of
this preprocessing is to filter out unnecessary

TMS | the period laid down in article 4(3) of decision 468
period laid down in article
TMP | the duration referredto in article 4(3) of decision 468
time provided for by article
period B 1;;(1
TMR | the duration down in article 4(3) of decision 468
time 2 referred to
3 provided for by

Table 1: Representing paraphrases in TM

candidates for participating in the paraphras-
ing process. Because we are generally inter-
ested in candidates above a certain threshold
it is obvious to filter out candidates below a
certain threshold. Our filtering steps for get-
ting potential candidates for paraphrasing are
as follows:

e We first filter out the segments based on
length because if segments differ consid-
erably in length, the edit-distance will
also differ. In our case, the threshold for
length was 49%. So, the TM segments
which are shorter than 49% of the input
are filtered.

e Next, we filter out the segments based
on baseline edit-distance similarity. The
TM segments which are having a simi-
larity below a certain threshold will be
removed. In our case, the threshold was
49%.

e Next, after filtering the candidates with
the above two steps we sort the remain-
ing segments in decreasing order of sim-
ilarity and pick the top 100 segments.

e Finally segments within a certain range
of similarity with the most similar seg-
ment were selected for paraphrasing. In
our case, the range is 35%. This means
that if the most similar segment has 95%
similarity, segments with a similarity be-
low 60% will be discarded?.

3.3 Matching and Retrieval

For matching, similarity is calculated with the po-
tential segments for paraphrasing extracted as per
Section 3.2. Type 1 and Type 2 paraphrases af-
ter reduction (as per Section 3.1) are single-word
paraphrases and Type 3 and Type 4 paraphrases

*these thresholds were determined empirically

have multiple words. For Type 1 and Type 2 the
edit-distance procedure can be optimised globally
as this is a simple case of matching one of these
“paraphrases” when calculating the cost of substi-
tution. For the example given in Table 1, if a word
from input segment matches any of the words “pe-
riod”, “time” or “duration”, the cost of substitution
will be 0.

For paraphrases of Types 3 and 4 the algorithm
takes the decision locally at the point where all
paraphrases finish. The basic edit-distance calcula-
tion procedure is given in Algorithm 1. The algo-
rithm elaborating our decision-making process is
given in Algorithm 2. In Algorithm 2, Input is the
segment that we want to translate and 7'M S is the
TM segment. Table 2 shows the edit-distance cal-
culation of the first five tokens of the Input and TM
segment with paraphrasing. In Algorithm 2, lines
11 to 22 executes when Type 3 and Type 4 para-
phrases are not available (e.g. edit-distance calcu-
lation of the second token “period”). Lines 24 to
57 account for the case when Type 3 and Type 4
paraphrases are available. Line 28 calculates the
edit-distance of the corresponding longest source
phrase and stores it in D.S matrix as shown in Al-
gorithm 2 (e.g. calculation of the edit-distance of
“laid down in” in Table 2). Lines 33 to 46 account
for the edit-distance calculation of each paraphrase
(e.g. calculation of “referred to” and “provided for
by” in Table 2). The edit-distance of each para-
phrase is stored in DT'P matrix as shown in Al-
gorithm 2. Lines 38 to 46 account for the selection
of the minimum edit-distance paraphrase or source
phrase. At line 38, the algorithm compares the
edit-distance of paraphrase DT'P (e.g. “referred
to”) with the edit-distance of the corresponding
source phrase (e.g. “laid down”) as well as with
the current minimum distance. Lines 48, 52 and
56 account for updating the value of j to reflect
the current position for further calculation of edit-

Algorithm 1 Basic Edit-Distance Procedure

1: procedure EDIT-DISTANCE(I nput, T M S)

2: M < lengthof TMS
3: N < length of Input
4: D[i,0] + ifor0<i< N
5 D[0,j]« jfor0<j<M
6: for j < 1...M do
7: TMToken < TMS;
8: for i < 1...N do
9: InputToken < InputSegment;
10: if InputToken = T MToken then
11: substitutionCost < 0
12: else
13: substitutionCost + 1
14:
substitutionCost)
15: Return D[N, M]

16: end procedure

> Initialise M with length of TM segment
> Initialise N with length of Input segment
> initialisation

> initialisation

> get Token of TM segment

> get Token of Input segment

> match InputToken with T MT oken

> Substitution cost if matches

> Substitution cost if not matches

DI[i,j] < minimum(D[i — 1,j] + insertionCost, D[i,j — 1] + deletionCost,D[i — 1,5 — 1] +

> store minimum of insertion, substitution and deletion
> Return minimum edit-distance

j 10 1 2 3 4 5
period
i # | the | duration laid down in | referred to | provided for by || in
time
0 #10 1 2 3 4 5 3 4 3 4 55
1 the | 1 0 1 2 3 4 2 3 2 3 4 4
2| period | 2 1 0 1 2 3 1 2 1 2 3| 3
3 | referred | 3 2 1 1 2 3 0 1 1 2 3| 2
4 to | 4 3 2 2 2 3 1 0 2 2 3|1
) in |5 4 3 3 3 3 2 1 3 3 31|60

Table 2: Edit-Distance Calculation using Algorithm 2

distance (e.g. j = 5 after selecting “referred to”)
and lines 50, 54 and 57 update the matrix D as
shown in Algorithm 2.

As we can see in Table 2, starting from the
third token of the TM, “laid”, three separate edit-
distances are calculated, two for the two para-
phrases “referred to” and “provided for by” and
one for the corresponding longest source phrase
“laid down in” and the paraphrase “referred to” is
selected as it gives a minimum edit-distance of 0.
The last column of Table 2 (j = 5) shows the edit-
distance calculation of the next token “in” after se-
lecting “referred to”.

3.4 Computational Considerations

The time complexity of the basic edit-distance pro-
cedure is O(mn) where m and n are lengths of
source and target segments, respectively. After
employing paraphrasing of Type 1 and Type 2 the
complexity of calculating the substitution cost in-
creases from O(1) to O(log(p)) (as searching the p
words takes O(log(p)) time) where p is the num-
ber of paraphrases of Type 1 and Type 2 per to-

ken of TM source segment, which increases the
edit-distance complexity to O(mnlog(p)). Em-
ploying paraphrasing of Type 3 and Type 4 fur-
ther increases the edit-distance complexity to
O(Imn(log(p) + q)), where ¢ is the number of
Type 3 and Type 4 paraphrases stored per token
and [is the average length of paraphrase. As-
suming the source and target segment are of same
length n and each token of the segment stores
paraphrases of length [, the complexity will be
O((q + log(p))n?l). By limiting the number of
paraphrases stored per token of the TM segment
we can replace (¢ + log(p)) by a constant c. In
this case complexity will be ¢ x O(n?l). However,
in practice it will take less time as not all tokens
in the TM segment will have p and ¢ paraphrases
and the paraphrases are also stored in the reduced
form.

4 Experiments and Results

For our experiments we have used English-French
pairs of the 2013 release of the DGT-TM corpus
(Steinberger et al., 2012). The corpus was se-

Algorithm 2 Edit-Distance with paraphrasing procedure

1

2.
3
4:
5:
6.
7
8

9:

10:
11:
12:

58:

procedure EDIT-DISTANCEPP(Input,TMS)

M <« length(TMS) > number of tokens in TM segment
N « length(Input) > number of tokens in Input segment
D[i,0] +ifor0<i< N > initialise two dimensional matrix D

DI0,j] + jfor0 < j < (M + p') where p’ accounts for increase in TM segment length because of paraphrasing
decisionPoint < 0,j « 1

scost < 1, dcost < 1, icost < 1 > initialisation of substitution, deletion and insertion cost
while 7 < M do
t<TMS; > getting current TM token to process, e.g. 3" token “laid”

if ¢ has no paraphrases of type 3 and type 4 or decisionPoint > N then
decisionPoint < decisionPoint + 1,5 < j+ 1
for i < 1...N do
InputToken < Input;
if InputToken = t then
scost < 0
else
scost <1
if scost = 1 then
OneWordPP < getOneWordPP(t) > get one word paraphrases associated with TM token ¢
if InputToken € OneW ordP P then > applying type 1 and type 2 paraphrasing
scost < 0
Dli,decisionPoint] < minimum(D]i, decisionPoint — 1] + dcost, D[i — 1, decisionPoint] +
icost, D[i — 1, decisionPoint — 1] + scost)

else
tp + get paraphrases stored at ¢ > e.g. tp for Token “laid” in Table 1
s < get corresponding source lengths stored at ¢ > e.g. [s for Token “laid” in Table 1
lsmazx < length of longest source phrase
DS[0,1 — 1] < DI0, decisionPoint + 1] for 1 <1 < lsmazx > initialise two dimensional matrix D.S to

calculate edit-distance of longest source phrase

DS < calculate edit-distance of longest source phrase with Input using D > uses D for first word, consider
Type 1 and Type 2 paraphrases

P < number of paraphrases of type 3 and type 4 > E.g. 2 for “laid”

index < 0, paraphraselen < 0, isppwin < false, cur Distance < oo

prevDistance <— D[decisionPoint, decisionPoint]

DTPIk,0,l — 1] « DJ0, decisionPoint + 1] for0 < k < P —1for 1 < I < length(tp[k])> initialise three
dimensional matrix DT P to calculate edit-distances of paraphrases

for £+ 0...P —1do

dps|k] < decisionPoint + ls[k]

ltp + length(tp[k]) > get paraphrase length e.g. 2 for “referred to”
dpt|k] < decisionPoint + ltp
DT P[k] < calculate edit-distance of ¢tp[k] with Input using D > uses D for first word of tp[k]

if DT P[k,ltp — 1, dpt[k]] < DS|ls[k] — 1,dps[k]] and DT Plk,ltp — 1, dpt[k]] < curDistance then
ppwin < true
curDistance < DT Plk,ltp — 1, dpt[k]]
index +— k
paraphraselen < ltp
elseif DS[ls[k] — 1,dps[k]] < curDistance then
ppwin < false
curDistance <— DS[ls[k] — 1, dps[k]]
index < k
if ppwin = true then > true if paraphrase is better
j < J + ls[index]
decision Point < decisionPoint + paraphraselen
update D using DT P[index]
else if cur Distance = prevDistance then > true if source phrase is better and exactly matching
j < J+ls[index]
decisionPoint < decisionPoint + ls[index]
update D using DS
else
7 < j+ 1, decisionPoint < decisionPoint + 1
update D using DS
Return D[N, decisionPoint]
end procedure

lected in such a way that it was not used to pro-
duce PPDB. For this reason, its language may be
slightly different from the one used to produce
PPDB, which may be a reason for the relatively
modest results obtained in this paper. In our case
English was the source language and French was
the target language. From this corpus we have fil-
tered out segments of fewer than five words and re-
maining pairs were used to create the TM and Test
dataset. Tokenization of the English data was done
using Berkeley Tokenizer (Petrov et al., 2006). Ta-
ble 3 shows our corpus statistics. In our case,
average number of phrases per TM segment for
which paraphrases are present in PPDB is 37 (Avg-
Phrases) and average number of paraphrases per
TM segment present in PPDB is 146 (AvgPP) as
shown in the Table 3.

™ Test

Segments | 319709 | 25000

Source words | 8200796 | 640265

Target words | 7807577 | 609165

Average source length 25.65 25.61

Average target length 24.42 24.36
AvgPhrases 37
AvgPP 146

Table 3: Corpus Statistics

TH 100 95 90 85 80
EDR | 6352 | 7062 | 8369 | 9829 | 10730
PPR | 6444 | 7172 | 8476 | 9938 | 10853
Imp | 145| 156 | 128 | 1.11 1.15
RC 13 20 43 68 88
BPP | 74.31 | 73.16 | 65.01 | 63.29 | 60.84
BED | 65.89 | 70.29 | 60.70 | 63.29 | 61.31

Table 4: Results on surface form: Using all four
types of paraphrases

TH 100 95 90 85 80
EDR | 6352 | 7062 | 8369 | 9829 | 10730
PPR | 6421 | 7142 | 8450 | 9915 | 10820
Imp | 1.09| 1.13 | 097 | 0.87 0.84
RC 8 13 27 45 55
BPP | 73.18 | 73.98 | 63.08 | 64.37 | 63.37
BED | 60.86 | 71.43 | 61.96 | 65.10 | 63.28

Table 5: Results on surface form: Using para-
phrases of Types 1 and 2 only

TH 100 95 90 85 80
EDR | 8179 | 8675 | 9603 | 10456 | 11308
PPR | 8294 | 8802 | 9735 | 10597 | 11462
IMP | 141 146 | 1.37 1.35 1.36

RC 21 30 43 73 108
BPP | 68.61 | 78.04 | 75.40 | 69.06 | 63.93
BED | 59.89 | 67.88 | 66.32 | 63.57 | 61.92

Table 6: Results with placeholders: Using all four
types of paraphrases

TH 100 95 90 85 80
EDR | 8179 | 8675 | 9603 | 10456 | 11308
PPR | 8277 | 8777 | 9706 | 10568 | 11422
IMP 1.2 | 1.18 | 1.07 1.07 1.01

RC 19 24 30 49 73
BPP | 58.28 | 67.95 | 71.03 | 68.03 | 61.02
BED | 52.00 | 54.81 | 60.09 | 62.13 | 57.42

Table 7: Results with placeholders: Using para-
phrases of Types 1 and 2 only

Our evaluation has two objectives: first to see
how much impact paraphrasing has in terms of re-
trieval and second to see the translation quality of
those segments which changed their ranking and
brought them up to the top because of the para-
phrasing. The results of our evaluations are given
in Tables 4, 5, 6, and 7 where each table shows the
similarity threshold for TM (TH), the total number
of segments retrieved using the baseline approach
(EDR), the total number of segments retrieved us-
ing our approach (PPR), the percentage improve-
ment in retrieval obtained over the baseline (Imp),
the number of segments which changed their rank-
ing and come up to the top because of paraphras-
ing (RC), the BLEU score (Papineni et al., 2002)
on target side over translations retrieved by our ap-
proach for segments which changed their ranking
and come up to the top because of paraphrasing
(BPP) and the BLEU score on target side over cor-
responding translations retrieved (irrespective of
similarity score) by baseline approach for these
segments (BED).

As we can see in Table 4, on surface form for
a threshold of 90% we got a 1.28% improvement
over baseline in terms of retrieval, i.e. we have
retrieved 107 more segments. We can observe an
increase of more than four BLEU points for the

90% threshold and an increase of more than eight
BLEU points for the 100% threshold for the seg-
ments which change their rank. There are 13 seg-
ments for threshold 100% which change their rank
and 43 segments for threshold 90% which change
their rank. Table 5 shows improvements we have
obtained using paraphrases of Types 1 and 2 only.

To get more matches in TM, which is usually the
case for real TM, we have removed punctuation
and replaced numbers and dates with placehold-
ers. For this experiment we observed significant
improvement for a threshold of 80% and above as
shown in Tables 6 & 7. We can observe that af-
ter removing punctuation and replacing numbers
and dates with placeholders we obtained more than
five BLEU points improvement over the baseline
for a threshold of 85% and above for the segments
which changes their rank.

Table 7 shows the improvements we have ob-
tained using paraphrases of Type 1 and 2 only with
placeholders. As we can see, improvements in re-
trieval is less compared to Table 6 which uses all
paraphrases but the BLEU score is still improving
significantly. We can observe an increase of more
than 10 BLEU points over the baseline for thresh-
olds of 95% and 90% .

5 Conclusion and Future work

We have presented an efficient approach to incor-
porating paraphrasing in TM. The approach is sim-
ple and fast enough to implement in practice. We
have also shown that incorporating paraphrasing
significantly improves TM matching and retrieval.
Apart from TM, the approach can also be used for
other natural language processing tasks (e.g. to in-
corporate paraphrasing in sentence semantic simi-
larity measures exploiting edit-distance).

In future, we would like to consider the syntac-
tic structure of the paraphrases when performing
matching and retrieval, and also to take into ac-
count the context in which the paraphrases are used
in order to have better accuracy. Alternative ways
to implement using Finite State Transducers (FST)
can also be considered and compared.

Acknowledgement

The research leading to these results has received
funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA
grant agreement no. 317471.

10

References

Arthern, Peter J. 1978. Machine Translation and
Computerized Terminology Systems, A Translator’s
viewpoint. In Translating and the Computer: Pro-
ceedings of a Seminar, pages 77-108.

Du, Jinhua, Jie Jiang, and Andy Way. 2010. Facilitat-
ing Translation Using Source Language Paraphrase
Lattices. In Proceeding of EMNLP, pages 420—429.

Ganitkevitch, Juri, Van Durme Benjamin, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings of NAACL-HLT, pages
758-764, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Koehn, Philipp and Jean Senellart. 2010. Convergence
of translation memory and statistical machine trans-
lation. In Proceedings of AMTA Workshop on MT
Research and the Translation Industry, pages 21-31.

Lagoudaki, Elina. 2006. Translation Memories Survey
2006: Users’ perceptions around TM use. In Pro-
ceedings of Translating and the Computer 28, pages
1-29, London. Aslib.

Mitkov, Ruslan. 2008. Improving Third Genera-
tion Translation Memory systems through identifi-
cation of rhetorical predicates. In Proceedings of
LangTech2008.

Onishi, Takashi, Masao Utiyama, and Eiichiro Sumita.
2010. Paraphrase Lattice for Statistical Machine
Translation. In Proceeding of the ACL, pages 1-5.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
ACL, pages 311-318.

Pekar, Viktor and Ruslan Mitkov. 2007. New
Generation Translation Memory: Content-Sensivite
Matching. In Proceedings of the 40th Anniversary
Congress of the Swiss Association of Translators,
Terminologists and Interpreters.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the COL-
ING/ACL, pages 433-440.

Steinberger, Ralf, Andreas Eisele, Szymon Klocek,
Spyridon Pilos, and Patrick Schliiter. 2012. DGT-
TM: A freely available Translation Memory in 22
languages. LREC, pages 454-459.

Utiyama, Masao, Graham Neubig, Takashi Onishi, and
Eiichiro Sumita. 2011. Searching Translation Mem-
ories for Paraphrases. In Machine Translation Sum-
mit XIII, pages 325-331.

Zhechev, Ventsislav and Josef Van Genabith. 2010.
Seeding statistical machine translation with trans-
lation memory output through tree-based structural
alignment. In Proceedings of ACL, pages 43-51.

