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Abstract

The purpose of the current investigation is to predict post-editor profiles based on user be-
haviour and demographics using machine learning techniques to gain a better understanding of
post-editor styles. Our study extracts process unit features from the CasMaCat LS14 database
from the CRITT Translation Process Research Database (TPR-DB). The analysis has two main
research goals: We create n-gram models based on user activity and part-of-speech sequences
to automatically cluster post-editors, and we use discriminative classifier models to character-
ize post-editors based on a diverse range of translation process features. The classification and
clustering of participants resulting from our study suggest this type of exploration could be
used as a tool to develop new translation tool features or customization possibilities.

1 Introduction

While significant strides have been made in statistical machine translation (MT) technology, the
quality of fully automated MT systems is still a distant second to the quality of human trans-
lations. However, with the increasing demand for translation in the global market, the balance
between quality and cost of translation is a trade-off many translation companies face. Human-
in-the-loop translation techniques' aim to strike a balance between human and machine factors
to optimize productivity. While the need for a human in the translation process loop is widely
acknowledged, the possible techniques for improving the efficiency of the translator is largely
open. In the ongoing CasMaCat project (Alabau 2013), there have been several techniques
explored within the user interface designed for the translator to correct the MT output, such
as automatic correction of the output based on the changes made by the post-editor, automatic
replacement terminology when the post-editor corrects a term and active retraining of the MT
model based on the changes made by the post-editor.

The task of post-editing is cognitively demanding; thus, it is expected that the post-editing
tool factors in significantly to maximize end-user experience. A personalized post-editing tool

lalso known as human-assisted MT, machine-assisted human translation and interactive MT

51

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 51-60
AMTA Workshop. Vancouver, Canada. September 22, 2014



that caters and adapts to a user’s work style is bound to improve productivity metrics. To
this end, we investigate techniques that help identify the post-editor behaviour profile using a
multitude of factors tracked during the post-editing process. We study this process as a sequence
of activity events that enable us to identify individual profiles. From the emergent patterns,
we are then able to cluster post-editors into subgroups based on the commonalities of their
individual process sequences. Our main motivation is that a higher level of granularity in the
units that are analyzed would provide a more detailed account of the post-editing process. The
identification of different post-editing styles and the definition of patterns in those styles at a
fine-grained level provide insights for (a) the development and adaptation of translation tools,
(b) classification of individual translators based on non-process factors (translator experience,
translator personality, time constraints, etc.) and (c) the most salient skills required of post-
editors, which can later be applied to translator training.

For the current study, we exploit the activity data tracked during the post-editing sessions
to infer clustering and classification models. We investigate a range of machine learning (ML)
techniques and validate the learned clusters against demographical metadata provided by the
post-editors to demonstrate the veracity of the inferred models.

2 Related Work

The identification of translator and post-editor styles is an active field in Translation Process Re-
search (TPR). To understand factors affecting translation workflow, researchers have explored
activity data to identify patterns and define style taxonomies. This provides us with an un-
derstanding into the cognitive processes involved in translation tasks: It generates user-based
knowledge for software development by considering the effects of training and experience (Carl
and Schaeffer, forthcoming). However, no such study has applied a machine learning (ML) ap-
proach. Rather, the most widespread method to study translator style is the segmentation of the
translation process into a limited number of subphases that broadly correspond to a preparation
phase, a typing phase and a revision phase.

To identify factors and improve translation tools to better support users, Carl et al. (2011)
establishes three phases in the translation process: Initial orientation, translation drafting and
revision. Within each phase, the study further identifies different possible behaviours. Each
translation phase and behaviour poses separate challenges, so a better choice of task support
options for each phase can greatly benefit the end user.

Schrijver et al. (2009) also identifies three phases in the translation process: Pre-writing,
writing and post-writing phase. The aim of the study is to explore transediting — the overlapping
of translation and editing activities Stetting 1989. Considering the differences between the
translation process and the transediting process, they configure two translation methods that
vary dependent on where the first word of the target text originates. The second, more detailed
method identifies nuances that prove important for the completion of the task and the product’s
adequacy with regards to the client’s requirements.

Targeting post-editing specifically, Mesa-Lao (2013) suggests six steps that comprise the
post-editing cycle, and identifies four cycles that are more common among post-editors, defining
a more specific taxonomy for categorizing post-editing processes. Variation in post-editing
styles is found to be dependent on the type of computer-assisted translation (CAT) tool GUI and
the type of post-editor, which serves as an indicator of user adaptation to different conditions.

Lastly, Martinez-Gémez et al. (2014) employ a ML approach to translator activity se-
quence data to identify translator expertise. Surveying 800 translation sessions of an earlier
version of the TPR database, they classify translators based on process features related to gaze
fixations and keystroke activity. Notably, instead of defining translation activity subphases, their
approach is to classify sequences of translation events (fixations and keystrokes) into distinct

52



activities to model the translation sessions. The error rate reduces when the analysis operates
under the hypothesis of translator certification, and significantly when tasked with identifying
translators’ years of experience. In contrast with the current study, they focus on the prediction
of expertise and years of experience, rather than the identification of translator profiles.

For the current research objectives, we implement generative and discriminative ML mod-
els to analyze the activity sequences in post-editing sessions. Profiling translators and post-
editors based on fine-grained units of activity hint at different underlying cognitive processes
that occur during translation; this analysis would provide grounds for further and deeper studies
of the cognitive dimension of the translation process. The fact that our methods help identify
relevant features for the post-editors classification can also provide the statring point to obtain
actionable insights for developing better CAT tools.

3 Data

The data for the current study was extracted from the CasMaCat (Alabau 2013) longitudinal
study (LS14) carried out during a six week period between April and May 2014 (CRITT TPR
Database?). The training and adaptation factors are the most neglected aspects in post-editing
research. Few TPR studies have addressed this issue (cf. Massey and Ehrensberger-Dow 2013),
although it is commonly explored in research dealing with the development of translation com-
petence and translator training in general (Pacte 2009, Gopferich 2009).

The LS14 study is the first of its kind that implements a longitudinal approach to assess
how post-editors adapt to different GUI designs and work environments. The data collection
includes five post-editors employed with a translation agency in Madrid, Spain. Participants
used the CasMaCat workbench to perform the post-editing tasks (Ortiz-Martinez et al. 2012).
Each week, each participant translated four texts under two conditions — Two texts with tra-
ditional post-editing (TPE) and two texts under interactive post-editing (IPE), which provides
post-editors with real-time translation suggestions to aid in task completion — for a total of 24
texts and 120 translations sessions. All participants were native speakers of Spanish and trans-
lated from English into Spanish. The raw logging data included in the LS14 study is mainly
derived from the post-editors’ translation activities, extracted under the method detailed in Carl
and Schaeffer (2013). Eye-tracking data was also collected for all post-editors, but only for the
first and last weeks of the experiment, so only one-third of the files includes gaze data.

In order to identify the post-editor profiles and to conduct a benchmark study using ML
techniques, we focus our analyses on the information logged in the post-editing session. We
include three types of segmentation information derived from process unit file conventions ex-
tracted from the LS14 TPR-DB?): Activity units (CU), production units (PU), and translation
segments (SG), which are detailed below.

CUid | Session | Time Dur TTseg | Type | Label

83 PEI_PI 480671 1839 | 1255 8 CU83-S:1255-T:8-D:1839
84 PEI_PI 482510 163 1255 4 CU84-S:1255-T:4-D:163
85 PE1_P1 | 482673 | 8202 | 1255 8 CU85-S:1255-T:8-D:8202
86 PE1_P1 | 490875 | 1526 | 1255 4 CU86-S:1255-T:4-D:1526

Table 1: Activity unit (CU) of post-editing activities from Participant 1 (PE1) in Segment 1255

2CRITT Translation Process Research (TPR) Database http://bridge.cbs.dk/platform/?q=node/18
3Carl and Schaeffer (2013) offer a detailed account of the data annotation methods and the different units used in
the CRITT TPR Database
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3.1 Activity Units (CU)

Features from the activity units serve as a baseline of user translation processes. The sequences
within the translation session is a segmentation of typing, reading or pause activity recordings.
We employ a dichotomous model: Activity is categorized as either Translation activity (Type
4) or No Activity (Type 8) to follow the conventions of Carl and Schaeffer (2013). To achieve
finer-grained distinctions in the activity profile, we refine the activity labels with duration in-
formation of each event resulting in five additional classes centered around the median duration
(in milliseconds). Furthermore, Part-of-speech (PoS) sequences extracted from the target text
(TT) files are aligned with the CU data. There are in 68 unique PoS tags identified for Spanish
in LS14, derived from TrEd/Treex (Pajas 2004, Popel and Zabokrtsky 2010).

3.2 Production Units (PU)

Each production unit represents a coherent sequence of typing activity and includes information
about the duration of the unit, duration of the preceding pause, number of edits, insertions and
deletions, tokens involved in the source text and target text and average cross values. Cross
values are the “relative local distortion of the reference text with respect to the output text, and
indicate how many words need to be consumed in the reference to produce the next token(s) in
the output” (Carl and Schaeffer 2013). A PU boundary is defined by a time lapse of more than
one second between successive keystrokes.

3.3 Translation Segments (SG)

Translation segments provide sequence information of aligned source and target text segments
detailing the segment production duration, character length, insertions and deletions and gaze
data, when available. Average word entropy, cross values, perplexity, and source text literality
were also calculated and appended to this file type, given the level of segmentation that our
analysis required.

4 Experiments and Results

S —
TPR-db LS14
Generative Modelling Discriminative Modelling
Target Text Activity Units Metadata / Segments // Production Units
[ J

I

PoS sequences

Activity sequences

Language Models Feature Extraction

Data Normalization
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Figure 1: Basic pipeline of the study: Generative and discriminative models.
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Category | Feature Description
all Participant | participant identifier
Dur duration of the unit
Type type of activity unit
dur_cu duration of activity units
CU TokS number of source tokens in the segment
TokT number of target tokens in the segment
PoS part of speech tag
LenS character length of source segment
CU, SG -
LenT character length of target segment
Nedit number of edits of the segment
LenMT character length of the machine translation segment
Kdur duration of coherent keyboard activity excluding keystroke
pauses greater than or equal to five (5) seconds
Fdur duration of segment production time excluding keystroke
pauses greater than or equal to 200 seconds
Mins Number of manually generated insertions
Mdel Number of manually generated deletions
SG Ains Number of automatically generated insertions
Adel Number of automatically generated deletions
STent average word translation entropy of the segment
PP perplexity score of the segment based on STent
STIit source text literality
FixS number of fixations on the source text unit
FixT number of fixations on the target text unit
GazeS total gaze time on source text unit
GazeT total gaze time on target text unit
STer2 cross value of source text token
TTer2 cross value of target text token
CrossS cross value of source token
SG.PU CrossT cross value of lafget l‘oken
STseg source segment identifier
TTseg target segment identifier
Time timestamp of the event
ParalS percentage of parallel source text reading activity during unit production
PU ParalT percentage of parallel target text reading activity during unit production
Linear degree of linear editing
Pause duration of production pause before typing onset

Table 2: Master process unit feature list

4.1 Toolkits

We use the Waikato Environment for Knowledge Analysis, WEKA 3.6 (Hall et al. (2009)) open-
source toolkit for data mining and machine learning. Using several machine learning algorithms
provided by the toolkit, we train various classification models. For the generative models, we
use the SRI Language Modeling (SRILM) Toolkit (Stolcke 2002).

4.2 Claustering Post-Editors

Using the SRILM toolkit, we build n-gram models on Activity Unit sequences and target text
PoS sequences of each post-editor. We use perplexity values as scores in a k-mean clustering to
find similarity between post-editors, and then validate these clusters using the metadata.

Clustering Based on Activity Unit Sequences

The original CU files included in the TPR database contain eight types of activities. However,
this classification of activity labels depends on the gaze information, which unfortunately is not

55



available across all points in our data. As such, we map the original eight categories into two:

e Type 4 (Translation activity, T4): Activity units as defined by a sequence of coherent

typing, which may also include gaze information; and,
e Type 8 (No Activity, T8): Boundary between two activity units defined as a pause of

1000ms or more without any keyboard activity.

Under this modified categorization, because there are now only two types of activity, translation
activity (Type 4) is always followed by a pause (Type 8). This creates a model in which only
two transitions are possible (74-78-T4 or T8-T4-T8). Therefore, we further subdivide Type 4
and Type 8 into five categories based on the duration of these events: Five buckets centered on
the median duration, further partitioning the activity and pause units into five subgroups. Table
3 illustrates the generated sequences considering the duration of the translation and pause units.
We create a standard trigram language model on the activity sequences of each post-editor. The

P01 | T4,1 T83 | T4,1 | T82 | T45
P02 | T82 T43 | T84 | T4,1 | T8,1

;05 [T41, [ T83 [ T42 [ T85 | T42 | ..

Table 3: Sample user participant activity sequences bucketed by duration

language model of one post-editor is then used to calculate the perplexity scores of the activity
sequences for all the other post-editors. Perplexity, PP, is often used for measuring the fit of
a language model to a corpus of sequences. It can be interpreted as the average number of
tokens that can be produced by a model at each point in the sequence. For a test set with tokens
W = wy,wa, ..., wy,, the perplexity of a trigram model on the test set is

Es

PPy = Hp(wi | wi—1,wi—2) "

where it can be noted that perplexity is normalized by the number of tokens in the test sequence.

Table 4 shows the perplexity scores of each post-editors language model on the other post-
editor’s activity sequences. It illustrates that the diagonal contains the smallest perplexity value
since the dataset is the same as the one used to create the model.*

PE1.LM | PE2LLM | PE3.LM | PE4LM | PE5.LM
PE1 | 4.09526 4.3195 4.62186 4.84951 4.39231
PE2 | 4.30064 4.06063 4.41296 4.60593 4.40357
PE3 | 4.63742 4.39636 4.06999 4.30479 4.85385
PE4 | 4.47429 4.29059 3.99274 3.80005 4.88682
PE5 | 4.00879 4.09205 4.46445 4.81527 3.80372

Table 4: Perplexity scores for the Activity sequence LM model for all post-editors

We use the perplexity values as distance costs in a k-means clustering algorithm to produce
two (k = 2) clusters. We obtain the following clusters: Clusterl{PE1, PE2, PE5} and
Cluster2{ PE3, PE4}. When looking for possible explanations in the metadata, we found
that cluster] includes the most experienced post-editors. Based on the findings provided by
this clustering, it seems to be the case that experienced post-editors produce similar kinds of
activity sequences in contrast with the activity sequences of inexperienced post-editors.

4However, an exception as seen in Table 4, PE 3’s activity model has a higher perplexity score on PE 3’s sequence
compared to that on PE 4’s activity sequence.
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Clustering Based on Target Text Part-of-Speech Sequences

We extract the PoS sequences for each segment in the target text and created a n-gram language
model for each post-editor (PE). Then we use this model to calculate the perplexity values of the
language model for all other post-editors to measure the appropriateness of the model. Using the
perplexity scores as distance metrics, we grouped the post-editors into two clusters by applying
standard k-means clustering: Clusterl{PE1, PE3, PE5} and Cluster2{ PE2, PE4}. To
account for this clustering, we compare the results with the participant metadata. We find that
Post-Editor 2 and Post-Editor 4 share a very negative response to the post-editing approach,
whereas the other three participants did not indicate such apprehension towards the task. Con-
sidering our data, this seems to indicate that post-editors with similar negative response towards
post-editing tend to have similar activity patterns.

4.3 Discriminating Post-Editors

Unlike generative modelling which clusters the post-editors based on their shared characteris-
tics, discriminative modelling is done to determine if the ML models are able to identify the
five post-editors based on their activity profiles. We carry out tests on the three types of data
mentioned in Section 3: activity units, productions units and translation segments. We segment
the data to analyze the effect of the GUI (traditional post-editing and interactive post-editing) in
the analyses. We apply various ML algorithms with 10-fold cross validation for classification,
but find that “multilayer perceptron” and “classification via regression” perform best for this
task of identifying the post-editors. The baseline accuracy is 20% given that there are the same
number of samples for the five participants.

Algorithm Traditional PE | Interactive PE | Combined
.. . Multilayer Perceptron 40.58 % 35.51 % 41.54 %
Activity Unit Profile - - - n
Classification via Regression | 42.37 % 36.82 % 42.72 %
Multil P 44.67 9 39.82 9 .06 9
Production Unit Profile u tl.ayer‘ erc.eptron ' 67 % 9.82 % 37.06 %
Classification via Regression | 45.83 % 47.69 % 46.48 %
. Multilayer Perceptron 42.88 % 46.93 % 44.45 %
Translation S t Profile — - -
Classification via Regression | 44.64 % 47.51 % 45.71 %

Table 5: Results for the 5-way classification task to discriminate post-editors based on activity,
production and translation segments profiles created at the segment level.

Activity Unit Profile

Table 5 shows results obtained from frequencies of unigrams and bigrams of activities as fea-
tures for discriminating post-editors. It illustrates that the model is able to discriminate post-
editors better when they use the traditional PE GUI, with 42.37% accuracy, compared to 36.82%
in the Interactive PE environment. However, when the data is combined using the GUI as an
additional feature, accuracy of the model remains almost the same at 42.72%.

Production Unit Profile

We create a features matrix using the PU features described in Table 2 to identify post-editors.
In the matrix, all text dependent features have been normalized using LenS (character length of
source sentence) to ensure that the system is not biased by differences in the length of the text.
Considering there are multiple production units for each segment, and that the number of PUs
vary per post-editor, we make a sparse vector to group together the different production units
of each segment. As shown in Table 5, we achieve 46.48% accuracy while using the entire data
set with GUI as a feature. When dividing the data set depending on the GUI, we achieve an
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accuracy of 47.69% and 45.83% with the system discriminating post-editors in the traditional
and interactive enabled GUI, respectively.

Translation Segment Profile

Translation segments have some features overlapping with production unit profiles as detailed in
Table 2. Nevertheless, in this file, all the information is cumulative for a segment and dependent
on the text, while in the production unit files, the information is created based on the post-
editors’ typing bursts. When testing the combined dataset including the data from the two
GUISs, the model has an accuracy of 45.71%. When running the tests independently for the two
GUISs, the TPE dataset achieves 44.64% of accuracy, while the IPE dataset reaches 47.51% of
accuracy.

4.4 Feature Analysis

To serve as a clearer visualization of the features identified as salient by the classifiers, we
present in Figure 2 a detail of a decision tree learned using a J4.8 classifier. The most relevant
features to classify post-editors are related to different types of duration (Fdur, Kdur, Dur) and
the post-editors’ typing activity (Mins, Nedit).

>213.97 <664.62

10: Mins 18: Kdur

>180.11
>0.51 <180.11 N

26: Fdur

14: Kdur 19: Kdur

Figure 2: Decision tree of salient features from Translation Segments (SG)

5 Discussion

In this paper, we test the hypothesis that events that make up the translation process provide
enough information for the individualization of post-editor profiles. By using machine learning
models, we are able to not only find the post-editors’ profiles, but also cluster and discriminate
between post-editors. Classifying post-editors based on activity microunits, either dependent
on the text or on the individual user, provides interesting results that are worth exploring in
translation studies and computer science. However, since only a few post-editors participated
in this pilot collection, the current study should be considered only as an initial exploration of
such methods on translation process data. Considering our initial results, it would be beneficial
to explore how additional features on a different segmentation level affect the models, and to
what degree, if at all. For example, information related to user personality, user training and
experience, testing conditions, genre of the text and other qualitative features can be added to
the existing models to explore non-activity factors.
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6 Conclusion

Computer assisted translation remains a progressive field of research, and there is an ever-
growing interest in providing translators and post-editors with better software tools to facilitate
their work and increase productivity. Identifying how translators interact with the tools and gain
insights into features that have an impact on their performance can help in the development of a
new generation of translation tools. TPR aims at uncovering the cognitive process that unfold in
the translator’s mind while performing the translation tasks. Although our sample is undoubt-
edly limited consisting of data from five participants only, our results can serve as indicator
of an avenue that starts providing interesting consideration that could be further explored at a
bigger and more comprehensive scale. The insights brought forth from this study are gathered
under the goal of performance improvement through different channels: (1) Providing better
tools and (2) uncovering training needs. The empirical methods of the current study provide the
foundation for further exploration of the translation process in order to satisfy the needs in those
areas. We believe our methods of user participant profiling can be adapted and extrapolated to
analyze different translation processes and provide researchers with solid findings for multiple
applications in the field.
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