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Abstract

This paper presents a phrase table implementation for the Moses system that computes phrase
table entries for phrase-based statistical machine translation (PBSMT) on demand by sampling
an indexed bitext. While this approach has been used for years in hierarchical phrase-based
translation, the PBSMT community has been slow to adopt this paradigm, due to concerns
that this would be slow and lead to lower translation quality. The experiments conducted in
the course of this work provide evidence to the contrary: without loss in translation quality,
the sampling phrase table ranks second out of four in terms of speed, being slightly slower
than hash table look-up (Junczys-Dowmunt, 2012) and considerably faster than current im-
plementations of the approach suggested by Zens and Ney (2007). In addition, the underlying
parallel corpus can be updated in real time, so that professionally produced translations can
be used to improve the quality of the machine translation engine immediately.

1 Introduction

In recent years, there has been an increasing interest in integrating machine translation
(MT) into the professional translator’s work flow. With translation memories (TM)
firmly established as a productivity tool in the translation industry, it is a conceptually
obvious extension of this paradigm to include machine translation engines as virtual
TMs in the set-up.

One major obstacle to this integration is the static nature of most machine transla-
tion systems that are currently available for use in production. They cannot adapt easily
to feedback from the post-editor, or integrate new data into their knowledge base on
short notice. In other words, they do not learn interactively from corrections to their
output. Their models and knowledge bases were originally developed and designed for
a batch translation scenario, where resources are first built and then used to translate in
a fully automatic fashion without further intervention. Training the model parameters
is still a slow and computationally very expensive process.
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This paper presents dynamic phrase tables as an alternative, implemented within the
open-source statistical machine translation (SMT) system Moses (Koehn et al., 2007).1

Rather than simply looking up pre-computed entries from a database, they construct
their entries on the fly by sampling word-aligned parallel data. The underlying cor-
pus can be amended dynamically with low latency, for example by feeding post-edited
output back to the translation server. New additions to the corpus can be exploited for
future translations immediately.

While the underlying mechanisms are not new (cf. Callison-Burch et al., 2005;
Lopez, 2007), the work reported here eliminates two major concerns about the use
of bitext sampling for phrase table entry construction on demand: translation speed
and translation quality. The experimental evaluation shows that in terms of speed,
the sampling phrase table clearly outperforms current implementations of the work by
Zens and Ney (2007). It comes close to the translation speed achievable with the hash-
based compact phrase table implementation of Junczys-Dowmunt (2012). It should
be noted that if translation speed is a serious concern, it is easy to pre-compute and
store or cache phrase table entries for frequently occurring phrases. In terms of transla-
tion quality, the performance of the sampling phrase table is on par with conventional
phrase tables for phrase-based SMT. Among the phrase table implementations that were
evaluated for this work, the sampling phrase table is the only one that allows dynamic
updates to its knowledge base in real time.

2 Conventional phrase tables vs. bitext sampling

2.1 Background

Most machine translation systems used in production today follow the paradigm of
phrase-based statistical machine translation (PBSMT; Koehn et al., 2003). PBSMT
systems typically rely on three distinct models: a language model that judges target-
language fluency of a proposed translation; a translation model that gauges the quality
of the elementary translation pairs that the final translation is composed of; and a dis-
tortion model that models changes in word order between source text and translation.

The units of translation in PBSMT are contiguous sequences of words in the source
text (“phrases”) that are translated into contiguous sequences of words on the target
side. Producing the translation hypothesis left-to-right in the target language, the trans-
lation algorithm selects non-overlapping phrases in arbitrary order from the source and
concatenates the corresponding translations (i.e., target phrases) to produce a translation
hypothesis. Jumps between the source phrases are modelled by the distortion model.

Translation options for source phrases are conventionally stored in a pre-computed
table, which is called the phrase table. Phrase translation scores are computed via
a (log-)linear model over a number of features values associated with the phrase pair
〈s, t〉 in question. In the typical set-up, phrase table entries are evaluated by four feature
1 The code has been added to the Moses master branch at https://github.com/moses-smt/mosesdecoder.
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functions. In the formulas below, As,t is the phrase-internal word alignment between s
and t. The four feature functions are as follows.

• the conditional phrase-level ‘forward‘ translation probability p (t | s)

• the conditional phrase-level ‘backward‘ translation probability p (s | t)

• the joint ‘lexical forward‘ probability of all target words, given the source phrase
(and possibly a word alignment between the two phrases):

∏|t|
k=0 p (tk | s,As,t).

• the corresponding joint ‘lexical backward‘ probability
∏|s|

k=0 p (sk | t,As,t).

In order to achieve better translations, phrase-level probabilities are typically smoothed
by Good-Turing or Kneser-Ney smoothing (Foster et al., 2006). The underlying counts
and smoothing parameters are computed based on a complete list of phrase pairs ex-
tracted from the word-aligned parallel training corpus.

2.2 Bitext sampling

Except for toy examples, pre-computed phrase tables are typically very large, with the
exact size of course depending on the maximum phrase length chosen and the size of
the underlying corpus. The phrase table used for the timing experiments reported in
Section 3.2, for example, consists of over 90 million distinct pairs of phrases of up to 7
words extracted from a moderately sized parallel corpus of fewer than 2 million parallel
sentences of German-English text.

The large sizes of phrase tables make it impractical to fully load them into memory
at translation time. Fully loaded into memory in the Moses decoder, the phrase table of
the aforementioned system requires well over 100 GB of RAM and takes far beyond an
hour to load. Therefore, phrase tables are usually converted to a disk-based representa-
tion, with phrase table entries retrieved from disk when needed. There are several such
representations (Zens and Ney, 2007; Germann et al., 2009; Junczys-Dowmunt, 2012),
two of which (Zens and Ney, 2007; Junczys-Dowmunt, 2012) have been integrated into
the Moses system.

As an alternative to pre-computed phrase tables, Callison-Burch et al. (2005) sug-
gested to compute phrase table entries on the fly at runtime by extracting and scor-
ing a sample of source phrase occurrences and their corresponding translations from
a pre-indexed bitext. For indexing, they use suffix arrays (Manber and Myers, 1990).
A suffix array is an array of all token positions in a given linear sequence of tokens
(e.g., a text or a DNA sequence), sorted in lexicographic order of the sub-sequence
of tokens starting at the respective position. The use of suffix-array-based bitext sam-
pling in the context of MT has been explored at length by Lopez (2007) as well as
Schwartz and Callison-Burch (2010), especially with respect to Hierarchical Phrase-
based Translation (HPBSMT; Chiang, 2005, 2007).
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A great advantage of the suffix-array-based approach is that it is relatively cheap and
easy to augment the underlying corpus. To add a pair of sentences to the parallel corpus,
all we need to do is to construct a suffix array for the added material (O(n log n), where
n is the number of tokens in the added material), and then merge-sort the original suffix
array (of length m) with the new suffix array (O(n+m)).

While corpus sampling is common practice in other branches of MT research (es-
pecially HPBSMT, due to the prohibitive size of pre-computed, general-purpose, wide-
coverage rule bases), adoption in the PBSMT community has been slow, apparently2

due to concerns about translation speed and quality.

In the following, I intend to dispel these concerns by presenting experimental re-
sults obtained with an implementation of suffix-array-based phrase tables that sample
the underlying bitext at run time, yet outperform existing disk-based implementations
of conventional phrase tables by a wide margin in terms of speed (despite the greater
computational effort), without any loss in translation quality.

Much of the speed benefit is related to RAM vs. disk access. Word-aligned parallel
corpora are much more compact than fully expanded phrase tables, so we can afford
to keep more of the information in memory, benefiting from access times that can be
several orders of magnitude faster than random access to data stored on disk (Jacobs,
2009).

Moreover, the data structures are designed to be mapped directly into memory,
so that we can rely on the system’s virtual memory manager to transfer the data effi-
ciently into memory when needed. This is much faster than regular file access. Two
of the four implementations evaluated here store all the data on disk by default and
load them on demand (PhraseDictionaryBinary, PhraseDictionaryOnDisk); the other
two (PhraseDictionaryCompact and PhraseDictionaryBitextSampling (this work)) use
memory-mapped files to ensure the fastest transfer possible between disk and mem-
ory. I attribute most of the speed benefits to these implementational choices (see also
Sec. 3.2).

Last but not least, one can alleviate the impact of the computational overhead on
overall translation time by caching frequently occurring entries, so that they must be
computed only once, and perform phrase table look-up in parallel for all source phrases
in a sentence submitted for translation, subject to the number of CPUs available.

The issue of translation quality is less obvious. Despite common misconceptions,
it is not so much a matter of missing translation options due to sampling the bitext in-
stead of taking into account every single source phrase occurrence. The vast majority
of phrases occur so rarely that we can easily investigate every single occurrence. More
frequent words and phrases will often be contained in longer, rarer phrases whose in-
stances we also fully explore. And if there is a rare translation of a very frequent word
that escapes our sampling, it is highly unlikely that this translation would survive the

2 I base this statement on numerous conversations with practitioners in the field.
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system’s hypothesis ranking process.

On the contrary, it is the rarity of most phrases that causes problems, as maximum
likelihood estimates based on low counts are less reliable — they tend to over-estimate
the true translation probability. As Foster et al. (2006) have shown, smoothing phrase-
level conditional phrase probabilities improves translation performance. My experi-
ments confirm this finding (Table 2).

Both standard methods for smoothing phrase-level translation probabilities in the
phrase table, Good-Turing and Kneser-Ney, require global information about the entire
set of phrasal translation relations contained in the parallel corpus. This information is
not available when we sample. To take the amount of evidence available into account
when estimating phrase translation probabilities, we therefore compute the lower bound
of the confidence interval3 over the true translation probability, at some confidence level
α, based on the observed counts. The more evidence is available, the narrower the
confidence interval.

Another issue is the computation of the useful backward phrase-level translation
probabilities p (source phrase | target phrase). Omitting this feature function seriously
hurts performance (see Line 5 in Table 2). One could, of course, perform a full reverse
look-up for each translation candidate to obtain the inverse translation probability. This
would increase the number of full phrase look-ups operations necessary to construct a
phrase table entry from scratch by a factor equal to the number of translation options
considered for each source phrase (although again, these look-up operations could be
cached). In practice, this is not necessary. To determine the denominator for the back-
ward phrase-level translation probability, we simply scale the number of occurrences of
each translation candidate in the bitext by the ratio of the source phrase sample size to
the total number of source phrase occurrences in the corpus. Retrieving the total num-
ber of occurrences of the translation candidate in the corpus is trivial if we also index
the target side of the corpus with a suffix array: we only need to measure the distance
between the first and the occurrence of the phrase in the suffix array. Since the suffix
array is sorted in lexicographic order of the corresponding suffixes, this distance is the
total number of phrase occurrences.

3 Experiments

Two sets of experiments were conducted to compare bitext sampling to conventional
phrase tables in terms of static performance (without updates), and a third one to asses
the benefits of dynamically updating the phrase table as interactive translation pro-
gresses. The first experiment aimed at determining the quality of translation achievable
with bitext sampling and the best parameter settings; the second focused on translation
speed and resource requirements. Training, tuning and test data for these two exper-
iments were taken from the data sets for the WMT 2014 shared translation task (cf.
Table 1). The language model was a standard 5-gram model with Kneser-Ney smooth-

3 Specifically, the Clopper-Pearson interval (Clopper and Pearson, 1934) as implemented in the Boost C++ library.
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Table 1: Corpus statistics for the training, development and test data. All corpora were
part of the official data for the shared translation task at WMT 2014 and true-cased for
processing.

# of tokens
corpus # of sentences German English

LM train Europarl-v7 2,218,201 60,502,373
News-Commentary-v9 304,174 7,676,138

TM train Europarl-v7 1,920,209 50,960,730 53,586,045
News-Commentary-v9 201,288 5,168,511 5,151,459
total after alignmenta 2,084,594 53,863,321 56,351,895

Tuning Newstest-2013 3,000 64,251 65,602
Testing Newstest-2014 3003 64,498 68,940
a Some sentence pairs were discarded during word alignment

ing; the distortion model was a simple distance-based model without lexicalisation. The
phrase table limit (i.e., the limit on the number of distinct translation hypotheses that
will be considered during translation) was set to 20; the distortion limit to 6. Sampling
was performed without replacement.

3.1 Translation Quality

Table 2 shows the the quality of translation achieved by the various system configura-
tions, as measured by the BLEU score Papineni et al. (2002). The system configura-
tions were identical except for the method used for construction and scoring of phrase
table entries.

Each system was tuned 10 times in independent tuning runs to gauge the influence
of parameter initialisation on overall performance (cf. also Clark et al., 2011). The
95% confidence interval in the second-but-last column was computed with bootstrap
resampling for the median system within the respective group.

The first four systems rely on conventional phrase tables with four feature functions as
described in Sec. 2.1: forward and backward phrase-level conditional probabilities as
well as forward and backward joint lexical translation probabilities. They differ in the
smoothing method used, except for the system in Line 3, which shows that filtering the
phrase table to include only the top 100 entries (according to the forward phrase-level
probability p(t | s)) has no effect on translation quality.

Lines 5 and below are based on bitext sampling. The poor performance in Line 5
illustrates the importance of the phrase-level backward probability. Without it, the per-
formance suffers significantly. Lines 4 and 6 show the benefits of smoothing.

The parameter α in Lines 7 to 9 is the confidence level for which the Clopper-
Pearson interval was computed. Notice the minuscule difference between lines 2/3
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Table 2: BLEU scores with different phrase score computation methods.

# method low high median mean
95% conf.
intervala

runs

1 precomp., Kneser-Ney smoothing 18.36 18.50 18.45 18.43 17.93 – 18.95 10
2 precomp., Good-Turing smoothing 18.29 18.63 18.54 18.52 18.05 – 19.05 10
3 precomp., Good-Turing smoothing, filteredb 18.43 18.61 18.53 18.53 18.04 – 19.08 10
4 precomp., no smoothing 17.86 18.12 18.07 18.05 17.58 – 18.61 10
5 max. 1000 smpl., no smoothing, no bwd. prob. 16.70 16.92 16.84 16.79 16.35 – 17.32 10
6 max. 1000 smpl., no smoothing, with bwd. prob. 17.61 17.72 17.69 17.68 17.14 – 18.22 8
7 max. 1000 smpl., α = .05, with bwd. prob.c 18.35 18.43 18.38 18.38 17.86 – 18.90 10
8 max. 1000 smpl., α = .01, with bwd. prob. 18.43 18.65 18.53 18.52 18.03 – 19.12 10
9 max. 100 smpl., α = .01, with bwd. prob. 18.40 18.55 18.46 18.46 17.94 – 19.00 10

a Confidence intervals were computed via bootstrap resampling for the median system in the group.
b Top 100 entries per source phrase selected according to p (t | s).
c The parameter α is the one-sided confidence level of the Clopper-Pearson interval for the observed counts.

and 8! By replacing plain maximum likelihood estimates with the lower bound of
the confidence interval over the respective underlying translation probability, we can
make up for the lack of global information necessary for Good-Turing or Kneser-Ney
smoothing.

3.2 Speed

Table 3 shows average translation times4 per sentence for four phrase table implemen-
tations in the Moses system. PhraseDictionaryBinary and PhraseDictionaryOnDisk
are implementations of the method described in Zens and Ney (2007). PhraseDic-
tionaryCompact (Junczys-Dowmunt, 2012) is a compressed phrase table that relies on
a perfect minimum hash for look-up. PhraseDictionaryBitextSampling is the suffix
array-based phrase table presented in this paper. Each system was run with 8 threads as
the only processes on an 8-core machine with locally mounted disks, translating 3003
sentences from the WMT 2014 test set. Prior to each run, all file system caches in RAM
were dropped.

When the pre-computed phrase tables are not filtered, the bitext sampler outper-
forms even the hash-based phrase table of Junczys-Dowmunt (2012). This is due to the
cost of ranking very long lists of translation candidates for very frequent source phrases.
Filtering the phrase table off-line to include only the 100 most likely translation candi-
dates for each phrase (based on p(t | s)) leads to a significant speed-up without impact
on translation quality (cf. Line 3 in Table 2).5 Similarly, the speed of the bitext sampler

4 The times shown were computed by dividing the total wall time of the system run by the number of sentences trans-
lated. Translations were performed in 8 parallel threads, so that the average actual translation time for a single sentence
is about 8 times the time shown. Since the bitext sampler is inherently multi-threaded, the fairest form of comparison
was to run the systems in a way that exhausts the host computer’s CPU capacity.

5 I thank M. Junczys-Dowmunt for pointing out to me that phrase tables must be filtered for optimal performance.
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Table 3: Translation speed (wall time) with different phrase table implementations. The
implementation names correspond to Moses configuration options. Translations were
performed in multi-threaded mode with 8 parallel threads.

type implementation ave. sec./snt
static PhraseDictionaryBinary (Zens and Ney, 2007) 0.879
static PhraseDictionaryOnDisk (Zens and Ney, 2007) 0.717
static PhraseDictionaryCompact (Junczys-Dowmunt, 2012) 0.366
static PhraseDictionaryCompact (Junczys-Dowmunt, 2012), filtereda 0.214
dynamic PhraseDictionaryBitextSampling, max. 1000 samples (this work) 0.256
dynamic PhraseDictionaryBitextSampling, max. 100 samples (this work) 0.228
a max 100 entries per source phrase

can be improved by reducing the maximum number of samples considered, although
this slightly (but not significantly) reduces translation quality as measured by BLEU
(cf. Line 9 in Table 2). Phrase table filtering has no impact on the speed of the other
phrase table implementations.

3.3 Simulated Post-editing

The main goal of this work was to develop a phrase table that can incorporate user
edits of raw machine translation output into its knowledge base at runtime. Since ex-
periments involving real humans in the loop are expensive to conduct, I simulated the
process by translating sentences from an earlier post-editing field trial in English-to-
Italian translation in the legal domain. The training corpus consisted of ca. 2.5 million
sentence pairs (English: ca. 44.6 million tokens, Italian: ca. 45.9 million). Due to the
nature of such studies, the amount of data available for tuning and testing was fairly
small: 564 sentence pairs with 17,869 English and 18,528 Italian tokens for tuning,
and 472 segments with 10,829 tokens of English source text and 11,595 tokens of post-
edited translation into Italian.

Several feature functions were added for use with dynamic updates to the under-
lying bitext. In the following, “background data” means parallel data available prior
to the translation of the first sentence, and “foreground data” the parallel data that is
successively added to the parallel corpus.

• Separate vs. pooled phrase-level conditional translation probabilities (forward and
backward), i.e. the use of distinct feature functions for these probability estimates
based on counts obtained separately from the background and the foreground cor-
pus separately, or feature functions based on pooled counts from two corpora.
Because of the small size of our tuning and test sets, counts were pooled in the
experiments for this work.

• A provenance feature n
x+n , where n is the number of occurrences in the corpus
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Table 4: Simulated post-editing vs. batch translation for English-to-Italian translation
in the legal domain. For simulated post-editing, counts were pooled.

method low high median mean 95% conf.
intervala runs

conventional, Good-Turing smoothing 29.97 30.93 30.74 30.67 29.16 – 32.37 10
sampled, no updates, no smoothing, rarity pen. 29.84 30.97 30.52 30.43 28.97 – 32.25 10
simulated post-editing, pooled counts,
no smoothing, rarity, provenance

30.63 33.05 31.96 31.88 30.19 – 33.77 10

aConfidence intervals were computed via bootstrap resampling for the median system in the group.

and x > 1 an adjustable parameter that determines the slope of the provenance
reward. The purpose of this feature is to boost the score of phrase pairs that occur
in the foreground corpus.

• A global rarity penalty x
x+n (where x and n mean the same as above) that can

penalise phrase pairs that co-occur only rarely overall.

Results are shown in Table 4. None of the differences are statistically significant. In
light of the small size of the test set, this is hardly surprising. In general, we should
expect the benefit of adding post-edited data immediately to the knowledge base of the
SMT system to vary widely depending on the repetitiveness of the source text, and on
how well the translation domain is already covered by the background corpus.

4 Related Work

User-adaptive MT has received considerable research interest in recent years. Due
to space limitations, we can only briefly mention a few closely related efforts here.
A survey of recent work can be found, for example, in the recent journal arti-
cle by Bertoldi et al. (2014b). Ortiz-Martı́nez et al. (2010), Bertoldi et al. (2014b),
and Denkowski et al. (2014) all present systems that can be updated incrementally.
Ortiz-Martı́nez et al. (2010) present a system that can trained be incrementally from
scratch with translations that are produced in an interactive computer-aided translation
scenario. The work by Bertoldi et al. (2014b) relies on cache-based models that keep
track of how recently phrase pairs in the translation model and n-grams in the language
models have been used in the translation pipeline and give higher scores to recently
used items. They also augment the phrase table with entries extracted from post-edited
translations. The work by Denkowski et al. (2014) is the closest to the work presented
in this paper.6 Working with the cdec decoder (Dyer et al., 2010), they also use suffix ar-
rays to construct phrase table entries on demand. In addition, they provide mechanisms
to update the language model and re-tune the system parameters.

Focusing on dynamic adjustment of system parameters (feature function values and
combination weights), Martı́nez-Gómez et al. (2012) investigate various online learn-
ing algorithms for this purpose. Blain et al. (2012) and Bertoldi et al. (2014a) describe
6 Incidentally, Denkowski (personal communication) is using the implementation presented here to port the work of

Denkowski et al. (2014) to the Moses framework.
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online word alignment algorithms that can produce the word alignments necessary for
phrase extraction.

5 Conclusions

I have presented a new phrase table for the Moses system that computes phrase table
entries on the fly. It outperforms existing phrase table implementations in Moses in
terms of speed, without sacrificing translation quality. This is accomplished by a new
way of computing phrase-level conditional probabilities that takes the amount of evi-
dence available into account and discounts probabilities whose estimates are based on
little evidence. Unlike static conventional phrase tables, sampling-based phrase tables
allow for rapid updates of the underlying parallel corpus and therefore lend themselves
to use in an interactive and dynamic machine translation scenario.
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