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Abstract

Spoken language translation (SLT) systems typically
follow a pipeline architecture, in which the best auto-
matic speech recognition (ASR) hypothesis of an in-
put utterance is fed into a statistical machine transla-
tion (SMT) system. Conversational speech often gener-
ates unrecoverable ASR errors owing to its rich vocab-
ulary (e.g. out-of-vocabulary (OOV) named entities).
In this paper, we study the possibility of alleviating the
impact of unrecoverable ASR errors on translation per-
formance by minimizing the contextual effects of incor-
rect source words in target hypotheses. Our approach
is driven by locally-derived penalties applied to bilin-
gual phrase pairs as well as target language model (LM)
likelihoods in the vicinity of source errors. With ora-
cle word error labels on an OOV word-rich English-to-
Iraqi Arabic translation task, we show statistically sig-
nificant relative improvements of 3.2% BLEU and 2.0%
METEOR over an error-agnostic baseline SMT system.
We then investigate the impact of imperfect source er-
ror labels on error-aware translation performance. Sim-
ulation experiments reveal that modest translation im-
provements are to be gained with this approach even
when the source error labels are noisy.

1. Introduction

Conversational speech translation enables monolingual
speakers of different languages to communicate with
one another. The pipeline consists of ASR transcrip-
tion of the input source language utterance, followed
by text-to-text translation by SMT, and optional text-
to-speech synthesis (TTS) in the target language. ASR
performance is often a crucial bottleneck in the perfor-
mance of speech translation systems, because it has a
significant downstream impact on the SMT component.

This is an important issue especially for spontaneous
conversational speech, which exhibits a rich vocabulary
even in domain-constrained applications, often result-
ing in a high OOV word rate. In the force protection and
medical assistance domains, targeted under the DARPA
TransTac and BOLT programs, a significant fraction of
OOV entities refer to names of people, places, organi-
zations, and objects. These OOV entities cause acous-
tically similar in-vocabulary words that best fit the lin-
guistic context to be substituted in the 1-best ASR tran-
scription, as illustrated in Figure 1. Furthermore, ASR
errors caused by OOV entities areunrecoverable, i.e.
there is no path in the ASR lattice that corresponds to
the correct transcription.

Figure 1: Unrecoverable ASR misrecognition caused
by an OOV named-entity.

Translation errors caused directly by unrecoverable
ASR errors, e.g. due to translation of source words sub-
stituted or inserted in place of an OOV entity, are un-
avoidable. However, these unrecoverable source lan-
guage errors also affect translations of surrounding re-
gions of error-free source words due to contextual ef-
fects. The goal of error-aware translation is to min-
imize the contextual impact of source errors and ob-
tain the best possible translation for the correctly rec-
ognized portions of the utterance. We study this pos-
sibility by modifying a phrase-based SMT decoder to
include penalties for bilingual phrase pairs spanning er-
roneous and error-free regions of input, and target lan-
guage model (LM) likelihoods in the vicinity of source



errors. The proposed features are naturally integrated
within a standard log-linear phrase-based translation
model, resulting in a straightforward development and
tuning process.

The remainder of this paper is organized as follows.
Section 2 presents an overview of related work in this
area. Section 3 describes the baseline speech transla-
tion pipeline, including details on the ASR and SMT
systems. A detailed description of the proposed error-
aware SMT decoding approach is given in Section 4.
Experimental results are presented in Section 5. Finally,
Section 6 concludes this paper with a brief discussion of
our contribution and presents directions for future re-
search in this area.

2. Relation to prior work

Integration of ASR and MT has gained popularity in the
SLT community as a way of improving translation per-
formance with potentially noisy input. This ranges from
simple ASR post-processing to obtain segment bound-
aries or to insert punctuation [1, 2] to more sophisti-
cated techniques such as joint decoding [3] and/or aug-
menting the SMT search space with ASRn-best lists,
lattices, or word graphs (confusion networks) [4, 5].
The latter approach relies on the fact that then-best list
or lattice might contain a better hypothesis that could
generate a more accurate translation. However, it is of
limited utility in improving translation performance for
utterances that generate unrecoverable ASR errors. Fur-
thermore, the joint search space can be very large, mak-
ing it difficult to implement some of these approaches
for low memory, small form-factor devices that are pre-
ferred for SLT applications.

Our proposed approach is inspired by the idea of
attention-shift decoding for ASR [6], where an input
utterance is comprised of reliableislands and unreli-
able gaps. In this framework, initial hypotheses are
constructed for the islands, and used to fill in the inter-
mediate gaps in conjunction with additional informa-
tion sources. In the case of SLT, islands refer to cor-
rectly recognized segments of the input utterance, while
gaps consist of unrecoverable ASR errors. Our goal is
to maximize translation performance on the correct is-
lands, while minimizing interference from the incorrect
gaps. In the SLT task domain, gaps will always gener-
ate translation errors and can only be filled in through
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additional external input (e.g. clarification dialog with
the user). We refer the reader to our previous work [7]
for more details on some of these interactive methods.
In this paper, we focus solely on improving translation
performance on the islands.

3. Baseline systems

The baseline ASR and SMT systems for our SLT ap-
plication are built on data from the DARPA TransTac
English-Iraqi Arabic parallel two-way spoken dialogue
collection. These data span a variety of domains in-
cluding force protection (e.g. checkpoint, reconnais-
sance, patrol), medical diagnosis and aid, maintenance
and infrastructure, etc., and are conversational in genre.
We focused on the English-to-Iraqi Arabic direction be-
cause this was a primary requirement of the ongoing
DARPA BOLT program, under which a significant part
of this research was conducted.

The baseline English ASR was based on the BBN
Byblos system, which uses a multi-pass decoding strat-
egy where models of increasing complexity are used in
successive passes in order to refine the recognition hy-
potheses [8]. The acoustic model was trained on ap-
proximately 200 hours of transcribed English speech
from the TransTac corpus. The LM was trained on 5.8M
English sentences (60M words), drawn from both in-
domain and out-of-domain sources. LM and decoding
parameters were tuned on a held-out development set of
3,534 utterances (45k words). With a dictionary of 38k
words, we obtained 12.8% WER on a separate held-out
test set of 3,138 utterances.

Our English-to-Iraqi Arabic SMT system was
trained on a parallel corpus derived from the TransTac
collection (773k sentence pairs, 7.3M words). Phrase
pairs were extracted from bidirectional IBM Model 4
word alignment [9, 10] based on the heuristic approach
of [11]. The target LM was trained on Iraqi Arabic
transcriptions from the parallel corpus. Our phrase-
based decoder (similar to Moses [12]) performs beam
search stack decoding based on a standard log-linear
model, whose parameters were tuned with MERT [13]
on a held-out development set (3,534 sentence pairs,
45k words). The BLEU and METEOR scores of this
system on a noise-free held-out test set (3,138 sentence
pairs, 38k words) were 16.1 and 42.5, respectively.



4. Error-aware SMT decoding

Phrase-based SMT decoders rely on context in order
to construct a reasonably fluent translation of an input
source sentence. Local source context is captured by
multi-word phrase pairs, while local target context is
modeled both by phrase pairs as well as an-gram target
LM. By definition, error regions in source input (gaps)
produce incorrect translations. This affects translation
of surrounding regions of error-free input (islands) due
to two primary contextual effects:

1. Selection of phrase pairs whose source phrases
span islands and gaps, leading to mixing of cor-
rect and incorrect words in the source context.

2. Erroneous target LM history causing propaga-
tion of bad hypotheses at the boundaries between
translations of source gaps and islands.

Our proposed approach to error-aware phrase-based
SMT decoding involves minimizing the contextual im-
pact gaps can have on the translation of islands. We en-
courage this separation between translation of islands
and gaps in two different ways: (a) by discouraging the
decoder from choosing phrase translation pairs whose
source phrases span island-gap boundaries; and (b) by
preventing the propagation of bad target hypotheses
generated by source gaps through the application of dy-
namic target language model penalties.

Throughout this paper, we assume that each ASR-
hypothesized source wordsi is tagged with a corre-
sponding probability of errorei, ranging from 0.0 (cor-
rect) to 1.0 (error). These error probabilities might be
based on oracle error labels (e.g. Levenshtein alignment
of ASR transcription with the reference), or automat-
ically estimated through some machine learning infer-
ence process. In interactive spoken language translation
systems, source error information may also be gleaned
directly from the user through clarification techniques
such as ASR confirmation [7]. In the latter approach,
the user hears a synthesized version of the ASR 1-best
hypothesis, and can inform the system of incorrect re-
gions (gaps) in the hypothesis.

We introduce two new features that leverage source
error probabilities to minimize gap interference in
translation of islands. These features are evaluated
at run-time and integrate directly within the log-
linear translation model framework. Tunable parameter
weights associated with these features can be optimized
with MERT on an appropriate development set. The

proposed approach is highly efficient because it pre-
serves the original search space and adds virtually no
complexity to the SMT decoder.

4.1. Phrase pair error span penalty

We introduce a penalty term that applies to phrase pairs
whose source phrases span the boundary between an is-
land and a gap, thereby discouraging selection of erro-
neous source contexts for translation of correctly recog-
nized words. This also encourages separation of incor-
rect target words generated by gaps from correct hy-
potheses due to islands, permitting replacement with
other information that can render the translation com-
prehensible. For instance, the interactive SLT system
described in [7] automatically identifies source gaps
generated by OOV named entities, and replaces incor-
rect target words due to them with an audio segment
corresponding to the spoken name.

The error span penalty is evaluated at run-time for
each candidate phrase pair in the search graph based
on the source words it spans. It is computed as the
maximal difference between error probabilities of suc-
cessive constituent words in the source phrase, and ap-
plies equally to all translation options generated by that
source phrase.

FX→Y (si, sj) = − max
i≤k<j

| ek+1 − ek | (1)

Equation 1 illustrates the evaluation of this feature
for a sample phrase pairX → Y which spans con-
tiguous source words(si, . . . , sj) with error probabil-
ities (ei, . . . , ej). The rationale behind this feature is
that source phrases spanning island-gap boundaries are
likely to exhibit large internal differences in source er-
ror probability. The error span penalty discourages
the decoder from choosing translations whose source
phrases potentially span island-gap boundaries. How-
ever, it does not penalize phrase pairs that exclusively
span either correct source words (islands) or incorrect
source words (gaps).

4.2. Target language model penalty

Bad phrase translations generated by source gaps can
negatively influence the target context through then-
gram target LM. To prevent the propagation of errors in
this manner, we introduce a dynamic target LM penalty
that is applied to each translation hypothesis in the



Figure 2: LM penalty highlighted for erroneous bigram context. Incorrect source words are highlighted in red.

beam search stack decoding process. In our decoder,
each hypothesis, regardless of which stack it is placed
in, records the most recent phrase pair (source/target
span) that was used to arrive at that hypothesis. The to-
tal LM log-likelihood of the current hypothesis is eval-
uated as the sum of LM log-likelihoods of each con-
stituent target word given itsn-gram context. Depend-
ing on then-gram order, the context may extend to
target words from the previous hypothesis on a lower-
order stack. If the most recent phrase pair used in ob-
taining the previous hypothesis corresponds to a source
gap, we dynamically adjust LM log-likelihoods for tar-
get words in the current hypothesis whose context in-
cludes target words from the previous hypothesis.

In the example of Figure 2, the total LM score
lm(hCwlA AlryAjyl) of the target phrasehCwlA
AlryAjyl is the sum of the LM log-likelihoods
lp(AlryAjyl | hCwlA) and lp(hCwlA | HtY) of
the constituent words given the local context (without
loss of generality, we illustrate using a bigram LM con-
text). However, the bigram likelihood of the first word
lp(hCwlA | HtY) is invalid due to the erroneous con-
textHtY, which in turn was generated by the incorrectly
recognized English source word (gap)to. Therefore,
we apply a penalty factor to this term, weighted by
the projection of the corresponding source error prob-
ability to the target context (µ3 = 0.8), in addition
to the globally tunable feature weightλ. Thus, the
penalty term attenuates the effect of the incorrect tar-
get hypothesisHtY to obtain the discounted LM score
lm∗(hCwlA AlryAjyl), thereby alleviating the im-

pact of erroneous LM context at run-time.
There is a subtle difference between discounting

the total target phrase LM score via subtraction as de-
scribed above, versus modifying the LM score directly
via a multiplicative penalty factor. Our discounting ap-
proach is more flexible because it allows us to tune
a feature weight specifically for the penalty discount,
without affecting the main LM feature weight. In other
words, the total penalty can be separated from the to-
tal LM score. An alternate solution would have been to
back-off to the unigram likelihood ofhCwlA instead.
However, back-off can only be applied with categorical
error labels, precluding the use of soft weighting and
tunable parameters.

5. Experimental results

To evaluate the proposed approach, we designed and
created high-error development/test (HED/HET) sets
consisting of spoken utterances rich in OOV entities.
Table 1 summarizes these datasets, which exhibit very
high OOV/ASR error rates compared to the baseline de-
velopment/test sets. Consequently, the baseline transla-
tion scores of 1-best ASR hypotheses of the HET set
were significantly lower (Table 2). For reference, the
noise-free test set baseline BLEU and METEOR scores
were 16.1 and 42.5, respectively.

We offer a proof-of-concept evaluation of error-
aware SMT decoding using oracle source error labels
for the HED/HET sets, i.e. with error probability of all
correct and incorrect source words set to 0.0 and 1.0,
respectively. The oracle error labels were obtained by



Dataset #Utts #Words OOV% WER
HED 627 6.4k 2.9% 31.8%
HET 507 5.3k 8.9% 46.8%

Table 1: High-error dev/test data statistics.

automatic alignment of ASR hypotheses to the refer-
ence transcriptions. Because of the relatively small size
of the HED set compared to the baseline development
set, we only optimized the weights of the two proposed
features on the HED set, carrying over all other tunable
parameters from the baseline system. This also allowed
a fair comparison, summarized in Table 2, between
the baseline and error-aware systems. In combination,
the proposed features produced relative gains of 3.2%
BLEU and 2.0% METEOR over the baseline system on
error-labeled ASR transcriptions of the HET set. Be-
cause it is impossible to translate gaps correctly, these
improvements are attributable solely to better transla-
tions of the islands.

To verify the statistical signficance of this im-
provement, we performed the non-parametric Wilcoxon
signed-rank test based on pair-wise bootstrap resam-
pling [14] of the baseline and error-aware SMT hy-
potheses. With 100 randomized samples, thep-value
returned by this test was5.14× 10−17, thus confirming
statistical significance of the improvement atα = 0.01.

System BLEU METEOR
Baseline 5.67 24.62
EAD (oracle) 5.85 25.12
EAD (estimated) 5.61 24.86

Table 2: HET set translation scores for error-aware de-
coding (EAD) with oracle/estimated error probabilities.

Achieving perfect ASR error detection is nearly im-
possible with current technology. We investigated the
impact of noisy source error labels on translation per-
formance in order to determine the noise level at which
error-aware SMT decoding no longer achieves its goal.
We simulated false alarms and missed detections by de-
liberately injecting noise into the oracle error labels,
i.e. randomly changing 0.0 error probabilities to 1.0,
and vice-versa in the desired proportion. Figure 3 il-
lustrates the trajectories of BLEU/METEOR scores of
error-aware decoding on the HET set across a range of
false alarm rates (x-axis). Each curve corresponds to a

specific detection rate; for instance, “DR-0.90” refers
to 90% error detection rate. Each data point on ev-
ery curve is the average of 10 independent noise sim-
ulations, giving a smooth trajectory of the performance
trend. The simulation results are consistent with our
intuition that there must be a gradual degradation in
translation performance (BLEU/METEOR scores) as
the noise level in the source word error labels (false
alarm rate) increases. We note that error-aware decod-
ing provides modest BLEU score improvements over
the baseline SMT system as long as the false alarm rate
is low (2-5%) and detection rate is high (70-80%). ME-
TEOR improvements persist at noisier operating points.

In our final experiment, we attempted to deter-
mine whether automatic detection of ASR errors could
be used in conjunction with error-aware SMT decod-
ing to improve translation performance in the absence
of oracle ASR error labels. To this end, we coupled
error-aware SMT decoding with a CRF-based auto-
mated ASR error predictor trained on a variety of fea-
tures, including ASR and SMT confidence scores, sub-
word ASR hypothesis mismatch, word boundary veri-
fication, named-entity detection, etc. The predictor in-
fers a real-valued probability of error in [0.0, 1.0] for
each source word in the HED/HET sets. Our recent
work [15] provides more details on this system. ROC
analysis showed that the automated predictor achieved
68% ASR error detection rate at 10% false alarm rate on
the HET set. Error probabilities inferred by this system
were used to evaluate the proposed penalties for SMT
decoding. While the corresponding BLEU score does
not improve (final row of Table 2), the METEOR score
is slightly better than the baseline system. Given the
current performance level of the automated error pre-
dictor, these results are in complete agreement with our
simulation experiments.

6. Conclusion and future directions

ASR performance is a crucial bottleneck for down-
stream SMT quality in conversational speech transla-
tion systems. Unrecoverable ASR errors due to OOV
words can also impact subsequent translation of sur-
rounding, correctly recognized words due to contextual
effects. Thus, errors in the source input can cause im-
perfect or incorrect translation of error-free neighboring
words. Besides being less effective on utterances that
generate unrecoverable ASR errors, traditional methods
of integrating ASR and SMT (for instance, via lattice or



(a) BLEU Trajectories (b) METEOR Trajectories

Figure 3: Trajectory of BLEU and METEOR scores for error-aware decoding at various false alarm and detection
rates for error labels. Dashed horizontal lines represent the baseline (lower) and error-aware decoding with perfect
error detection (upper). Figures show a gradual degradation in SMT performance as the noise level in the error labels
increases.

n-best based search space augmentation) can be com-
putationally expensive as well as memory intensive.

We presented an exploratory study in which we
made targeted modifications to a phrase-based SMT
decoder that reduce interference of incorrect gaps on
translation of correct islands by introducing dynamic
penalties applied to bilingual phrase pairs and the target
LM. The new features were directly integrated within
the log-linear model, resulting in straightforward devel-
opment and tuning of the modified SMT system.

In the proof-of-concept experiment where we as-
sumed perfect knowledge of source errors, the proposed
modifications gave statistically significant relative im-
provements of 3.2% BLEU and 2.0% METEOR over
the baseline system. Comprehensive simulation exper-
iments revealed that modest translation improvements
persist even in the presence of false alarms and missed
detections of source errors, subject to certain thresh-
olds. Coupling automated ASR error detection with
error-aware SMT decoding yielded small gains in ME-
TEOR. We expect translation performance to improve
as error prediction accuracy increases.

Based on these observations, one of our primary
goals for the future is to improve automated ASR er-
ror detection capability for coupling with error-aware
decoding. On the other hand, interactive, clarification-
enabled SLT systems (e.g. two-way speech-to-speech

translation systems) permit us to leverage user feedback
to obtain source error labels. For example, based on
cues from the automated ASR error detector, the system
may request the speaker to confirm whether a sequence
of ASR-hypothesized words is incorrect. In this way,
user feedback can be used to construct oracle source er-
ror labels as input to the error-aware SMT decoder.
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