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Abstract
This paper is concerned with speech-to-speech translation

that is sensitive to paralinguistic information. From the many

different possible paralinguistic features to handle, in this pa-

per we chose duration and power as a first step, proposing a

method that can translate these features from input speech to

the output speech in continuous space. This is done in a sim-

ple and language-independent fashion by training a regres-

sion model that maps source language duration and power in-

formation into the target language. We evaluate the proposed

method on a digit translation task and show that paralinguis-

tic information in input speech appears in output speech, and

that this information can be used by target language speakers

to detect emphasis.

1. Introduction
In human communication, speakers use many different vari-

eties of information to convey their thoughts and emotions.

For example, great speakers enthrall their listeners by not

only the contents of the speech but also their zealous voice

and confident looks. This paralinguistic information is not a

factor in written communication, but in spoken communica-

tion it has great importance. These acoustic and visual cues

transmit additional information that cannot be expressed in

words. Even if the context is the same, if the intonation and

facial expression are different an utterance can take an en-

tirely different meaning [1, 2].

However, the most commonly used speech translation

model is the cascaded approach, which treats Automatic

Speech Recognition (ASR), Machine Translation (MT) and

Text-to-Speech (TTS) as black boxes, and uses words as the

basic unit for information sharing between these three com-

ponents. There are several major limitations of this approach.

For example, it is widely known that errors in the ASR

stage can propagate throughout the translation process, and

considering several hypotheses during the MT stage can im-

prove accuracy of the system as a whole [3]. Another less

noted limitation, which is the focus of this paper, is that

the input of ASR contains rich prosody information, but

the words output by ASR have lost all prosody information.

Thus, information sharing between the ASR, MT, and TTS

modules is weak, and after ASR source-side acoustic details

are lost (for example: speech rhythm, emphasis, or emotion).

In our research we explore a speech-to-speech transla-

tion system that not only translates linguistic information, but

also paralinguistic speech information between source and

target utterances. Our final goal is to allow the user to speak

a foreign language like a native speaker by recognizing the

input acoustic features (F0, duration, power, spectrum etc.)

so that we can adequately reconstruct these details in the tar-

get language.

From the many different possible paralinguistic features

to handle, in this paper we chose duration and power. We

propose a method that can translate these paralinguistic fea-

tures from the input speech to the output speech in contin-

uous space. In this method, we extract features at the level

of Hidden Markov Model (HMM) states, and use linear re-

gression to translate them to the duration and power of HMM

states of the output speech. We perform experiments that use

this technique to translate paralinguistic features and recon-

struct the input speech’s paralinguistic information, particu-

larly emphasis, in output speech.

We evaluate the proposed method by recording parallel

emphasized utterances and using this corpus to train and test

our paralinguistic translation model. We measure the empha-

sis recognition rate and intensity by objective and subjective

assessment, and find that the proposed paralinguistic transla-

tion method is effective in translating this paralinguistic in-

formation.

2. Conventional Speech-to-Speech Translation
Conventionally, speech to speech translation is composed of

ASR, MT, and TTS. First, ASR finds the best source lan-

guage sentence E given the speech signal S,

Ê = arg max
E

P (E|S). (1)

Second, MT finds the best target language sentence J given

the sentence E,

Ĵ = arg max
J

P (J|Ê). (2)

Finally, TTS finds finds the best target language speech pa-

rameter vector sequence C given the sentence Ĵ,

Ĉ = arg max
C

P (O|Ĵ) (3)

subject to O = MC, (4)
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where O is a joint static and dynamic feature vector sequence

of the target speech parameters and M is a transformation

matrix from the static feature vector sequence into the joint

static and dynamic feature vector sequence.

It should be noted that in the ASR step here we are trans-

lating speech S, which is full of rich acoustic and prosodic

cues, into a simple discrete string of words E. As a result,

in conventional systems all of the acoustic features of speech

are lost during recognition, as shown in Figure 1. These fea-

tures include the gender of the speaker, emotion, emphasis,

and rhythm. In the TTS stage, acoustic parameters are gener-

ated from the target sentence and training speech only, which

indicates that they will reflect no feature of the input speech.

Figure 1: Conventional speech to speech translation model

3. Acoustic Feature Translation Model

In order to resolve this problem of lost acoustic information,

we propose a method to translate paralinguistic features of

the source speech into the target language. Our proposed

method consists of three parts: word recognition and fea-

ture extraction with ASR, lexical and paralinguistic transla-

tion with MT and linear regression respectively, and speech

synthesis with TTS. While this is the same general architec-

ture as traditional speech translation systems, we add an ad-

ditional model to translate not only lexical information but

also two types of paralinguistic information: duration and

power. In this paper, in order to focus specifically on par-

alinguistic translation we chose a simple, small-vocabulary

lexical MT task: number-to-number translation.

3.1. Speech Recognition

The first step of the process uses ASR to recognize the lexical

and paralinguistic features of the input speech. This can be

represented formally as

Ê, X̂ = arg max
E,X

P (E,X|S), (5)

where S indicates the input speech, E indicates the words

included in the utterance and X indicates paralinguistic fea-

tures of the words in E.

In order to recognize this information, we construct a

word-based HMM acoustic model. The acoustic model is

trained with audio recordings of speech and the correspond-

ing transcriptions E using the standard Baum-Welch algo-

rithm. Once we have created our model, we perform simple

speech recognition using the HMM acoustic model and a lan-

guage model that assigns a uniform probability to all digits.

Viterbi decoding can be used to find E.

Finally we can decide the duration and power vector

xi of each word ei. The duration component of the vec-

tor is chosen based on the time spent in each state of the

HMM acoustic model in the path found by the Viterbi algo-

rithm. For example, if word ei is represented by the acous-

tic model A, the duration component will be a vector with

length equal to the number of HMM states representing ei
in A, with each element being an integer representing the

number of frames emitted by each state. The power compo-

nent of the vector is chosen in the same way, and we take

the mean value of each feature over frames that are aligned

to the same state of the acoustic model. We express power

as [power,Δpower,ΔΔpower] and join these features to-

gether as a super vector to control power in the translation

step.

3.2. Lexical Translation

Lexical translation is defined as finding the best translation J
of sentence E.

Ĵ = arg max
J

P (J|E), (6)

where J indicates the target language sentence and E indi-

cates the recognized source language sentence. Generally

we can use a statistical machine translation tool like Moses

[4], to obtain this translation in standard translation tasks.

However in this paper we have chosen a simple number-to-

number translation task so we can simply write one-to-one

lexical translation rules with no loss in accuracy.

3.3. Paralinguistic Translation

Paralinguistic translation converts the source-side duration

and mean power vector X into the target-side duration and

mean power vector Y according to the following equation

Ŷ = arg max
Y

P (Y|X). (7)
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Figure 2: Overview of paralinguistic translation

In particular, we control duration and power of each word

using a source-side duration and power super vector xi =

[x1, · · · ,xNx ]
�

and a target-side duration and power super

vector yi =
[
y1, · · · ,yNy

]�
. In these vectors Nx rep-

resents the number of HMM states on the source side and

Ny represents the number of HMM states on the target side.
� indicates transposition. The sentence duration and power

vector consists of the concatenation of the word duration and

power vectors such that Y = [y1, · · · ,yi, · · · ,yI ] where I
is the length of the sentence. In this work, to simplify our

translation task, we assume that duration and power trans-

lation of each word pair is independent from that of other

words, allowing us to find the optimal Y using the following

equation:

Ŷ = arg max
Y

∏
i

P (yi|xi). (8)

The word-to-word acoustic translation probability

P (yi|xi) can be defined with any function, but in this work

we choose to use linear regression, which indicates that yi is

distributed according to a normal distribution

P (yi|xi) = N(yi;Wei,jix
′
i, S) (9)

where x′ is
[
1x�]� and Wei,ji is a regression matrix (in-

cluding a bias) defining a linear transformation expressing

the relationship in duration and power between ei and ji. An

important point here is how to construct regression matrices

for each of the words we want to translate. In order to do so,

we optimize each regression matrix on the translation model

training data by minimize root mean squared error (RMSE)

with a regularization term

Ŵe,j = arg min
Wei,ji

N∑
n=1

||y∗
n − yn||2 + α||Wei,ji ||2, (10)

where N is the number of training samples, n is the id of each

training sample, y∗ is target language reference word dura-

tion and power vector, and α is a hyper-parameter for the reg-

ularization term to prevent over-fitting.1 This maximization

can be solved efficiently in closed form using simple matrix

operations.

3.4. Speech Synthesis

In the TTS part of the system we use an HMM-based speech

synthesis system [5], and reflect the duration and power in-

formation of the target word paralinguistic information vec-

tor onto the output speech. The output speech parameter

vector sequence C = [c1, · · · , cT ]� is determined by max-

imizing the target HMM likelihood function given the target

word duration and power vector Ŷ and the target language

sentence Ĵ as follows:

Ĉ = arg max
C

P (O|Ĵ, Ŷ) (11)

subject to O = MC, (12)

where O is a joint static and dynamic feature vector sequence

of the target speech parameters and M is a transformation

matrix from the static feature vector sequence into the joint

static and dynamic feature vector sequence.

While TTS generally uses phoneme-based HMM mod-

els, we instead used a word based HMM to maintain the con-

sistency of feature extraction and translation. In this task the

vocabulary is small, so we construct an independent context

model.

4. Evaluation
4.1. Experimental Setting

We examine the effectiveness of the proposed method

through English-Japanese speech-to-speech translation ex-

periments. In these experiments we assume the use of

speech-to-speech translation in a situation where the speaker

is attempting to reserve a ticket by phone in a different lan-

guage. When the listener accidentally makes a mistake when

listening to the ticket number, the speaker re-speaks, empha-

sizing the place where the listener has made the mistake. In

this situation, if we can translate the paralinguistic informa-

tion, particularly emphasis, this will provide useful informa-

tion to the listener about where the mistake is. This informa-

tion will not be present with linguistic information only.

1We chose α to be 10 based on preliminary tests but the value had little

effect on subjective results.
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In order to simulate this situation, we recorded a bilingual

speech corpus where an English-Japanese bilingual speaker

emphasizes one word during speech in a string of digits.

The lexical content to be spoken was 500 sentences from the

AURORA2 data set, chosen to be word balanced by greedy

search [6]. The training set is 445 utterances and the test set

is 55 utterances, graded by 3 evaluators. We plan to make

this data freely available by the publication of this paper.

Before the experiments, we analyzed the recorded

speech’s emphasis. We found several inclinations of em-

phasized segments such as shifts in duration and power. For

example there are often long silences before or after empha-

sized words, and the emphasized word itself becomes longer

and louder.

We further used this data to build an English-Japanese

speech translation system that include our proposed paralin-

guistic translation model. We used the AURORA2 8440 ut-

terance bilingual speech corpus to train the ASR module.

Speech signals were sampled at 8kHz with utterances from

55 males and 55 females. We set the number of HMM states

per word in the ASR acoustic model to 16, the shift length to

5ms, and other various settings for ASR to follow [7]. For the

translation model we use 445 utterances of speech from our

recorded corpus for training and hold out the remainder for

testing. As the recognition and translation tasks are simple

are simple , the ASR and MT models achieved 100% accu-

racy on every sentence in the test set. For TTS, we use the

same 445 utterances for training an independent context syn-

thesis model. In this case, the speech signals were sampled

at 16kHz. The shift length and HMM states are identical to

the setting for ASR.

In the evaluation, we compare the baseline and two pro-

posed models shown below:

Baseline: traditional lexical translation model only

Duration: Paralinguistic translation of duration only

Duration + Power: Paralinguistic translation of duration and

power

The word translation result is the same between both models,

but the proposed model has more information than the base-

line model with regards to duration and power. In addition,

we use naturally spoken speech as an oracle output. We eval-

uate both varieties of output speech with respect to how well

they represent emphasis.

4.2. Experimental Results

We first perform an objective assessment of the translation

accuracy of duration and power, the results of which are

found in Figure 3 and Figure 4. For each of the nine digits

plus “oh” and “zero,” we compared the difference between

the proposed and baseline duration and power and the ref-

erence speech duration and power in terms of RMSE. From

these results, we can see that the target speech duration and

power output by the proposed method is more similar to the

reference than the baseline over all eleven categories, indi-

cating the proposed method is objectively more accurate in

translating duration and power.

Training sentences 8440

Word error rate 0

HMM states 16

Table 1: Setting of ASR

Training utterances 445

Test utterances 55

Regularization term 10

Table 2: Setting of paralinguistic translation

Training utterances 445

HMM states 16

Table 3: Setting of TTS

As a subjective evaluation we asked native speakers of

Japanese to evaluate how well emphasis was translated into

the target language. The first experiment asked the evalu-

ators to attempt to recognize the identities and positions of

the emphasized words in the output speech. The overview

of the result for the word and emphasis recognition rates is

shown in Figure 5. We can see that both of the proposed

systems show a clear improvement in the emphasis recogni-

tion rate over the baseline. Subjectively the evaluators found

that there is a clear difference in the duration and power of

the words. In the proposed model where only duration was

translated, many testers said emphasis was possible to rec-

ognize, but sometime it was not so clear and they were con-

fused. When we also translate power, emphasis became more

clear and some examples of emphasis that only depended on

power were also able to be recognized. When we examined

the remaining errors, we noticed that even when mistakes

were made, mistakenly recognized positions tended to be di-

rectly before or after the correct word, instead of being in an

entirely different part of the utterance.

The second experiment asked the evaluators to subjec-

tively judge the strength of emphasis, graded with the fol-

lowing three degrees.

1: not emphasized

2: slightly emphasized

3: emphasized

The overview of the experiment regarding the strength of em-

phasis is shown in Figure 6. This figure shows that there
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Figure 3: Root mean squared error rate (RMSE) between the

reference target duration and the system output for each digit

Figure 4: Root mean squared error rate (RMSE) between the

reference target power and the system output for each digit

is a significant improvement in the subjective perception of

strength of emphasis as well. Particularly, when we analyzed

the result we found two interesting trends between duration

translation and duration and power translation. Particularly,

the former method was often labeled with a score of 2 indi-

cating that the duration is not sufficient to represent empha-

sis clearly. However, duration+power almost always scored

3 and can be recognized as the position of emphasis. This

means that in English-Japanese speech translation, speech’s

power is an important factor to convey emphasis.

5. Related Works
There have been several studies demonstrating improved

speech translation performance by utilizing paralinguistic in-

formation of source side speech. For example, [8] focuses

on using the input speech’s acoustic information to improve

translation accuracy. They try to explore a tight coupling of

ASR and MT for speech translation, sharing information on

the phone level to boost translation accuracy as measured by

BLEU score. Other related works focus on using speech in-

tonation to reduce translation ambiguity on the target side

Figure 5: Prediction rate

Figure 6: Degree of emphasis

[9, 10].

While the above methods consider paralinguistic infor-

mation to boost translation accuracy, as we mentioned be-

fore, there is more to speech translation than just the accuracy

of the target sentence. It is also necessary to consider other

features such as the speaker’s facial and prosodic expres-

sions to fully convey all of the information included in natu-

ral speech. There is some research that considers translating

these expressions and improves speech translation quality in

other ways that cannot be measured by BLEU. For example

some work focuses on mouth shape and uses this information

to translate speaker emotion from source to target [1, 11]. On

the other hand, [2] focus on the input speech’s prosody, ex-

tracting F0 from the source speech at the sentence level and

clustering accent groups. These are then translated into target

side accent groups. V. Kumar et al consider the prosody in

encoded as factors in the Moses translation engine to convey

prosody from source to target [12].

In our work, we also focus on source speech paralinguis-

tic features, but unlike previous work we extract them and

translate to target paralinguistic features directly and in con-

tinuous space. In this framework, we need two translation

models. One for word-to-word lexical translation, and an-

other for paralinguistic translation. We train a paralinguistic

translation model with linear regression for each word pair.

This allows for relatively simple, language-independent im-

plementation and is more appropriate for continuous features

such as duration and power.
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6. Conclusion
In this paper we proposed a method to translate duration and

power information for speech-to-speech translation. Exper-

imental results showed that duration and power information

in input speech appears in output speech, and that this in-

formation can be used by target language speakers to detect

emphasis.

In future work we plan to expand beyond the easy lexical

translation task in the current paper to a more general transla-

tion task. Our next step is to expand our method to work with

phrase-based machine translation. Phrase-based SMT han-

dles non-monotonicity, insertions, and deletions naturally,

and we are currently in the process devising methods to deal

with the expand vocabulary in paralinguistic translation. In

addition, traditional speech-to-speech translation, the ASR

and TTS systems generally use phoneme-based HMM acous-

tic models. And it will be necessary to change our word-

based ASR and TTS to phoneme-based systems to improve

their performance on open-domain tasks. Finally, while we

limited our study to duration and power, we plan to expand to

other acoustic features such as F0, which play an important

part in other language pairs, and also paralinguistic features

other than emphasis.
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