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Abstract 

In this paper, we study the incorporation of statistical machine 
translation models to automatic speech recognition models in 
the framework of computer-assisted translation. The system is 
given a source language text to be translated and it shows the 
source text to the human translator to translate it orally. The 
system captures the user speech which is the dictation of the 
target language sentence. Then, the human translator uses an 
interactive-predictive process to correct the system generated 
errors. We show the efficiency of this method by higher 
human productivity gain compared to the baseline systems: 
pure ASR system and integrated ASR and MT systems. 

1. Introduction 

Nowadays, with the expansion of global communications, the 
need for the translation has become a basic and important 
requirement, especially for international institutions and news 
agencies. Consider the following example to illustrate the 
importance of the translation in today world. In 2003, after the 
enlargement of the European Union, with a population of 453 
million, the cost of the translation at all institutions, once 
translators are operating at full speed, was estimated at 807 
M€ per year. 
Recently, significant improvements have been achieved in 
statistical machine translation (MT), but still even the best 
machine translation technology is far from replacing or even 
competing with human translators. In order to achieve high 
quality translations, translated texts by these systems need to 
be reviewed and corrected by a human translator. 
Another way to increase the productivity of the translation 
process is computer-assisted translation (CAT) system. In a 
CAT system, the human translator begins to type the 
translation of a given source text; by typing each character the 
MT system interactively offers the choices to enhance and 
complete the translation. Human translator may continue 
typing or accept the whole completion or part of it.  
Interactive machine translation (IMT), first appeared as part of 
Kay's MIND system [1], where the user’s role was to help 
with source-text disambiguation by answering questions about 
word sense, pronominal reference, prepositional-phrase 
attachment, etc. Later work on IMT, eg [2,3,4], has followed 
in this vein, concentrating on improving the question/answer 
process by having less questions, more friendly ones, etc. 
Despite progress in these endeavors, the question/answer 
process remained in the systems of this sort. Finally these 
systems are only used where the cost of manually producing a 
translation is high enough to justify the extra effort, for 
example when the user’s knowledge of the target language 
may be limited or non-existent, or when there are multiple 
target languages. With introducing TransType project by [5], a 
major change in how the user interacts with the machine had 
occurred. In such an environment, human translators interact 

with a translation system that acts as an assistance tool and 
dynamically provides a list of translations (suffixes) which 
complete the part of the source sentence already translated 
(prefix). Also from 1997 to 2004, most of the given papers 
related to the various versions of the TransType project such 
as [6,7,8,9]. 
Also one desired feature of a computer-assisted translation 
system is to provide an environment to accept the translator's 
target language speech signal to speed up the translation 
process; since professional translators can translate a given 
text faster by dictation rather than directly typing the 
translation [10]. In such a system, two sources of information 
are available to recognize the speech input; the target language 
speech and the given source language text. The target 
language speech is just a human-produced translation of the 
source language text. Machine translation models are used 
only to take into account the source text in order to increase 
the speech recognition accuracy. The overall schematic of 
automatic text dictation in computer-assisted translation is 
depicted in Figure 1. 
The idea of incorporating statistical machine translation and 
speech recognition models was independently initiated about 
one decade ago by two groups: researchers at the IBM Thomas 
J. Watson Research Center [10] and researchers involved in 
the TransTalk project [11] and [12].  
In [10], the authors described the statistical speech recognition 
models and statistical translation models. Then, they proposed 
a method for combining those models, but they did not report 
any recognition or translation results. Instead, they just 
reported the perplexity reduction when the translation models 
were combined to recognition models. 
In the TransTalk project [11] and [12], the authors reported 
three different combination methods between translation and 
recognition models. The first method was capable only of 
isolated word recognition. In the second method, the speech 
recognition system generates a list of the most probable word 
sequence hypotheses. Then the statistical translation models 
rescore them and select the best word sequence hypothesis. 
The idea behind the third method was the dynamic vocabulary 
for a speech recognition system which translation models 
generated for each source language sentence. The best 
recognition results have been achieved with the second 
method, while the third method was faster. The authors have 
shown the promising results of combining the translation 
models to speech recognition models. However, they neither 
described the details of the utilized translation model nor 
studied the impact of different translation models. Also 
recently, some researcher in [13,14,15,16,17] have studied the 
integration of ASR and MT models but in the any of these 
works haven’t been used from interactive framework. For the 
first time, in this paper, we enter interactive form into a speech 
enabled CAT and create a Speech-Enabled Interactive CAT. In 
this new system, the human translator uses an interactive-
predictive process to correct the system generated errors. 
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Figure 1: Schematic of automatic text dictation in computer-
assisted translation 

2. Models of interactive-predictive speech-
enabled CAT 

In a speech-enabled interactive-predictive computer-assisted 
translation system, we are given a source language sentence 
� � �� ��� ��� , an acoustic signal 	 � 
� �
� � 
� that is 
the speech of the target language sentence, and the correct 
translated part of the target language sentence (prefix) 

� � �� � ��. Then, we generate the best complement for the 
target sentence prefix (suffix) 
� � ���� � �� . Among all 
possible target language sentence suffixes, we will choose the 
sentence with the highest probability: 


�� � �����������
�� 
�� �� 	 !"                                         (1) 

"""""� �����������
�� 
�� �#$ �%	&
�� 
�� � !                     (2) 

"""""� �����������
�� 
� $ ���&
�� 
�#$ �%	&
�� 
� !        (3) 

"""""� �����������
�&
� $ ���&
�� 
� $ ��	'
�� 
� !        (4) 

Equation 2 is simplified into Equation 3 by assuming that 
there is no direct dependence between X and F. The 
decomposition into three knowledge sources in Equation 4 
allows an independent modelling of the target language 
model��
�&
� , the translation model ���&
�� 
�  and the 
acoustic model ��	'
�� 
� . 
The target language model describes the well-formedness of 
the target language sentence. The translation model links the 
source language sentence to the target language sentence. The 
acoustic model links the acoustic signal to the target language 
sentence. The argmax operation denotes the search problem, 
i.e. the generation of the output sentences in the target 
language by maximization all possible target language 
sentences. Another approach for modelling the posterior 
probability�%
�&
�� �� 	# is direct modelling by the use of a 
log-linear model. The direct posterior probability is given by: 

�%
�&
�� �� 	# � ()*+, -./.%����0�1�2#3.45 6
, ()*+, -./.%�7���0�1�2#3.45 687 �

              (5) 

This approach has been suggested by Papineni et al. in [18.19], 
for natural language understanding task; by Beyerlein in [20], 
for automatic speech recognition; and in [21] for statistical 
machine translation. The time-consuming renormalization in 
Equation 5 is not needed in the search. Therefore we obtain 
the following decision rule: 


�� � �������� , 9:;:%
�� 
�� �� 	#<
:=�                    (6)"

Each of the terms ;:%
�� 
�� �� 	# denotes one of the various 
models which are involved in the recognition process. Each 
individual model is weighted by its model scaling factor9:. 

As there is no direct dependence between � and 	 , the 
;:%
�� 
�� �� 	# can be in one of these two forms: 
;:%
�� 
�� 	# and ;:%
�� 
�� �#. 
This approach is a generalization of Equation (6). The direct 
modeling has the advantage that additional models or feature 
functions can be easily integrated into the overall system. 
Based on Equation (4), the principal models which will 
contribute to the final system are the acoustic model, the 
language model, and the translation model(s). We may use one 
or more translation models in the final system. A set of 
possible translation models consists of HMM, IBM-1, IBM-2, 
IBM-3, IBM-4, IBM-5, and Alignment Template models, which 
will be described in Section 3. The details of utilized acoustic 
and language models will be explained in Section 4. 
The model scaling factors 9�<  in Equation 5 are trained 
according to the maximum entropy principle, e.g. using the 
GIS algorithm. Alternatively, one can train them with respect 
to the final recognition quality measured by the word error rate 
[22]. The development of an efficient search algorithm for 
integrating automatic speech recognition and statistical 
machine translation models is very complicated. Thus, in order 
to facilitate the implementation of the above log-linear model, 
we use the principle of N-best rescoring instead of 
implementing a new search algorithm. The N-best rescoring 
approach helps us to quickly examine many different 
dependencies and models for the combination of automatic 
speech recognition and statistical machine translation. 
The recognition process is performed in two steps. In the first 
step, the baseline speech recognition system creates an N-best 
list of length N for every utterance X of the given corpus. In 
the second step, the translation models rescore every sentence 
pair (the entries in the N-best list with their corresponding 
source sentence). For each utterance, the decision about the 
best recognized sentence is made according to the recognition 
and the translation models. Then the implementation approach 
is very similar to the second method explained in [12]. 

3. Translation models 

A key issue in modeling the translation model probability 
���&
�� 
�  is the question of how we define the 
correspondence between the words of the target sentence and 
the words of the source sentence. In typical cases, we can 
assume a sort of pairwise dependence by considering all word 
pairs %��� ��# for a given sentence pair (���> ��� ). A family of 
such alignment models (IBM-1,..., IBM-5) was developed in 
[23]. Using the similar principles as in Hidden Markov models 
(HMM) for speech recognition, we re-write the translation 
probability by introducing the hidden alignments? for each 
sentence pair"%���> ���#: 

�@����'��� � , �@�����?'��� ?                                     (7) 

IBM-1,2 and Hidden Markov Models. The first type of 
alignment models is virtually identical to HMMs and is based 
on a mappingA B C � D�, which assigns a source position j to a 
target position C � D� . Using suitable modeling assumptions 

[22,23], we can decompose the probability"�@�����?'��� with 

? � D�
�: 

�@����� D�
�'��� �

E%F&G#$ H IE�D�&D�J�� G� F "$ E K��L�MNOP
�
�=�                  (8) 
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With the length model E%F&G#, the alignment model E%C&CQ� G� F# 
and the lexicon model E%��&��#. The alignment models IBM-1 
and IBM-2 are obtained in a similar way by allowing only 
zero-order dependencies. 
 
IBM-3, 4 and 5 Models. For the generation of the target 
sentence, it is more appropriate to use the concept of inverted 
alignments which perform a mapping from a target position i 
to a set of source positions j, i.e. we consider mappings R of 
the form: 

RS C B RT U VW�� � A� � � FX                                            (9) 

with the constraint that each source position j is covered 
exactly once. Using such an alignment ? � RY

Z  we re-write 
the probability"�@�����?'��� : 

�@����� RY
Z '��� �

E%F&G#$ H [E�RT&RY
TJY $ H E%��&��#�\RT ]�

�=�                 (10) 

By making suitable assumptions, in particular first-order 
dependencies for the inverted alignment model E�RT&RY

TJY , 
we arrive at what is more or less equivalent to the alignment 
models IBM-3, 4 and 5 [24]. 
 
Alignment Template Model. In all the above models, the 
single words are taken into account. In [25,26], the authors 
showed significant improvement in translation quality by 
modeling word groups rather than single words in both the 
alignment and lexicon models. This method is known as the 
alignment template (AT) approach. 

3.1. Training 

The unknown parameters of the alignment and lexicon models 
are estimated from a corpus of bilingual sentence pairs. The 
training criterion is the maximum likelihood criterion. As 
usual, the training algorithms can guarantee only local 
convergence. In order to mitigate the problems with poor local 
optima, we apply the following strategy [23]. The training 
procedure is started with a simple model for which the 
problem of local optima does not occur or is not critical. The 
parameters of the simple model are then used to initialize the 
training procedure of a more complex model, in such a way 
that a series of models with increasing complexity can be 
trained. To train the above models except for the alignment 
template model, we use the GIZA++ software [24]. The 
alignment template model training scheme, and also the 
description of our translation system which is based on the 
alignment template approach is explained in [26]. 

4. Speech recognition system  

The speech recognition system is trained on a large 
vocabulary, namely the European Parliament Plenary Sessions 
(EPPS) corpus. The corpus consists of: 67k training-sentences 
(87.5h) from 154 speakers. The other statistics of the speech 
recognition train corpus are shown in Table 1. 

4.1. Experimental results 

We rescore the ASR N-best lists with the standard HMM [27] 
and IBM [23] MT models. Then we use each the N-best list as 
N-best hypotheses in order to provide target suffixes for the 
CAT system.  

Table 1: Statistics of the speech recognition train 
corpus. 

 EPPS 
Language English 
Acoustic data [h] 87.5 
# Running words 705 K 
Vocabulary size 58 K 
# Segments 67 K 
# Speaker 154 

 
The size of the development and evaluation sets N-best lists is 
sufficiently large to achieve almost the best possible results. 
On average 1738 hypotheses per each source sentence are 
extracted from the ASR word graphs. The ASR and MT 
integration experiments are carried out on a large vocabulary 
task which is the Spanish–English parliamentary speech 
translation (EPPS). The corpus statistics is shown in Table 2. 
To determine the performance of the speech-enabled 
interactive-predictive CAT system, we simulate a human 
translator who uses this system. The simulated human knows 
the correct translation and selects all or part of a suggested 
suffix whenever this suffix matches fully or partially with the 
correct translation. If suggested suffix doesn't match with the 
reference translation, simulated human will more complete the 
prefix, character by character, until whole or part of a 
suggested suffix matches with the reference translation.  
See Figure 2 for the pseudo-code of the algorithm that 
simulates a human, matches prefix in the N-best lists and 
calculates the measure of user efforts. 
 

Table 2: Statistics of the Spanish-English (EPPS) 
corpus. 

 EPPS 
Spanish English 

T
ra

in
 Sentences 1 167 627 

Running words 35.3 M 33.9 M 
Vocabulary size 159 080 110 636 
Singletons 63 045 46 121 

D
ev

 Sentences 1 750 
Running words 22 174 23 429 
OOVs 64 83 

T
es

t Sentences 792 
Running words 19 081 19 306 
OOVs 43 45 

4.2. Evaluation metrics 

In order to measure the performance of our CAT system, we 
need to determine quantity of effort the human translator for 
translating a sentence in the absence and presence of the CAT 
system. For this purpose, we use the summation of the 
keystroke ratio (KSR) and mouse-action ratio (MAR) which in 
follow are described.  
KSR (Key-stroke ratio): The KSR is the number of key-
strokes required to produce the single reference translation 
using the interactive machine translation system divided by the 
number of keystrokes needed to type the reference translation. 
Hence, the KSR is inversely related to the productivity 
increase which the system brings for the user.  
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Input: N_best_lists, Ref_Sentences, KSR=0, MAR=0 
Output: KSMR 
1: main() 
2: { 
3:    for (i=0; i< N_best_lists.size(); i++) 
4:          Simulated_User (N_best_lists[i][0],i) 
5:    KSMR=(KSR+MAR)/total_character*100 
6: } 
 
7: Simulated_User (char* Trans_offer ,int Id) 
8: { 
9:     Prefix=Find_biggest_prefix(Trans_offer                  
                                                       , Ref_Sentences[Id]) 
10:    // Find_biggest_prefix compare two char* 
11:    // and return the biggest identical substring 
12:    if (Prefix== Ref_Sentences[Id]) 
13:    { 
14:       KSR=KSR+1 // for accepting offer 
15:        return ; 
16:    } 
17:    else 
18:    { 
19:       MAR=MAR+1 // for determining prefix by mouse 
20:       Prefix= Prefix +Ref_Sentences[Id][ Prefix.size()] 
21:       // the first non_match character is added to prefix. 
22:       KSR=KSR+1 // for insert a character 
23:       Simulated_User (Match_Prefix (Prefix,Id),Id) 
24:    } 
25: } 
 
26: char* Match_Prefix(char* Prefix, int Id) 
27: { 
28:    min=1000 
29:    index_min=-1 
30:    for (i=0; i< N_best_lists[Id].size(); i++) 
31:    { 
32:       dis=Minimum_Edit_Distance(N_best_lists[Id][i] 
                                                              , Prefix) 
33:    // Minimum_Edit_Distance is calculated by Levenshtein  Algorithm. 
34:         if (dis<min ) 
35:        { 
36:             min=dis 
37:             index_min=i 
38:        } 
39:    } 
40:    Suffix= N_best_lists[Id][ index_min] – Prefix 
41:    return Suffix 
42: } 
Figure 2: The pseudo-code of the algorithm which simulates a 

human and matches prefix in the N-best list. 
 
A KSR of 1 means that the interactive machine translation has 
never suggested an appropriate completion to the use sentence 
prefix, while a KSR value close to 0 means that the system has 
often suggested perfect completions. 
MAR (Mouse-action ratio): 
It is similar to KSR, but it measures the number of mouse 
pointer movements plus one more count per sentence (the user 
action needed to accept the final translation), divided by the 
total number of reference characters. 
KSMR (Key-stroke and mouse-action ratio): 
It is the summation of KSR and MAR, which is the amount of 
all required actions either by keyboard or by mouse to 
generate the reference translations using the interactive 

machine translation system divided by the total number of 
reference characters. 

4.3. Experiments 

In order to rescore the N-best list generated by the automatic 
speech recognizer, we make use of the translation models 
described in Section 3. The rescored N-best lists are used in 
the CAT system as N-best hypotheses lists. After human 
translator interact with the CAT and a prefix is formed, the 
CAT will search N-best hypotheses for founding a hypothesis 
which has minimum edit distance to the prefix and exactly 
includes the last (partial) word of the prefix. Then the CAT 
system returns remaining of target sentence to the user (from 
after last word to end of hypothesis). To study the effect of the 
N-best list size on the CAT results, we repeat the experiments 
with N-best lists which have a maximum of 1, 5, 10, 100, 1000 
and 5000 hypotheses per sentence for the EPPS task. The 
results of the speech-enabled interactive-predictive CAT 
system are listed in Table 3 and 4. 
 

Table 3: KSMR result for Test and Dev in percent. For 
each translation model, translation probability is 

calculated in one direction. 
 Test Dev 

ASR 

n=1 9.2330 12.4844 
n=5 7.8893 10.3986 
n=10 7.3995 9.7566 
n=100 6.3681 8.4446 
n=1000 5.7882 7.9736 
n=5000 5.6361 7.8683 

SA
R

+
M

T
 

 
 
 

IBM1 

n=1 8.5129 11.751 
n=5 7.1701 9.7380 
n=10 6.7058 9.1292 
n=100 5.7490 7.9496 
n=1000 5.3794 7.5926 
n=5000 5.2884 7.5205 

 
 
 

HMM 

n=1 8.9872 12.247 
n=5 7.6180 10.152 
n=10 7.1501 9.5327 
n=100 6.0740 8.2896 
n=1000 5.5724 7.8164 
n=5000 5.4413 7.7057 

 
 
 

IBM3 

n=1 8.4091 11.651 
n=5 7.1583 9.6807 
n=10 6.7623 9.0812 
n=100 5.7781 7.9456 
n=1000 5.3858 7.5879 
n=5000 5.3139 7.4903 

 
 
 

IBM4 

n=1 8.1488 11.285 
n=5 6.9270 9.3283 
n=10 6.4764 8.7420 
n=100 5.5269 7.7808 
n=1000 5.2319 7.4292 
n=5000 5.1646 7.3556 

 
 
 

IBM5 

n=1 7.9867 11.152 
n=5 6.7522 9.2268 
n=10 6.3872 8.7063 
n=100 5.4313 7.6987 
n=1000 5.2082 7.3951 
n=5000 5.1254 7.3308 
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Table 4: KSMR result for Test and Dev in percent. For 
each translation model, translation probability is 

calculated in two directions. 
 

 Test Dev 

SA
R

+
M

T
 

 
IBM1 

& 
IBM1-I 

n=1 7.3686 9.8767 
n=5 6.4200 8.5220 
n=10 6.1487 8.0550 
n=100 5.4286 7.3339 
n=1000 5.1828 7.1325 
n=5000 5.1008 7.0582 

 
HMM 

& 
HMM-I 

n=1 7.9385 11.014 
n=5 6.7395 9.2593 
n=10 6.4436 8.6382 
n=100 5.5842 7.6971 
n=1000 5.2702 7.4253 
n=5000 5.2046 7.3564 

 
IBM3 

& 
IBM3-I 

n=1 8.3099 11.248 
n=5 7.1146 9.4592 
n=10 6.6922 8.8450 
n=100 5.7472 7.8304 
n=1000 5.3566 7.4965 
n=5000 5.2884 7.4090 

 
IBM4 

& 
IBM4-I 

n=1 6.6749 9.2780 
n=5 5.8646 8.0410 
n=10 5.6088 7.6445 
n=100 5.0471 7.0489 
n=1000 4.8832 6.8506 
n=5000 4.8450 6.8212 

 
IBM5 

& 
IBM5-I 

n=1 6.7504 9.3662 
n=5 5.8974 8.1115 
n=10 5.6443 7.7606 
n=100 5.0872 7.1194 
n=1000 4.8960 6.8955 
n=5000 4.8678 6.8793 

 
In spite of Table3 that shows the translation probability in one 
direction ( E%���&���# ). Additionally, in Table 4, for each 
translation model, we calculate the translation probability in 
both directions: E%���&���# andE%���&���#. Both tables are shown 
the KSMR measure of the CAT. 

4.4. Discussion 

As the results show, there is a clear and significant accuracy 
improvement in all cases when moving from single-best to N-
best translations. The best results obtained on the test and 
development sets are 5.13 % and 7.33 %, respectively. Both of 
results are produced by the IBM translation Model 5 and the 
N-best lists with maximum size 5000 hypotheses. According 
to these results, user of our CAT would only need an effort 
equivalent to typing about 5.13% and 7.33% of the characters 
in order to produce the correct translations for the test and 
development sets, respectively. These results are very ideal for 
CAT systems.  
Also we could improve these results by using the translation 
models in both directions. These results are shown in Table 4. 
In this case, the best results obtained on the test and 
development sets are 4.87% and 6.88%, respectively. For 
better and easier comparing of the results, consider Figure 3 to 
Figure 6. 

 
Figure 3: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Test set. 
 
 

 

 
Figure 4: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Dev set. 
 
 
 

 
Figure 5: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Test set. 
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Figure 6: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Dev set. 
 
The successes obtained in these experiments are due to the 
quality of translations produced by the integrated ASR and 
MT systems and size of the N-best lists. With larger n-best list, 
the probability that the CAT system can suggest a better 
extension will increase. 

5. Conclusion 

The goal of this paper was to evaluate whether the accuracy of 
a speech-enabled interactive-predictive CAT system could be 
improved by using the N-best lists which are obtained by ASR 
and are rescored by translation models.  
We introduced a general framework for integrating the speech 
recognition and translation models for automatic text dictation 
in the context of computer-assisted translation. We used the N-
best lists which were produced by integrated ASR and MT 
systems, as N-best hypotheses in the CAT system and we 
achieved significantly better results. 

References 

[1]. Kay, M. (1973). The MIND system, in Natural Language 
Processing, pp. 155-188. 

[2]. Brown, R.D., Nirenburg, S. (1990). Human-computer 
interaction for semantic disambiguation, In Processing of 
the International Conference on Computational 
Linguistics (COLING), PP. 42-47.   

[3]. Maruyama, H., Watanabe, H. (1990). An interactive 
Japanese parser for machine translation, In Processing of 
the International Conference on Computational 
Linguistics (COLING), pp. 257-262. 

[4]. Whitelock, P. J., McGee Wood, M., Chandler, B. J., 
Holden, N. and Horsfall, H. J. (1986). Strategies for 
interactive machine translation: the experience and 
implications of the UMIST Japanese project, In 
Proceedings of the International Conference on 
Computational Linguistics (COLING), pages 329-334. 

[5]. Foster, G., Isabelle, P. and Plamondon, P. (1997). Target-
Text Mediated Interactive Machine translation, in Kluwer 
Academic Publishers, pp. 175–194. 

[6]. Langlais, P., Foster, G., and Lapalme, G. (2000). 
TransType: a computer-aided translation typing system, 
In Proceedings of the NAACL/ANLP Workshop on 
Embedded Machine Translation Systems, pp. 46–52. 

[7]. Langlais, P., Lapalme G. and Loranger, M. (2002). 
TRANSTYPE: Development–Evaluation Cycles to Boost 
Translator’s Productivity, in Kluwer Academic 
Publishers, pp. 77–98. 

[8]. Foster, G. (2002). Text Prediction for Translators, Ph.D. 
thesis, Universit´e de Montr´eal, Canada. 

[9]. Cubel, E., González, J., Lagarda, A. L., Casacuberta, F., 
Juan, A. and Vidal, E. (2004). Adapting finite-state 
translation to the TransType2 project, Proceedings of the 
Joint Conference combining the 8th International 
Workshop of the European Association for Machine 
Translation. 

[10]. P. F. Brown, S. F. Chen, S. A. D. Pietra, V. D. 
Pietra, A. S.Kehler, and R. L. Mercer, "Automatic speech 
recognition in machine-aided translation", Computer 
Speech and Language, vol. 8, no. 3, pp. 177–187,1994. 

[11]. M. Dymetman, J. Brousseau, G. Foster, P. Isabelle, 
Y. Normandin, and P. Plamondon, “Towards an 
automatic dictation system for translators: the TransTalk 
project”, in Proceedings of ICSLP-94, pp. 193–196, 1994. 

[12]. J. Brousseau, C. Drouin, G. Foster, P. Isabelle, R. 
Kuhn, Y. Normandin, and P. Plamondon, “French speech 
recognition in an automatic dictation system for 
translators: the transtalk project”, in Proceedings of 
Eurospeech, pp. 193–196, 1995. 

[13]. S. Khadivi, R. Zens and H. Ney, “Integration of 
Speech to Computer-Assisted Translation Using Finite-
State Automata”, In Proceedings of the COLING/ACL 
2006 Main Conference Poster Sessions, pages 467–474, 
2006. 

[14]. S. Khadivi and H. Ney. 2, “Integration of Speech 
Recognition and Machine Translation”, in IEEE 
Transactions On Audio, Speech, And Language 
Processing, VOL. 16, pp. 1551-1564, 2008. 

[15]. Reddy, R. Rose and A. Désilets, “Integration of 
ASR and Machine Translation Models in a Document 
Translation Task”, In IEEE Transactions on Audio, 
Speech, and Language Processing, Canada, 2007. 

[16]. M. Paulik and A. Waibel, “Extracting clues from 
human interpreter speech for spoken language 
translation”, in Proc. ICASSP, pp. 5097-5100, 2008. 

[17].  E.Vidal, F. Casacuberta, L. Rodríguez, J. Civera, 
and C. Martínez. Computer-assisted translation using 
speech recognition. IEEE Transaction on Audio, Speech 
and Language Processing, 14(3):941-951, 2006. 

[18]. K. A. Papineni, S. Roukos, and R. T. Ward, “Feature 
based language understanding, in EUROSPEECH”, 
Rhodes, Greece, September, pp. 1435–1438, 1997. 

[19]. K. A. Papineni, S. Roukos, and R. T. Ward, 
“Maximum likelihood and discriminative training of 
direct translation models”, in Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing (ICASSP), vol. 
1, Seattle, WA, pp. 189–192, 1998. 

[20]. P. Beyerlein, “Discriminative model combination, in 
Proc. IEEE Int. Conf. on Acoustics”, Speech, and Signal 
Processing (ICASSP), vol. 1, Seattle, WA, pp.481 – 484, 
1998. 

[21]. F. J. Och and H. Ney, “Discriminative training and 
maximum entropy models for statistical machine 
translation”, in Proc. of the 40th Annual Meeting of the 
Association for Computational Linguistics (ACL), 
Philadelphia, PA, pp. 295–302, 2002. 

[22]. F. J. Och, “Minimum error rate training in statistical 
machine translation”, in Proc. of the 41th Annual Meeting 

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

1 5 10 100 1000 5000

K
SM

R
 [

%
]

Size of N-best list

IBM1&IBM1-I

HMM&HMM-I

IBM3&IBM3-I

IBM4&IBM4-I

IBM5&IBM5-I

　　　　　　　　　　　　   242 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



of the Association for Computational Linguistics (ACL), 
Sapporo, Japan, pp. 160–167, 2003. 

[23]. P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, 
and R. L.Mercer, “The mathematics of statistical machine 
translation: Parameter estimation”, Computational 
Linguistics, vol. 19, no. 2, pp. 263–311, 1993. 

[24]. F. J. Och and H. Ney, “A systematic comparison of 
various statistical alignment models”, Computational 
Linguistics, vol. 29, no. 1, pp. 19–51, 2003. 

[25]. F. J. Och, C. Tillmann, and H. Ney, “Improved 
alignment models for statistical machine translation”, in 
Proc. Joint SIGDAT Conf. on Empirical Methods in 
Natural Language Processing and Very Large Corpora, 
University of Maryland, College Park, MD, pp. 20-28, 
1999. 

[26]. F. J. Och and H. Ney, “The alignment template 
approach to statistical machine translation”, 
Computational Linguistics, vol. 30, no. 4, pp. 417–449, 
2004. 

[27]. Vogel, H. Ney, and C. Tillmann. HMM-based word 
alignment in statistical translation. In Proceedings of the 
16th conference on Computational linguistics, pages 836–
841, Morristown, NJ, USA, 1996. 
 

 
 

　　　　　　　　　　　　   243 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 




