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Abstract 
The paper presents the system developed by RACAI for the 
ISWLT 2012 competition, TED task, MT track, Romanian to 
English translation. We describe the starting baseline phrase-
based SMT system, the experiments conducted to adapt the 
language and translation models and our post-translation 
cascading system designed to improve the translation without 
external resources. We further present our attempts at creating 
a better controlled decoder than the open-source Moses system 
offers.   

1. Introduction 
This article presents the system developed by RACAI (the 
Research Institute for Artificial Intelligence of the Romanian 
Academy) for the ISWLT 2012 competition. We targeted the 
Machine Translation track of the TED task, Romanian to 
English translation. 
 
We had access to the following resources:  

• In-domain parallel corpus: 142K sentences; 13MB size; 
TED RO-EN sentences [6]. 

• Out-of-domain parallel corpus: 550K sentences; 85MB 
size; Europarl (juridical domain) and SETimes (news 
domain) RO-EN sentences. 

• Out-of-domain monolingual corpus (English): 168M 
sentences; 26GB size; mostly news domain EN sentences. 

• Development set: 1.2K RO-EN sentences (TED tst2010 
file) 

• Test set: 3K RO only sentences (TED tst2011 and tst2012 
files).  
 

Before attempting any translation experiments, the available 
resources had to be preprocessed. This involves first 
correcting the Romanian side of the parallel corpora as to 
obtain the highest possible quality Romanian-side text and 
then annotate both the Romanian and English sides.  
 
Thus, the first preprocessing step involves automatic text 
normalization. Historically, due mainly to technical reasons 
regarding the code-page available in earlier versions of the 
Windows operating system, the letters ș and ț in the 
Romanian language were initially written as ş, ţ (with a 
cedilla underneath – old, incorrect style) and later as ș, ț (with 
a comma underneath – correct style). As such, we have 
several resources with incompatible diacritics for these two 
letters. All old-style letters have been converted to the new 
style. The second correction to be made is due to the 
Romanian orthographic reform from 1993 which re-establish 
the orthography used until 1953, according to which (among 

the others) the inner letter “î”, has been replaced by “â (ex: 
pîine is written correctly as pâine). Older texts have been 
corrected to the current orthography using an internally 
developed tool that uses a 1.5 million word lexicon of the 
Romanian language backing-off a rule-based word corrector 
in case the lexicon might not contain some words. 
 
The third and final necessary correction concerned texts that 
do not have diacritics. In the provided resources, both in-
domain and out-of-domain corpora contain several groups of 
sentences that have not diacritics. Restoring diacritics is a 
rather difficult task, as a misplaced or missing diacritic can 
have dramatic effects starting from change of definiteness of a 
noun (for example) to changing an entire part-of-speech of a 
word, yielding sentences that lose their meaning. Using an 
internally developed tool [19] we were able to carefully 
restore diacritics where they were missing. Even though the 
tool is not 100% accurate, it is better to introduce a small 
amount of error rather than have several words without 
diacritics that will create more uncertainty in the translation 
process later on.  
 
The second step of the preprocessing phase is the automatic 
annotation of both Romanian and English texts.  Using also 
an internally developed tool named TTL [11] we are able to 
tokenize sentences and annotate each word with its lemma, 
two types of part-of-speech tags: morpho-syntactic descriptors 
(MSDs) and a reduced tag set (CTAGs), and different 
combinations of them. The tags themselves follow the 
Multext-East lexical standard [8] and the tiered tagging 
design methodology [20].   
 
As an example, for the English sentence “We can can a can.” 
we obtain the following annotation: 

We|we^Pp|we^PPER1|Pp1-pn|PPER1 
can|can^Vo|can^VMOD|Voip|VMOD 
can|can^Vm|can^VINF|Vmn|VINF 
a|a^Ti|a^TS|Ti-s|TS 
can|can^Nc|can^NN|Ncns|NN 
.|. ^PE|.^PERIOD|PERIOD|PERIOD 

 
The first of the five factors for each word is the word itself 
(the surface form). The second factor is the lemma of the 
word, linked by the “^” character, to its first two positions in 
the MSD tag (grammar category and type). The third factor is 
the lemma linked to the CTAG, followed by the MSD (fourth 
factor) and CTAG (fifth factor).  
 
The TTL tool has other advanced features that make it 
desirable for machine translation. Sometimes it is better for 
certain phrases to be considered as a single entity. For 
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example, phrases like “… do something to the other, …” are 
automatically linked together by an underscore and annotated 
as: “the_other|the_other^Pd|the_other^DMS|Pd3-s|DMS”. 
Other examples of automatically extracted phrases: 
“in_terms_of”, “the_same”, “a_little”, “a_number_of”, 
|”out_of”, “so_as”, “amount_of_money”, “put_down”, 
“dining_room”, etc. The same tokenization, phrase extraction 
and annotation process is performed for the Romanian 
language.  
 
The third and last step of the preprocessing phase is true-
casing all available resources. True-casing simply means 
lower-casing the first word in every sentence, where 
necessary. A model is trained on available data, learning what 
words should not be lower-cased, as acronyms or proper 
nouns, and applied back to the data. True-casing benefits 
automatic machine translation when building both the 
translation model and the language model by reducing the 
number of surface forms for each possible word.  
 

2. System description 
In this section we present the steps and the experiments 
performed to create and adapt our MT system to the TED task. 
We start with a basic phrase-based statistical MT system with 
default parameters in order to establish a baseline (section 
2.1); we then experiment with different adaptations of the 
language models and the translation tables used (2.2 – 2.4); we 
perform a parameter setting search to find the combination of 
parameters that will maximize the translation score (2.5); 
finally, we apply a technique we call “cascaded translation” 
[21] to attempt to correct some of the translation errors 
(section 2.6). 
 
Before describing the steps and experiments performed, we 
must specify that unless explicitly otherwise stated, the 
following BLEU scores are all obtained on comparing the 
English translation of the tst2012 file from the test set to an 
English reference file we manually created starting from the 
English subtitles for each respective TED talk. We later 
obtained access to the English tst2011 file from the same test 
set, but we did not have enough time to re-run the experiments 
on this official reference file. We are confident that our 
tst2012 reference file is very similar to the official file given 
the correlated scores of our results and those given by the 
official evaluation as we later present. 

2.1. Baseline system 

We start with the standard Moses [12] system. We trained the 
system on the in-domain data (the provided TED RO-EN 
parallel corpus), as well as building a language model on the 
English side of the same corpus.  
 
The language model was built using the SRILM toolkit [17]: 
surface-form, 5-gram, interpolated, using Knesser-Ney’s 
smoothing.  
 
This baseline system yielded a 25.34 BLEU score.  

2.2. Direct Language-Model adaptation experiment  

The first attempted language model adaptation method is the 
direct, perplexity-based measure: given the tokenized and 
true-cased English resources, extract sentences with the 
lowest perplexity and add them to the in-domain language 
model.  
 
The procedure first requires that all the English resources 
(both from the parallel corpora and the monolingual corpora) 
be merged into a single file. The resulting 27 GB file had 
around 28 billion tokens contained in almost 168 million 
sentences. Each sentence was perplexity measured against the 
in-domain language model. Then, the file was sorted based on 
sentence perplexity, lowest first.  
 
Starting with the initial in-domain language model that 
obtained 25.34 BLEU points we added incrementally batches 
of 1 million sentences, re-translated and noted the score 
increase/decrease. We observed a non-linear increase up to 10 
million added sentences, followed by a rather slow BLEU 
decrease. We found that the best performing language model 
constructing using this method contains 10.6 million 
sentences, 142,000 coming from English side of the in-
domain corpus. The score obtained using this method was 
28.04, a significant 2.70 point increase from the baseline 
score of 25.34.  

2.3. Indirect Language-Model adaptation experiment 

The direct language model adaptation works very well when a 
specific domain is given and a language model can be built on 
that domain to provide a perplexity reference for new 
sentences. If this information is not available, one could try to 
alleviate the problem in various ways. 
 
Our idea in this indirect language model adaptation is to 
check whether we could use the information available in the 
test set to create a better language model.  
 
This, however, presented a problem: while in the test set we 
are only given the source Romanian sentences that need to be 
translated, the English language model should be adapted 
with sentences for which translations are not yet available. 
Thus, we came up with the following four step procedure to 
attempt indirect adaptation of the target language model by 
generating English n-grams from Romanian n-grams: 
 
Step 1: Count the n-grams from the Romanian sentences in 
the test set. Counting was done up to 5-grams, ignoring 
functional unigrams (determiners, prepositions, conjunctions, 
etc.). 
 
Step 2: Having the translation table already created from the 
base model, attempt to “translate” the n-grams from 
Romanian to English. Parse the translation table, look up each 
Romanian n-gram and retain all the equivalents in English. 
This will increase the number of n-grams several times. At the 
end of this step we will have a list of English n-grams. 
 
Step 3: Based on the list of English n-grams, iterate over each 
sentence in the file containing all the English data (27 GB) 
and count matching n-grams. In order to select the most 
promising sentences, we have created a few different scoring 
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methods: (1) Standard measure, where if we find a matching 
n-gram we increase the score of that sentence by n (e.g. if we 
find four unigrams and two trigrams we increase the score by 
4*1+2*3 = 10); (2) Standard normalized (Std. Div.) measure, 
where we divide the standard measure by the length of the 
sentence in order to compensate for very long sentences likely 
to have more n-gram matches; (3) Square measure, where if 
we find a matching n-gram we increase the score of the 
sentence by the square of n (ex: for 4 unigrams and two 
trigram the score would be 4*12+2*32=22); (4) Square 
normalized (Square Div.) measure, dividing the Square 
measure by the length of the sentence in order to compensate 
for long sentences. We thus sort in decreasing order each of 
the English sentences based on our proposed measures, 
obtaining 4 large English files. 
 
Step 4: From each of the four sorted files, we take incremental 
batches of sentences and build adapted language models of 
larger and larger sizes. 
 

 
 

Figure 1: Indirect LM adaptation BLEU scores 
 
Figure 1 presents our experimental results. We manage to 
obtain just a very slight increase over the baseline of 25.34 
when adding just a small number (less than 200,000 sentences 
in addition to the TED English sentences). This experiment 
shows that it is possible to adapt a language model starting 
only from the sentences that need to be translated, but also 
reveals that there is a fine-grained point over which adding 
more sentences, using our measures, actually degrades 
performance. Also, it should be noted that for both direct 
adaptation using the perplexity measure and the indirect 
adaptation method, the peak of the graph can be determined 
only if the target (reference) development set, on which to 
measure the BLEU score, is available. However, our indirect 
LM adaptation allows increasing the size of the available 
development set considering the monolingual test set.  

2.4. Translation model adaptation experiment 

With the next experiment we attempt to adapt the translation 
model (TM) using data available from the out-of-domain 
corpora.  
 
Based on the previous experiments we used perplexity as the 
similarity measure of choice. We attempted two adaptations 
based on both the source and the target languages. We built 
two language models: the first was built on the English side of 
the TED corpus while the second on the Romanian side. 
Using each language model in turn, we calculated the 
perplexity of each corresponding sentence from every 

translation unit in the out-of-domain parallel corpora. Then 
we sorted the corpora’s translation units according to the 
perplexity scores of English and Romanian parts. For 
example, we measured the perplexity of the Romanian side of 
Europarl & SETimes corpora vs. the language model built on 
the Romanian side of TED, and then sorted Europarl & 
SETimes by the ascending perplexity of their Romanian sides 
(similarly for English).  
 
We made experiments on TM adaptation selecting parallel 
data according to the similarity with each language model. 
We took increments of 5% of the sorted parallel corpora and 
added them to the TED corpus and noted the translation 
scores. For this experiment we used the development set 
(tst2010) which had a translation baseline score of 28.82.  
 

 
 

 
 

Figure 2: English and Romanian TM adaptation graphs 
 
The experiments show that even adding 5% of the best 
sentences (based on perplexity) of the Europarl and SETimes 
corpora decreases the translation score by a significant 0.3 
BLEU points. The decrease is rather consistent when trying to 
adapt the translation model starting from either the Romanian 
or the English language, clearly stating the conclusion that 
neither Europarl which is a juridical corpus nor SETimes 
which is news-oriented do contain parallel sentences that 
positively contribute to the translation model firmly located in 
a free-speech domain. After this result it was clear that further 
attempting to adapt the translation model using the provided 
out-of-domain corpora was impractical. Using the LEXACC 
comparable data extraction tool [18] with the TED and 
Europarl+Setimes corpora as search space supported the 
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previous observation that the out-of-domain data was too 
distant from the in-domain-data to be useful in TM 
adaptation. 

2.5. Finding the best translation system  

Having experimented with adapting both the language model 
and the translation model, we started searching for the 
parameter combination that will maximize the translation 
score.  
 
The systematic search included the following parameters: 

- Translation type  
- Alignment model 
- Reordering model 
- Decoding type and sub-parameters 

 
The translation type refers to which word factors were used 
and the translation path itself. We started from the simple 
surface-to-surface translation, gradually using more factors 
such as part-of-speech (both MSDs and CTAGs, available 
after using the TTL tool in the corpus preprocessing phase), 
lemma or different combinations of lemmas and part-of-speech 
tags. The translation path meant using direct, single-step 
translation (ex: translation of surface-surface, translation of 
surface and part-of-speech to surface, etc.) or multiple step 
translation including generation phases (ex: translation of 
lemma to lemma then generation of part-of-speech from 
lemma, then translation of part-of-speech to part-of-speech 
and finally generation of the surface form from lemma and 
part-of-speech).  
 
For the alignment and reordering models we also tried using 
several combinations of word factors.  
 
Finally, for the decoder, we systematically modified the 
decoding parameters for the default decoder (beam size, stack 
size) and the decoding model (cube-pruning, minimum-bayes-
risk and lattice-minimum-bayes-risk, each with its individual 
parameters). 
 
After conducting an extended search of about 60 experiments 
in which parameters were systematically modified we obtained 
a score of 29.24, again a significant increase from the baseline 
system with the adapted language model for which we 
obtained only 28.04. These two figures are unofficial results 
computed (as mentioned in Section 2) on our hand made 
reference for tst2012. The best combination of parameters 
was: a single-step direct translation of surface form to surface 
form; an alignment model using the “union” heuristic; a 
reordering model using the default “wbe-msd-bidirectional-fe” 
heuristic; the alignment and reordering model based only on 
the lemma and the reduced MSD, not on the surface forms; a 
lattice-minimum-bayes-risk decoder with an increased stack 
size of 1000. 
 
The search was performed using the adapted language model 
described in section 2.2 and a translation model based only on 
the TED in-domain corpus.  

2.6. Cascaded system translation experiment 

Having obtained the optimum parameters so far, we applied a 
procedure we previously developed [21] to try to further 

improve the translation score without adding or using any 
external data. We hypothesize that training a second phrase-
based statistical MT system on the data that was output by our 
initial system, this second system will correct some of the 
errors the initial system made. 
 
The first step in building the second system of the cascade is 
based on using the first system to translate the Romanian side 
of its own RO-EN training corpus. This will yield a 
translated–EN-EN parallel corpus on which the second system 
is trained upon. The cascaded system is now ready to be used. 
 
 
 
 
 

Figure 3: Cascaded system diagram 
 
The diagram shows how the cascading procedure works. The 
test set is initially translated from Romanian into intermediary 
English. Next, this intermediary translation is fed to the 
second system which translates the intermediary English to 
“final” English. The “final” English is then evaluated against 
the reference to determine the effect of the cascade: how much 
improvement was achieved, if any. 
 
We obtained a net increase of 0.36 points bringing the new 
BLEU score to 29.60 (using our tst2012 manually created 
reference file). In this particular case the cascade changed 22 
percent of the total of 1733 sentences, 12% for the better and 
10% for the worse, the rest of the sentences being unaffected.  

  Table 1: Cascading effect 

S1 After system 1 S2 After system 2 Reference 

0.57 

the 
microprocessor . 
it 's a miracle 
the personal 

computer is a 
miracle . 

1.00 

the 
microprocessor 
is a miracle . 
the personal 

computer is a 
miracle . 

the 
microprocessor is 

a miracle . the 
personal 

computer is a 
miracle . 

0.53 

and the reasons 
delincvenților 
online are very 

easy to 
understand . 

0.7 

and the reasons 
online 

criminals are 
very easy to 
understand . 

and the motives 
of online 

criminals are very 
easy to 

understand . 

0.47 
and so let me 
begin with an 

example . 
0.31 

and let me try 
to begin with an 

example . 

and let me begin 
with one example 

. 

 
Table 1 shows some of the effects of cascading. In the first 
example we see a clear improvement from 0.57 to 1.00 of the 
translation by correctly placing the comma and transforming 
“it’s a” in “is a”. The second example shows that sometimes 
the cascade can correct initially non-translated words: due to 
Moses’s phrase table pruning mechanism, even though the 
unigram “delincvenților” is present in the training corpus, it 
does not appear in the first system’s phrase table and thus does 
not get translated. However, it appears in the second phrase 
table and is subsequently translated. The third example 
presents a score decrease from 0.47 to 0.31. However, 
transforming “so let me” to “let me try to”, while from 

InputRO                     TransS1(InputRO)                 TransS2(TransS1(InputRO)) 

First 
system  

Second 
System 

Romanian                  intermediary English                             English 
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BLEU’s perspective vs. the reference translation is a decrease, 
from a human perspective, the sentence is still fully 
comprehensible.  
 
Overall, cascading increases the BLEU score usually from a 
fraction of a BLEU point up to a few BLEU points [21]. For 
the official evaluation we have submitted for each test file a 
cascaded system and a non-cascaded system. The official 
evaluations showed a small increase of 0.04 BLEU (from 
29.92 for the standard, un-cascaded system to 29.96 for the 
cascaded) for the 2011 test file and an increase of 0.21 BLEU 
(from 26.81 to 27.02) for the 2012 test file, as presented in 
Table 2 in Section 4. 

3. Alternative translation systems 
After performing a host of experiments with Moses with 
different settings as reported in the previous sections, it 
became clear that the BLEU barrier of around 30% is not 
going to be easily (and significantly) broken without 
additional in-domain, parallel data and because of that, we 
proceeded to refine our own, in-house developed decoders 
based on Moses-trained phrase tables and language models. 
The purpose of this endeavor was to come up with a 
combination/merging scheme of the outputs of several 
decoders that, we envisaged, would ensure a superior 
translation when compared to each of the decoders. In what 
follows, we briefly give the underlying principles of our in-
house developed decoders and present their combined output 
with the best Moses output (see 2.6). 

3.1. The first RACAI decoder (RACAI1) 

The first RACAI decoder is based on the Dictionary Lookup 
or Probability Smoothing (DLOPS) algorithm [4], primarily 
used for phonetic transcription of out-of-vocabulary (OOV) 
words. The original algorithm works by adjoining adjacent 
overlapping sequences of letters that have corresponding 
transcription equivalents inside a lookup table. The 
overlapping sequences are selected by finding a single split 
position (called pivot) inside a sequence that will maximize a 
function called the fusion score (described in the original 
article). The algorithm would recursively produce the phonetic 
transcriptions of the pivot left and right sequences either by 
directly returning transcription candidates from the lookup 
table (if there are any transcription candidates) or by further 
recursive building the transcriptions. Because of the 
similarities that arise between the phonetic transcription and 
MT [13], we thought of adapting DLOPS to perform decoding 
for MT. There were some limitations of the initial algorithm 
that needed to be eliminated: 

1. We modified the system to use a Berkeley Data Base 
(BDB) for lookup to be able to cope with large 
phrase tables; 

2. The algorithm looks for the sequence of words with 
the highest translation score. The indexes of the left-
most and right-most words are considered the pivots 
of the recursions. The DLOPS had to be modified to 
search for two pivots instead of one;  

3. We added word reordering capabilities (this was not 
an issue in phonetic transcription). 

For each sequence of words that has a corresponding entry in 
the translation table, we retain all possible candidates and, 
returning from the recursive call, we get the Cartesian product 

of the translations from the left, center and right source word 
sequences. Because this translation set usually has a large 
number of candidates, we score each translation candidate by 
summing the S value for the left, center and the right sub-
candidate: 
 

)()|()|()|()|( 54321 eLMfeeffeefS 
�
�
�
�
 �����  
 
where )|( ef� is the Moses-based phrase table inverse phrase 
translation probability, )|( fe�  is the direct phrase translation 
probability, )|( ef� is the inverse lexical similarity score, 

)|( fe�  is the direct lexical similarity score and )(eLM is the 
language model score (at word level) of the translation 
candidate. The weights 5,...,1
  are computed with the 

Minimum Error Rate Training (MERT) procedure from the Z-
MERT package [23]. 

3.2. The second RACAI decoder (RACAI2) 

This first step of this decoder is to collect a set C of source 
sentence non-overlapping segmentations according to the 
phrase table, giving priority to segmentations formed with the 
longer spans of adjacent tokens from the input sentence. For 
the input sentence S with n tokens, considering at most k 
adjacent tokens (called “a token span”) for which we find at 
least one translation in the phrase table, k < n, the total 
number N of non-overlapping segmentations is 



�

��
k

i
kk inNnN

1
)()(  

For k = 2 this is the well-known Fibonacci series and it is 
obvious that )()( 2 nNnNk � for k > 2. It can be shown that 

n

cnN �
�
�

�
�
��

2
3)(2

 

for some positive constant c and this tells us that one cannot 
simply enumerate all the segmentations of the source sentence 
according to the phrase table because the space is 
exponentially large. Thus, our strategy is to choose a 
segmentation � �njiwP j

i ���� 1| , where j
iw  is the 

token span from the index i to index j in the source sentence S 
which has at least one translation in the phrase table, such that 
P  is minimum. 

The second step of the decoder is to choose, for each partial 
translation jh1 (up to the current position j in S) and input 

token span Pwk
j ��1 , the best translation k

jh 1� from the phrase 

table such that two criteria are simultaneous optimized: 
1. The translation scores of k

jh 1�  from the Moses 

phrase table are maximum; 
2. The language model (at word form level and POS 

tag level) score of joining jh1 with k
jh 1� is also 

maximum. 
What we did, was to actually compute an interpolated score as 
in the case of the previously described decoder with weights 
tuned with Z-MERT. 
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The third and final step of the RACAI2 decoder was to 
correct the raw, statistical translation output to eliminate the 
translation errors that were observed to be frequent and that 
violate the English syntactic requirements (mainly due to the 
inexistence of a reordering mechanism). This is a rule-based 
module that works only for English. Examples of frequent 
mistakes include: 

� translating the valid sequence “noun, adjective” 
from Romanian into the same, invalid, sequence in 
English; 

� translating the valid sequence “noun, demonstrative 
determiner” from Romanian into the same, invalid, 
sequence in English; 

� translating the valid sequence “noun, possessive 
determiner” from Romanian into the same, invalid, 
sequence in English. 
 

The astute reader has noticed that the optimization criteria 
from the second step of this decoder consider local maxima. 
One immediate improvement is to replace the current 
optimization step by a Viterbi global optimization [22]. 

3.3. Combining translations from Moses, RACAI1 and 
RACAI2 

Having three decoders that produce different translations for 
the same text, it is tempting to consider their combination in 
order to find a better translation. Generating the best 
translation for a text (sentence or paragraph), given multiple 
translation candidates obtained by different translation 
systems, is an established task in itself. Even the simplest 
approach of deciding which candidate is the most probable 
translation has been proven to be difficult [1, 5, 16]. The 
different solutions described in the literature are focused on re-
ranking merged N-best lists of translation candidates, word-
level and phrase-level combination methods [2, 6, 8, 14]. 
  
Our approach is a phrase-level combination method and 
exploits the linearity of the candidate translations given by the 
systems we employed. First, we split the source (i.e. 
Romanian) sentence into smaller fragments which are 
considered to be stand-alone expressions that can be translated 
without additional information from the surrounding context. 
For considerations regarding speed, this is done by using 
certain punctuation marks and a list of words (split-markers) 
that can be considered as fragment boundaries (e.g. certain 
conjunctions, prepositions, etc.). Every fragment must contain 
at least two words, out of which one should not be in the 
above mentioned list of split-markers. For example, the 
sentence “s-a făcut de curând un studiu printre directorii 
executivi în care au fost urmăriți timp de o săptămână.”1 is 
split into 3 fragments: “s-a făcut de curând un studiu”, 
“printre directorii executivi” and “în care au fost urmăriți 
timp de o săptămână.” 
 

                                                           
1 English: “there was also a study done recently with CEOs in 
which they followed CEOs around for a whole week.” 

 
Figure 4: DTW Alignment helps identifying the 

corresponding translations of the source fragments  

In the next step, taking into account the linearity of the 
translations, we use Dynamic Time Warping (DTW) 
algorithm [3,15] to align the source sentence with the current 
translation candidate. The cost function is defined between a 
source word ws and a target word wt as: c = 1 – te(ws, wt), 
where te is the translation equivalence score in the existing 
dictionary. Taking into account the source fragments and the 
alignments obtained with DTW, we are able to pinpoint the 
translation for each of fragment. For our example we have the 
following candidates: 

Table 2: Translation candidates for the source fragments 

Translation/ 
system 

s-a făcut de 
curând un studiu 

printre 
directorii 
executivi 

în care au fost 
urmăriți timp de o 

săptămână. 

Moses it has recently 
made a study 

among the 
CEOs 

in which they were 
followed for about 

a week. 

RACAI 1 it was done 
recently a study 

among 
CEOs 

in which they were 
tracked for about a 

week. 

RACAI 2 was done recently 
a study 

among 
execs 

executives 

in which have 
been tracked for 

about a week. 

 
We modeled the selection process by a HMM. The emission 
probabilities are given by a translation model learned with 
Moses, while the transition probabilities are given by a 
language model learned using SRILM. The combiner uses the 
Viterbi algorithm [22] to select the best combination of the 
translation candidates and generate a “better” translation. For 
our example, the best path found by the Viterbi algorithm 
passes through the bolded fragments in the above table, 
yielding the final translation: “it was done recently a study 
among the CEOs in which have been tracked for about a 
week.”. Yet, this translation is deficient because of the missing 
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pronoun “they” (existing in Moses and RACAI1 outputs) in 
the translation for the third fragment. 
 
We have also experimented with combination at the whole-
translation (sentence) level (as opposed to phrase-level) and 
we tried the following: 

1. selecting the translation which had the lowest 
perplexity as measured by the language model of the 
best Moses setting; 

2. selecting the translation which had the largest 
averaged BLUE score when compared to the other 
two translations; 

3. selecting the translation which had the lowest TERp 
score when compared to its cascaded version. 

 
The phrase-level combination method outperforms the first 
sentence-level combination method and it is close (somewhat 
better) to the other two sentence-level combination methods. 
We also estimated the maximum gain (an “oracle” selection) 
from the sentence-level combination by choosing the 
translation which had the highest BLUE against our reference 
for tst2012 (see Table 3). We have thus determined the 32.41 
BLUE score which is 2.81 points better than the cascaded 
Moses (29.60).  
 
Even if the phrase-level combination method does not 
outperform Moses, our analysis shows that the combiner 
improves about 22% of the Moses translations with an average 
increase of the BLEU score of 0.088 points per translation 
while it deteriorates about 27% of them with an average 
decrease of the BLEU score of 0.098 points per translation, 
amounting to a global decrease of only 0.69 BLEU points 
overall (see Table 3; compare S2 with S5). The rest of the 
translations remained unchanged after the combination. 

4. Conclusions 

The paper presented RACAI’s machine translation 
experiments for the IWSLT12 TED track, MT task, Romanian 
to English translation. In the first part we presented our 
experiments in building a system based on the Moses SMT 
package. We evaluated different adaptation types for the 
language and translation model; we then performed a 
systematic search to determine the best translation parameters 
(word factors used, alignment and reordering models, decoder 
type and parameters, etc.); finally, we applied our cascading 
model to correct some translation errors made by our best 
single-step translator. This experiment chain yielded our best 
model, in the official evaluation (Table 2) obtaining 29.96 
BLEU points for the tst2011 test set and 27.02 BLEU point 
for the tst2012.  
 
The second part of the paper presents our experiments in 
building two prototype decoders and a translation combiner. 
The decoders (RACAI 1&2) are based on different strategies 
than Moses (each presented in its own section), in our attempt 
to go beyond the difficult to reach baseline set by the best 
Moses-based model. However, even though we could not 
exceed yet this baseline, we came rather close to it, given that 
most of the development work was on adapting the Moses 
model and allowing only around 3 weeks for the development 
of the alternative decoders.  
 

The following tables show the official results [9] (case and 
punctuation included) for the entire test set (tst2011&2012), as 
well as the results obtained on the reference we built for 
tst2012 (the official reference was not released at the time of 
this writing). The tables contain the performance figures for 
our two Moses-based models (S1 being the best direct 
translation model we found, while S2 being the S1 model with 
our cascading technique applied), our two prototype decoders 
(S3 and S4) and our translation combiner (S5). 
 
Because we have not seen the reference for tst2012, our 
explanation for the differences among the figures in Table 2 
and Table 3 is that our evaluations were performed on lower-
case version of the data and mainly due to a different 
tokenization. While the official tokenization is based on space 
separation, our tokenization is language aware, considering 
(among others) multiword expressions and splitting clitics. 

  Table 2: Official systems evaluation results 
(case+punctuation) 

System tst2011 tst2012 
BLEU Meteor TER BLEU Meteor TER 

S1 
(Moses, not-

cascaded) 
29.92 0.6856 46.388 26.81 0.6443 50.891 

S2 
(Moses, 

cascaded) 
29.96 0.6844 46.701 27.02 0.6446 51.093 

S3 
RACAI1 25.31 0.6484 48.845 22.56 0.6085 52.964 

S4 
RACAI2 - - - 21.69 0.6009 56.950 

S5 
Moses + 

RACAI1 + 
RACAI2 

- - - 25.99 0.6378 51.580 

Table 3: Local systems evaluation results (language aware 
tokenization+no case+punctuation) 

System tst2012 
 BLEU 

S1 = Moses, not-cascaded 29.24 

S2 = Moses, cascaded 29.60 

S3 = RACAI1 24.50 

S4=RACAI2 23.89 

S5 = Moses + RACAI1 + RACAI2 28.91 

S6 = Oracle Moses + RACAI1 + RACAI2 32.41 
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