
Efficiency-based evaluation of aligners for industrial applications∗

Antonio Toral
School of Computing

Dublin City University
Dublin, Ireland

atoral@computing.dcu.ie

Marc Poch
IULA, Universitat

Pompeu Fabra
Barcelona, Spain

marc.pochriera@upf.edu

Pavel Pecina
Faculty of Mathematics and
Physics, Charles University

Prague, Czech Republic
pecina@ufal.mff.cuni.cz

Gregor Thurmair
Linguatec GmbH
Munich, Germany

g.thurmair@linguatec.de

Abstract

This paper presents a novel efficiency-
based evaluation of sentence and word
aligners. This assessment is critical in or-
der to make a reliable use in industrial sce-
narios. The evaluation shows that the re-
sources required by aligners differ rather
broadly. Subsequently, we establish lim-
itation mechanisms on a set of aligners
deployed as web services. These results,
paired with the quality expected from the
aligners, allow providers to choose the
most appropriate aligner according to the
task at hand.

1 Introduction

Aligners refer in this paper to tools that, given a
bilingual corpus, identify corresponding pairs of
linguistic items, be they sentences (sentence align-
ers) or words (word aligners). Alignment is a key
component in corpus-based multilingual applica-
tions. First, alignment is one of the most time-
consuming tasks in building Machine Translation
(MT) systems. In terms of quality, good align-
ment is decisive for the final quality of the MT
system; bad alignment decreases MT quality and
inflates the phrase table with spurious translations
with very low probabilities, which reduces system
performance. Finally, for terminology acquisition,
the choice of a good aligner determines whether
the results of a term extraction tool are usable or
not; alignment quality on phrase level differs from
∗We would like to thank Daniel Varga and Adrien Lardilleux
for their feedback on Hunalign and Anymalign, respectively.
We would like to thank Joachim Wagner for his help on using
the cluster. This research has been partially funded by the EU
project PANACEA (7FP-ITC-248064).
∗c© 2012 European Association for Machine Translation.

less than 5% (usable) to more than 40% (unusable)
error rate (Aleksic and Thurmair, 2012).

The performance of aligners is commonly eval-
uated extrinsically, i.e. by measuring their im-
pact in the result obtained by a MT system that
uses the aligned corpus (Abdul-Rauf et al., 2010;
Lardilleux and Lepage, 2009; Haghighi et al.,
2009). Intrinsic evaluations have also been car-
ried out, mainly by measuring the Alignment Error
Rate (AER), precision and recall (von Waldenfels,
2006; Varga et al., 2005; Moore, 2002; Haghighi
et al., 2009). Intrinsic evaluation is less popular
due to two reasons (Fraser and Marcu, 2007): (i)
it requires a gold standard and (ii) the correlation
between AER and MT quality is very low. Both
types of evaluation have, however, a common as-
pect; they focus on measuring the quality of the
output produced by aligners. Conversely, seldom
if at all has it been considered to assess the ef-
ficiency of aligners, i.e. to measure the compu-
tational resources consumed (e.g. execution time,
use of memory). However, this assessment is crit-
ical if the aligners are to be exploited in an indus-
trial scenario.

This work is part of a wider project, whose ob-
jective is to automate the stages involved in the
acquisition, production, updating and maintenance
of language resources required by MT systems.
This is done by creating a platform, designed as
a dedicated workflow manager, for the composi-
tion of a number of processes for the production
of language resources, based on combinations of
different web services.

The present work builds upon (Toral et al.,
2011), where we presented a web service architec-
ture for sentence and word alignment. Here we
extend this proposal by evaluating the efficiency
of the aligners integrated, and subsequently im-

Proceedings of the 16th EAMT Conference, 28-30 May 2012, Trento, Italy

57



proving the architecture by implementing limita-
tion mechanisms that take into account the results.

2 Evaluation

We have integrated a range of state-of-the-art
sentence and word aligners into the web ser-
vice architecture. The sentence aligners included
are Hunalign (Varga et al., 2005), GMA1 and
BSA (Moore, 2002). As for word aligners,
they are GIZA++ (Och and Ney, 2003), Berke-
leyAligner (Haghighi et al., 2009) and Anyma-
lign (Lardilleux and Lepage, 2009). For a detailed
description of the integration please refer to (Toral
et al., 2011).

In order to evaluate the efficiency of the align-
ers, we have run them over different amounts of
sentences of a bilingual corpus (from 5k to 100k
adding 5k at a time for sentence alignment and
from 100k to 1.7M adding 100k at a time for
word alignment). For all the experiments we use
sentences from the Europarl English–Spanish cor-
pus,2 which contains over 1.7M sentence pairs.
The aligners are executed using the default val-
ues for their parameters. All the experiments have
been run in a cluster node with 2 Intel Xeon X5670
6-core CPUs and 96 GB of RAM. The OS is
GNU/Linux. The resources consumed have been
measured using the following parameters of the
GNU command time:

• %S (CPU-seconds used by the system on be-
half of the process) plus %T (CPU-seconds
that the process used directly), to measure the
execution time. We limit our experiments to
100k seconds.

• %M (maximum resident set size of the process
during its lifetime, in Kilobytes), to measure
the memory used.

Figure 1 shows the execution times (logarithmic
scale) of the sentence aligners. It emerges that the
time required by GMA is considerable higher com-
pared to the other two aligners (e.g., for 45k sen-
tences GMA takes approximately 16 and 20 times
longer than BSA and Hunalign, respectively). The
gap grows exponentially with the input size.

Figure 2 shows the memory consumed by the
sentence aligners. Hunalign has a steeper curve
(for 45k sentences, Hunalign uses 6 and 4 times
more memory than BSA and GMA, respectively).
1http://nlp.cs.nyu.edu/GMA/
2http://www.statmt.org/europarl/

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

1

10

100

1,000

10,000

100,000

hunalign
bsa
gma

Input size (thousand sentences)

T
im

e
 (

se
co

n
d

s)

Figure 1: Execution time for sentence aligners

In fact Hunalign was not able to align inputs of
more than 45k sentences due to memory issues.3

Table 1 contains all the measurements for sentence
alignment.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

hunalign
bsa
gma

Input size (thousand sentences)

M
e

m
o

ry
 (

ki
lo

b
yt

e
s)

Figure 2: Memory used by sentence aligners

Time (seconds) Memory (M bytes)
i hun bsa gma hun bsa gma
5 11 54 103 584 684 3,677

10 33 105 405 1,616 1,079 5,749
15 66 185 950 3,146 1,337 5,305
20 113 247 1,866 6,115 1,597 6,126
25 168 305 3,004 8,803 1,807 5,878
30 234 364 4,370 12,104 2,070 6,276
35 319 436 6,578 19,211 2,559 6,390
40 412 494 7,775 23,827 2,919 6,433
45 510 659 10,609 28,892 4,679 6,415
50 - 721 11,947 - 5,297 6,594
55 - 797 13,768 - 5,824 6,915
60 - 878 17,780 - 6,347 6,888
65 - 973 25,787 - 6,872 7,061
70 - 1,053 25,251 - 7,415 7,143
75 - 1,120 30,513 - 7,940 7,692
80 - 1,165 31,591 - 8,469 7,832
85 - 1,277 34,664 - 8,991 7,872
90 - 1,348 42,720 - 9,518 7,730
95 - 1,391 48,823 - 10,043 7,969

100 - 1,863 54,350 - 14,537 7,911
Table 1: Detailed results for sentence aligners. i
input sentences (thousand), hun hunalign

Figure 3 shows the execution times for word
aligners. GIZA++ is the most efficient word
aligner, consistently across the different inputs.
3A constant in the source code of Hunalign establishes the
maximum amount of memory it will use, by default 4GB;
we increased it to 64GB. Moreover, it can split the input into
smaller chunks with partialAlign (it cuts the data into chunks
of approximately 5,000 sentences each, based on hapax clues
found on each side), however we did not use this preprocess-
ing tool but only the aligner itself.

58



The performance of Berkeley is similar to that of
GIZA++ for the first runs but the difference of
execution time grows with the size of the input.
There are no results for Berkeley for over 1,1M
sentences as the time limit is exceeded. Finally,
the behaviour of Anymalign does not correlate at
all with the size of the input. This has to do with
the very nature of this aligner.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

20,000

40,000

60,000

80,000

100,000

120,000

gizapp
berkeley
anymalign

Input size (thousand sentences)

T
im

e
 (

se
co

n
d

s)

Figure 3: Execution time for word aligners
Figure 4 shows the memory required by word

aligners. Berkeley consistently requires more
memory than both GIZA++ and Anymalign. The
requirements of GIZA++ and Anymalign are sim-
ilar, although slightly lower for the latter. Table 2
contains all the measurements for word alignment.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

gizapp
berkeley
anymalign

Input size (thousand sentences)

M
e

m
o

ry
 (

ki
lo

b
yt

e
s)

Figure 4: Memory used by word aligners

3 Limiting web services

The previous section has shown that the computa-
tional resources required by state-of-the-art align-
ers are very different. These resources are limited
and must be taken into account when they are be-
ing shared by users using web services.

We have studied ways on establishing limita-
tions for the aligners deployed as web services.
Two kinds of limitations are explored and imple-
mented: (i) the number of concurrent executions
and (ii) the input size allowed for each aligner.

The web services are developed using
Soaplab2.5 This tool allows to deploy web
4Anymalign runs are random, its stop criterion can be based
on the number of alignments it finds per second, we set this
parameter to the most conservative value supported, i.e. 1
alignment per second.
5http://soaplab.sourceforge.net/soaplab2/

Time (k seconds) Memory (M bytes)
i giz brk any giz brk any
1 1.7 9,0 31,9 1,894 23,906 1,582
2 3.4 18,8 21,4 3,181 24,619 2,277
3 5.1 29,2 33,2 4,293 24,222 3,142
4 6,9 37,3 39,0 5,292 28,190 3,818
5 8,7 43,6 12,4 6,245 32,586 3,525
6 10,5 58,0 9,0 7,144 36,773 4,304
7 12,3 66,2 26,5 8,008 45,999 5,017
8 14,2 77,3 17,8 8,807 46,545 5,531
9 15,9 84,7 12,4 9,565 52,437 5,407

10 17,7 97,0 11,8 10,313 50,977 5,522
11 19,3 - 18,9 11,030 - 6,800
12 21,2 - 4,1 11,713 - 6,107
13 23,6 - 10,1 12,403 - 6,301
14 25,4 - 14,8 13,057 - 7,382
15 27,0 - 16,5 13,688 - 8,931
16 28,2 - 24,2 14,272 - 9,469
17 30,2 - 17,9 15,270 - 8,860

Table 2: Detailed results for word aligners. i input
sentences (hundred thousand), giz GIZA++, brk
Berkeley, any Anymalign

services on top of command-line applications by
writing files that describe the parameters of these
services in ACD format.6 Soaplab2 then converts
the ACD files to XML metadata files which con-
tain all the necessary information to provide the
services. The Soaplab server is a web application
run by a server container (Apache Tomcat7 in our
setup) which is in charge of providing the services
using the generated metadata.

Figure 5 shows the diagram of the program flow
for web services that incorporates limitation mech-
anisms.8 The modules are the following:

• tool.acd (e.g. bsa.acd), contains the meta-
data of the web service in ACD format.

• ws.sh, controls other modules that imple-
ment the waiting and execution mechanisms.

• init_ws.sh, contains the code that imple-
ments the limitation on the number of concur-
rent executions and waiting queue. The web
service is in waiting state while it is executing
this script.

• tool.sh (e.g. bsa.sh), executes the tool. The
web service is in executing state while it is
executing this script.

• ws_vars.sh, contains all the variables
used by the different web services.

• ws_common.sh, contains code routines
shared by different web services.

6http://soaplab.sourceforge.net/soaplab2/
MetadataGuide.html
7http://tomcat.apache.org/
8The code is available under the GPL-v3 license at BLIND

59



Figure 5: Diagram of the program flow

3.1 Limitation of concurrent executions

The limitation of concurrent executions is con-
trolled by two variables, MAX_WS_WAIT and
MAX_WS_EXE, set in ws_vars.sh. They hold
the maximum number of web services that can be
concurrently waiting and executing, respectively.

The following actions are carried out when a
web service is executed. First, tool.acd calls
ws.sh. This one calls sequentially two scripts:
init_ws.sh and tool.sh. init_ws.sh checks
if the waiting queue is full and aborts the execution
if so. Otherwise it puts the execution in waiting
state and checks periodically whether the execu-
tion queue is full. When there is a free execution
slot, init_ws.sh exits returning the control to
ws.sh, which changes the state to executing and
calls tool.sh.

3.2 Limitation of input size

The limitation of input/output data size can be
performed at three levels: Tomcat, Soaplab and
web service. Tomcat provides a parameter,
MaxPostSize, which indicates the maximum
size of the POST in bytes that will be processed.
Soaplab allows us to put a size limit (in bytes) to
the output of web services using a property. The
user can establish a general limit that applies to
every web service, and/or specific limits that apply
to any web service in particular.

Both these methods allow us to limit the in-
put/output of web services in bytes. However,
limiting the size according to different metrics
might be useful. For example, the inputs of align-
ers are usually measured in number of sentences
(rather than number of bytes). Limits of num-
ber of input sentences have been established at
the web service level for each aligner following
the results obtained in the evaluation (Section 2).
Variables with the desired maximum input size in
number of sentences have been added for each
aligner in ws_vars.sh. A function included
in ws_common.sh checks the size of the input
whenever an aligner is executed.

4 Conclusions

This paper has presented, to the best of our knowl-
edge, the first efficiency-based evaluation of sen-
tence and word aligners. This assessment is critical
in order to make a reliable use in industrial scenar-
ios, especially when they are offered as services.
The evaluation has showed that the resources re-
quired by aligners differ rather broadly. These re-
sults, paired with the quality expected from the
aligners, allow providers to choose the most ap-
propriate aligner according to the task at hand.

References
Abdul-Rauf, S., M. Fishel, P. Lambert, S. Noubours,

and R. Sennrich. 2010. Evaluation of Sentence
Alignment Systems (Project at the Fifth Machine
Translation Marathon).

Aleksic, V. and G. Thurmair. 2012. Rule-based MT
system adjusted for narrow domain (ACCURAT De-
liverable D4.4.). Technical report.

Fraser, A. and D. Marcu. 2007. Measuring Word
Alignment Quality for Statistical Machine Transla-
tion. Computational Linguistics, 33:293–303.

Haghighi, A., J. Blitzer, J. DeNero, and D. Klein. 2009.
Better word alignments with supervised ITG models.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP, pages 923–931.

Lardilleux, A. and Y. Lepage. 2009. Sampling-based
multilingual alignment. In Proceedings of RANLP,
pages 214–218, Borovets, Bulgaria.

Moore, R. C. 2002. Fast and accurate sentence align-
ment of bilingual corpora. In Proceedings of AMTA,
pages 135–144.

Och, F. J. and H. Ney. 2003. A systematic comparison
of various statistical alignment models. Computa-
tional Linguistics, 29:19–51.

Toral, A., P. Pecina, A. Way, and M. Poch. 2011. To-
wards a User-Friendly Webservice Architecture for
Statistical Machine Translation in the PANACEA
project. In Proceedings of EAMT, pages 63–72, Leu-
ven, Belgium.

Varga, D., L. Németh, P. Halácsy, A. Kornai, V. Trón,
and V. Nagy. 2005. Parallel corpora for medium
density languages. In Proceedings of RANLP, pages
590–596, Borovets, Bulgaria.

von Waldenfels, R. 2006. Compiling a parallel cor-
pus of slavic languages. Text strategies, tools and
the question of lemmatization in alignment. In
Beiträge der Europäischen Slavistischen Linguistik,
pages 123–138.

60




