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Abstract

We propose interpolated backoff methods to
strike the balance between traditional surface
form translation models and factored models
that decompose translation into lemma and
morphological feature mapping steps. We
show that this approach improves translation
quality by 0.5 BLEU (German–English) over
phrase-based models, due to the better trans-
lation of rare nouns and adjectives.

1 Introduction

Morphologically rich languages pose a special chal-
lenge to statistical machine translation. One aspect
of the problem is the generative process yielding
many surface forms from a single lemma, causing
sparse data problems in model estimation, affecting
both the translation model and the language model.
Another aspect is the prediction of the correct mor-
phological features which may require larger syntac-
tic or even semantic context to resolve.

Factored translation models (Koehn and Hoang,
2007) were proposed as a formalism to address these
challenges. This modeling framework allows for
arbitrary decomposition and enrichment of phrase-
based translation models. For morphologically rich
languages, one application of this framework is the
decomposition of phrase translation into two trans-
lation steps, one for lemmata and one for morpho-
logical properties, and a generation step to produce
the target surface form.

While such factored translation models increase
robustness by basing statistics on the more frequent
lemmata instead of the sparser surface forms, they
do make strong independence assumptions. For fre-
quent surface forms, for which we have rich statis-
tics, there is no upside from the increased robust-
ness, but there may be harm due to the independence
assumptions.

Hence, we would like to balance traditional sur-
face form translation models with factored decom-
posed models. We propose to apply methods com-
mon in language modeling, namely backoff and in-
terpolated backoff. Our backoff models rely pri-
marily on the richer but sparser surface translation
model but back off to the decomposed model for
unknown word forms. Interpolated backoff mod-
els combine surface and factored translation models,
relying more heavily on the surface models for fre-
quent words, and more heavily on the factored mod-
els for the rare words.

We show that using interpolated backoff improves
translation quality, especially of rare nouns and ad-
jectives.

2 Related Work

Factored translation models (Koehn and Hoang,
2007) were introduced to overcome data sparsity
in morphologically rich languages. Positive results
have been reported for languages such as Czech,
Turkish, or German (Bojar and Kos, 2010; Yen-
iterzi and Oflazer, 2010; Koehn et al., 2010). The
idea of pooling the evidence of morphologically re-
lated words is similar to the automatic clustering of
phrases (Kuhn et al., 2010).

The popular Arabic–English language pair has re-
ceived attention in the context of source language
morphology reduction. Most work in this area in-
volves splitting off affixes from complex Arabic
words that translate into English words of their
own (Sadat and Habash, 2006; Popović and Ney,
2004). A concentrated effort on reducing out-of-
vocabulary words in Arabic is reported by Habash
(2008), which includes the application of stemming,
as we do here. However, in our work, we also ad-
dress the translation of rare words and use a more
complex factored decomposed model for the han-
dling of unknown words. Backoff to stemmed mod-
els was explored by Yang and Kirchhoff (2006).



Corpus Sentences Words
English German

Europarl 1,739,154 48,446,385 45,974,070
News Comm. 136,227 3,373,154 3,443,348
News Test 11 3,003 75,762 73,726

Table 1: Size of corpora used in experiments. Data from
WMT 2011 shared tasks (Callison-Burch et al., 2011).

The idea of interpolated backoff stems from lan-
guage modelling, where it is used in smoothing
methods such as Witten-Bell (Witten and Bell, 1991)
and Kneser-Ney (Kneser and Ney, 1995). See Chen
and Goodman (1998) for an overview. Smoothing
methods were previously used by Foster et al. (2006)
to discount rare translations, but not in combination
with backoff methods.

3 Anatomy of Lexical Sparsity

Before we dive into the details of our method, let us
first gather some empirical insights into the problem
we address.

Our work is motivated by overcoming lexical
sparsity in corpora of morphologically rich lan-
guages. But how big is the portion of rare words
in the test set and do we translate them signifi-
cantly worse? We examined these questions on
the German–English language pair, given the News
Commentary and Europarl training corpora and the
WMT 2011 test set (corpus sizes are given in Ta-
ble 1). We trained a phrase-based translation model
using Moses (Koehn et al., 2007) with mostly de-
fault parameters (for more details, please check the
experimental section).

3.1 Computation of Source Word Translation
Precision

The question, if a (potentially rare) input word has
been translated correctly, does unfortunately not
have a straight-forward answer: while target words
can be compared against a reference translation,
source words need to first tracked to their target
word translations (if any), which then in turn can be
compared against a reference.

We proceed as follows (see Figure 1). We record
the word alignment within the phrase mappings,
to closely track which input word was mapped to
which output word. Note that the input word may

OUTPUT

INPUT die Tür war geöffnet

doors have been opened

REFERENCE doorthe has been opened

deleted precision 0 precision .5 precision 1

Figure 1: Computation of source word translation pre-
cision: Source words are traced to the target words that
they are aligned to, which are in turn checked against a
reference translation. Tür is aligned to doors, which is
not in the reference, so precision is 0, war is aligned to
two words, of which one is correct, and geöffnet aligned
to a correct translation. Unaligned source words such as
die are recorded as deleted.

have been dropped (has no word alignment in the
phrase mapping), so we cannot proceed. We record
those words as deleted and list them separately in
our analysis.

We now have to determine if that output word is
correct. To this end, we refer to the reference trans-
lation and check if the word can be found there.
So, essentially, we compute the precision of a word
translation.

There are a few fine points to observe: We may
produce a word multiple times in our translation, but
the reference may have it fewer times. In this case,
we give only fractional credit. For instance, if the
word occurs twice in our translation, but once in the
reference, then producing the word counts only as
0.5 correct. We address many-to-many word align-
ments in a similar fashion.

3.2 Precision by Frequency

See Figure 2 for a graphical display of some of the
findings of this study, primarily on translations using
only the News Commentary corpus.

The first graph shows the precision of word trans-
lation (y-axis) with respect to the frequency of the
word in the training corpus (x-axis). You will no-
tice that we translate rare words only about 30% cor-
rectly, but about 50% of more frequent words. Very
frequent words translate 70% correctly.

Words are categorized into bins based on the
dlog2(count)e. As additional information, we scaled
the x-axis by the frequency of words of a given bin
in the test set. You will notice that the bins have
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Figure 2: Precision of the translation by type of source words. The y-axis indicates precision for the upper part
and the ratio of deleted words in the lower part of each graph. The x-axis scales each category (either words grouped
by count in the training corpus, or by part-of-speech tag obtained with LoPar (Schmid and Schulte im Walde, 2000)
using the Stuttgart Tag Set) by the number of occurrences of words in that category in the test set. Note the power law
distribution of word frequencies: Even when increasing the training corpus by a factor of 15 when adding Europarl,
there is still a large number of rare nouns and adjectives, which are less likely to be translated correctly.



roughly the size width: there are about as many
words that occur 17-32 times in the training corpus,
as there are words that occur 4097-8192 times. This
is a nice reflection of Zipf’s law. However, relatively
few words in our test set occurred exactly once in the
training corpus, while there is a significant number
of unknown words.

3.3 Precision by Part-of-Speech

The relationship between frequency of a word in the
training corpus and the precision of its translation is
not clear cut. Part of the explanation is that some
types of words are inherently easier to translate than
others. The second graph breaks down translation
precision by part of speech. Notable outliers are pe-
riods (PER) which we translate about 95% correctly,
and verbs (V*) whose translation is very poor (about
30% correct). A good 10% of verbs are dropped dur-
ing translation.

The main open class words are nouns and adjec-
tives (verbs are also open class, but we found that
there are only few rare verb forms). Since both
nouns and adjectives are inflected in German, we
want to pay special attention to them. The third row
of graphs displays their precision by coverage.

Rare nouns and adjectives translate significantly
worse than frequent ones: less than 25% of single-
tons are translated correctly vs. up to 60% of the
very frequent ones. A good number of unknown
nouns and adjectives are translated correctly (about
30%), since many of them are names (e.g., Flickr,
Piromalli, Mainzer) which are just placed in the out-
put unchanged.

About half of the nouns and adjectives in the test
set occur less than 32 times in the training corpus.
When we add the 15 times bigger Europarl corpus,
the frequency of words increases, but not at the same
rate as the corpus increase. There are still significant
number of rare nouns left — roughly a third occur
less than 32 times.

It is worthwhile to point out that nouns carry a
substantial amount of meaning and their mistransla-
tion is typically more serious than a dropped deter-
miner or punctuation token. Translating them well
is important.

lemma lemma

OUTPUTINPUT

morphology

word word

morphology

Figure 3: Factored translation model: Phrase translation
is decomposed into a number of mapping steps.

4 Method

Our method involves a traditional phrase-based
model (Koehn et al., 2003) and a factored transla-
tion model (Koehn and Hoang, 2007). The tradi-
tional phrase based model is estimated using statis-
tics on phrase mappings found in an automatically
word-aligned parallel corpus.

4.1 Decomposed Factored Model
The factored translation model decomposes the
translation of a phrase into a number of mapping
steps. See Figure 3 for an illustration. The de-
composition involves two translation steps (between
lemmata and between morphologically features) and
two generation steps (from lemma to morphologi-
cally features and for the generation of the surface
from both).

Formally, we introduce latent variables for the En-
glish lemma el and morphology em, in addition to
the observed foreign morphological analysis fs, fl,
fm and the predicted English surface form es.

p(es|fs, fl, fm) =
∑
el,em

p(es, el, em|fs, fl, fm) (1)

However, we do not sum over all derivations, but
limit ourselves to the best derivation.

p(es|fs, fl, fm) ' maxel,emp(es, el, em|fs, fl, fm)
(2)

The fully-factored model is decomposed into
three mapping steps using the chain rule.

p(es,el, em|fs, fl, fm) =

p(em|fs, fl, fm)×
p(el|em, fs, fl, fm)×
p(es|el, em, fs, fl, fm)

(3)



A number of independence assumptions simplify
the probability distributions for the mapping steps.

p(es,el, em|fs, fl, fm) '
p(em|fm) p(el|fl) p(es|el, em)

(4)

Probability distributions for the mapping steps are
estimated from a word-aligned parallel corpus. This
data is processed so that each word is annotated
with its lemma and morphological features (part-of-
speech, case, count, gender, tense, etc.). As in tradi-
tional phrase-based models, translation steps are es-
timated from statistics of phrase mappings, but over
the factor of interest.

The generation model p(es|el, em) are estimated
from a monolingual target-side corpus. These mod-
els are further decomposed to the word-level. For
instance, for a two-word target side phrase, each
word is generated independently from the predicted
lemma and morphological features.

Note that we add a generation model p(em|el)
which is less mathematically motivated, but empir-
ically effective. We discuss additional probability
distributions towards the end of this section.

4.2 Backoff

The backoff model primarily relies on the phrase-
based model. Only for unknown words and phrases,
the secondary factored model is consulted for pos-
sible translations. We may limit the backoff to the
secondary models to words, short phrases, or for
phrases of any length.

Formally, we back off from a conditional proba-
bility distribution p1(e|f) to a secondary probability
distribution p2(e|f) if there is no observed count of
f in the training corpus for the earlier.

pBO(e|f) =

{
p1(e|f) if count1(f) > 0

p2(e|f) otherwise
(5)

Note that we could create a backoff chain of more
than two models, although we do not do so in this
work. For instance, we may introduce a third model
that relies on synonyms or paraphrasing to increase
coverage.

This use of backoff is similar to its use in n-gram
language models Chen and Goodman (1998); Stolke
(2002). For unknown histories, these models back
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Figure 4: Increased coverage for lemmata vs. anno-
tated surface forms: Given the corpus count of a word
(dark gray), how much higher is the count for its lemma
(light gray)? All counts are binned using log2. The x-
axis is scaled according to the frequency of words of each
count bin in the test set.

off to lower order n-gram models. We do not, how-
ever, mirror the behavior of backing off to lower or-
der n-gram models for known histories but unknown
predicted words. We will explore this idea in the
next section.

Figure 4 illustrates how the increase in corpus
counts for lemmata opposed to annotated surface
forms, indicating the potential for finding correct
backoff translations.

4.3 Interpolated Backoff

While the backoff model will allow us to use the
decomposed factored model for unknown surface
forms, it does not change predictions for rare sur-
face forms f — words that may have been only seen
once or twice.



The idea of interpolated backoff is to subtract
some of the probability mass from translations e in
the primary distribution p1(e|f) and use it for addi-
tional (or identical) translations from the secondary
distribution p2(e|f). We first convert p1(e|f) into a
function α(e|f), and use the remaining probability
mass for p2(e|f).

pIBO(e|f) = α(e|f)+
(
1−
∑
e

α(e|f)
)
p2(e|f) (6)

We obtain α(e|f) by absolute discounting. In-
stead of estimating the translation probability mass
from counts in the training corpus by maximum like-
lihood estimation

p1(e|f) =
count(e, f)∑
e count(e, f)

(7)

we subtract a fixed numberD from each count when
deriving probabilities for observed translations e

α(e|f) = count(e, f)−D∑
e count(e, f)

(8)

4.4 Multiple Scoring Functions
Phrase-based models do not just use the direct
phrase translation probabilities p(e|f), but also their
inverse p(f |e) and bi-drectional lexical translation
(IBM Model 1 or similar). In our experiments all
these four scoring functions are used in the phrase-
based model and in the translation steps of the de-
composed factored model.

We compute a uniform discount factor for all four
scoring functions from the count statistics for the di-
rect translation probability distribution. This factor
becomes apparent when reformulating the computa-
tion of α(e|f).

α(e|f) = count(e, f)−D
count(e, f)

p1(e|f) (9)

We apply the same factor to the other three scor-
ing functions, for instance:

α(f |e) = count(e, f)−D
count(e, f)

p1(f |e) (10)

The factored translation model also consists of a
number of scoring functions (four for each trans-
lation tables, one for each generation table). All
these are used in the backoff model. For the interpo-
lated backoff model, we need to combine the many

scoring functions of the decomposed factored mod-
els into the four scoring functions of the translation
model (phrase translation and lexical translation, in
both directions).

We do so, scaling the four scoring functions of the
lemma translation step p(el|fl) with

• direct morphology translation p(em|fm)

• lemma to morphology generation p(em|el)
• surface form generation p(es|em, el)

Note that the three scaling probabilities are typically
close to 1 for the most likely predictions. The sur-
face generation probability is almost always 1.

See Figure 5 for an example of this process.

5 Experiments

We carry out all our experiments on the German–
English language pair, relying on data made avail-
able for the 2011 Workshop for Statistical Machine
Translation (Callison-Burch et al., 2011). Train-
ing data is from European Parliament proceedings
and collected news commentaries. The test set con-
sists of a collection of news stories. As is common
for this language set, we perform compound split-
ting (Koehn and Knight, 2003) and syntactic pre-
reordering (Collins et al., 2005).

We annotate input words and output words with
all three factors (surface, lemma, morphology). This
allows us to use 5-gram lemma and 7-gram mor-
phology sequence models to support language mod-
eling. The lexicalized reordering model is based on
lemmata, so we can avoid inconsistencies between
its use for translations from the joint and decom-
posed factored translation models. Word alignment
is also performed on lemmata instead of surface
forms. Phrase length is limited to four words, other-
wise default Moses parameters are used. The fully-
factored phrase-based model outperforms a pure sur-
face form phrase-based model (+.30 BLEU).

The factored model has been outlined in Sec-
tion 4.1. We used the following tools to generate
the factors:

• English lemma: porter stemmer (Porter, 1980)
• English morphology (just POS): MXPOST (Rat-

naparkhi, 1996)
• German lemma and morphology: LoPar

(Schmid and Schulte im Walde, 2000)



Translations for morphological variants of scheinheiliger [ADJ.R; scheinheilig]

Surface Translation Count p1(e|f) α(e|f)
scheinheilig [ADJ.PRED; scheinheilig] hypocritical [JJ; hypocrit] 5 1.00 0.90
scheinheilige [ADJ.E; scheinheilig] hypocrisy [NN; hypocrisi] of [IN; of] 1 0.33 0.17

hypocritical [JJ; hypocrit] 1 0.33 0.17
hypocrisy [NN; hypocrisi] 1 0.33 0.17

scheinheiligen [ADJ.N; scheinheilig] hypocritical [JJ; hypocrit] 1 0.50 0.25
sanctimonious [JJ; sanctimoni] 1 0.50 0.25

scheinheiliger [ADJ.R; scheinheilig] of [IN; of] hypocrisy [NN; hypocrisi] 1 1.00 0.50

Translations of lemma scheinheilig Relevant translations of Generation of English
morphological tag ADJ.R morphology given lemma

Translation Count p(el|fl)
hypocrit 7 0.63
hypocrisi of 1 0.09
hypocrisi 1 0.09
sanctimoni 1 0.09
of hypocisi 1 0.09

Translation p(em|fm)

JJ 0.749
NN 0.042
IN NN 0.001
NN IN 0.005

Lemma Morphology p(em|el)
hypocrit JJ 0.793

NN 0.103
hypocrisi JJ 0.018

NN 0.891
sanctimoni JJ 0.667

of IN 0.999

Selected generated valid surface forms

Lemma p(el|fl) Morph. p(em|fm) p(em|el) Surface p2(e|f) α(e|f) p(e|f)
hypocrit 0.63 JJ 0.749 0.793 hypocritical 0.374 0.000 0.187
hypocrit 0.63 NN 0.042 0.103 hypocrit 0.003 0.000 0.002
hypocrisi 0.09 NN 0.042 0.891 hypocrisy 0.003 0.000 0.002

sanctimoni 0.09 JJ 0.749 0.667 sanctimonious 0.045 0.000 0.023
of hypocrisi 0.09 IN NN 0.001 0.999×0.891 of hypocrisy 0.000 0.500 0.500

Figure 5: Example for interpolated backoff: For the annotated surface form scheinheiliger [ADJ.R; scheinheilig],
we discount the probability for the only existing translation (assuming absolute discounting of 0.5), and consult the
decomposed factored model for additional translations. The highly likely translation hypocritical is added with prob-
ability 0.184, alongside other translations (slight simplified actual example from model).
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Figure 6: Six experimental configurations compared in Table 2.

When translating from a morphologically rich
language, we would like to back off to lemma trans-
lation for unknown and rare input surface forms.
Backing off only for unknown input words is the
backoff method described in Section 4.2.

Interpolated backoff combines the phrase-based
model with the decomposed factored model for rare
input words and phrases (Section 4.3). For our ex-
periments, we used a discount value of 0.5 and only
performed interpolated backoff for input words that
occurred at most 7 times. We also experimented
with different discount values but did not achieve
higher performance.

In Table 2, we report case-sensitive BLEU scores
for the following models (illustrated in Figure 6):

1. a plain surface phrase-based models that uses
only surface forms

2. a joint factored models that translates all
factors (surface, lemma, morphology) in one
translation step, employing additional n-gram
models

3. a backoff model (Section 4.2) from the joint
phrase-based model to the decomposed model
(Section 4.1)

4. an interpolated backoff model, same as above,
but with adjustments to rare word translations
(Section 4.3)

5. a lemma backoff model from the joint phrase-
based model to a model that maps from source
lemmata into all target factors

6. an interpolated backoff version of above

Model NewsComm. NC+Europl.
1. surface 16.53 21.43
2. joint factored 16.83 (+.30) 21.54 (+.11)
3. backoff 16.96 (+.43) 21.63 (+.20)
4. int. backoff 17.03 (+.50) 21.65 (+.22)
5. lemma backoff 16.95 (+.42) 21.58 (+.15)
6. lemma int-back. 16.95 (+.42) 21.60 (+.17)

best single system at WMT2011 21.8

Table 2: Improvement (BLEU) in overall translation qual-
ity of the backoff methods for German–English.

For models trained only on the 3 million word
News Commentary corpus, we see gains for both
backoff (+0.43 BLEU) and interpolated backoff
(+0.50 BLEU). For models that also included the
Europarl corpus as training data (about 15 times big-
ger), we see gains each of the methods (+0.20 BLEU

and +0.22 BLEU, respectively). Part of these gains
stem from the original joint factored model, so the
gains attributable to the backoff strategies are about
half of the stated numbers.

Overall, the numbers are competitive with the
state of the art – the best single system (Herrmann
et al., 2011) at the WMT 2011 shared task scored
0.15 BLEU better (according to scores reported at
http://matrix.statmt.org/) than our best system here.

For the large NC+Europarl training set, tuning
with PRO (Hopkins and May, 2011) was run five
times and the average of the test scores are reported
(although results do often not differ by much more



Count News Commentary
(training) Adjectives Nouns

unk 27.2% (+11.0%) 31.1% (+1.4%)
1 27.5% (+6.6%) 28.0% (+4.0%)
2 37.8% (+5.9%) 43.5% (+2.8%)

3–4 36.6% (+2.6%) 49.1% (+0.7%)
5–8 37.8% (–0.3%) 51.3% (+0.5%)

News Commentary + Europarl
unk 29.2% (+4.5%) 37.5% (+0.5%)

1 27.8% (+3.0%) 31.0% (+3.2%)
2 39.2% (+2.7%) 43.2% (+1.9%)

3–4 41.1% (+4.3%) 46.7% (+1.3%)
5–8 45.4% (+5.3%) 53.7% (–0.1%)

Table 3: Improved precision of the translation of rare ad-
jectives and nouns for the combined backoff methods.

than 0.01).
The lemma models are included to examine if our

gains come from the fact that we are able to translate
words whose lemma we have seen, or if there are any
benefits to use the decomposed factored model. The
results show that we do see higher gains with the de-
composed factored model (+.08 and +.05 BLEU for
the interpolated backoff model for the two corpora).

Our models do not back off (or compute interpo-
lated backoff probabilities) for phrases longer than
one word. We did not observe any gains from back-
ing off for longer phrases, but incurred significant
computational cost.

6 Analysis

Our methods target the translation of rare words, so
we would only expect improvements in the trans-
lation of frequent words as knock-on effect. How
much improvements do we see in the translation of
rare words? Table 3 gives a summary.

We observe the biggest improvement for the
translation of unknown adjectives in the News Com-
mentary data set (+11.0%), we also see gains for sin-
gleton words (+3.0% to +6.6%) and twice-occurring
words (+1.9% to +5.9%), and less pronounced gains
for more frequent words. We see more gains for ad-
jectives than nouns, since they have more morpho-
logical variants.

It is interesting to consider two examples that
show the impact of the interpolated back-off model:

(1) The German word Quadratmeter (English
square meter) was translated incorrectly by the sim-

ple backoff model, since the word occurred in the
training corpus only twice, once with the correct
and once with a wrong translation. The interpolated
backoff model arrived at the correct translation since
it benefitted from the additional three correct trans-
lation of morphological variants.

(2) However, the German word Gewalten was
translated incorrectly into violence by the interpo-
lated backoff model, while the simple backoff model
arrived at the right translation powers. The word oc-
curred only three times in the corpus with the ac-
ceptable translations powers, forces, and branches,
but its singular form Gewalt is very frequent and al-
most always translates into violence.

These examples show the strengths and weak-
nesses of interpolated backoff. Considering the
translations of morphological variants is generally
helpful, except when these have different meaning,
as it is sometimes the case with singular and plural
nouns (an English example is people and peoples).

7 Conclusion

We introduced backoff methods for the better trans-
lation of rare words by combining surface word
translation with translations obtained from a decom-
posed factored model. We showed gains in BLEU

and improved translation accuracy for rare nouns
and adjectives.
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