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Abstract

We present an approach for Hybrid Machine
Translation, based on a Machine-Learning
framework. Our method combines output
from several source systems. We first define
an extensible, total order on translations and
use it to estimate a ranking on the sentence
level for a given set of systems. We introduce
and define the notion of joint, binarised feature
vectors. We train an SVM-based classifier and
show how its classification results can be used
to create hybrid translations. We describe a
series of oracle experiments on data sets from
the WMT11 translation task in order to find
an upper bound regarding the achievable level
of translation quality. We also present results
from first experiments with an implemented
version of our system. Evaluation using NIST
and BLEU metrics indicates that the proposed
method can outperform its individual source
systems. An interesting finding is that our
approach allows to leverage good translations
from otherwise bad systems as the translation
quality estimation is based on sentence-level
phenomena rather than corpus-level metrics.
We conclude by summarising our findings and
by giving an outlook to future work.

1 Introduction

Machine Translation (MT) is an active research area
with many different methods and paradigms, each
having individual qualities and shortcomings. The
total number of approaches is large, their distinct
implementation characteristics and set of individual
features are largely diverse.

We briefly describe three of these paradigms and
provide a quick comparison between them:

1. Statistical Machine Translation (SMT): SMT
uses large amounts of parallel data to estimate
translation probabilities and works on non-
linguistic phrases;

2. Rule-Based Machine Translation (RBMT):
Rule-based systems utilise hand-crafted parsers
and grammars that transform a given sentence
into a foreign language translation; and

3. Hybrid Machine Translation (HMT): Hybrid
approaches aim at creating translations from
several source systems. The rationale is that the
different MT paradigms’ individual strengths
and shortcomings are often complementary
which implies that a clever combination of their
translation output would yield an overall better
result.

Regardless of the actual methodology implemented
in a given machine translation system, the creation
of translations usually involves a lot of—often
quite heterogeneous—features, ranging from simple
scores, parser confidence estimates, or phrase table
probabilities to hierarchical parse trees or even full
parse forests. This makes it very difficult to derive
an intuitive understanding of the inner workings of
the MT engine in question; hence, it is evident that
research on the optimal combination of different MT
systems into improved, hybrid machine translation
systems is of utmost importance to the field. In
this paper, we investigate a Machine-Learning-based
(ML) framework for hybrid machine translation.



The remainder of this paper is structured as follows.
After having introduced the research topic in this
section, we give a brief overview on related work
in Section 2 before defining and explaining in detail
our Machine-Learning-based framework for hybrid
MT in Section 3. We present the basic method
in Section 3.1 before discussing its most important
components: the total order on translation output is
defined in Section 3.2 while the notion of joint, bi-
narised feature vectors for ML is introduced in Sec-
tion 3.3. In Section 4 we present the suite of experi-
ments we have conducted; their results are discussed
in Section 5. We conclude by giving a summary of
our findings and an outlook to future research ques-
tions in Section 6.

2 Related Work

Hybrid translation methods and system combination
approaches have received a lot of research attention
over the last decades. There is general consensus in
the literature that it is possible to generate hybrid
translations from different systems resulting in an
improvement over the individual baseline systems.
See seminal work from Frederking and Nirenburg
(1994), or, e.g., Macherey and Och (2007) and Rosti
et al. (2007).

Confusion Networks can be used for combination
(Chen et al., 2007; Eisele et al., 2008; Matusov et
al., 2006). One of the MT systems is selected as the
backbone or skeleton of the hybrid translation, while
other translations are connected via word alignment
techniques such as GIZA++ (Och and Ney, 2003).
Together, the systems then form a connected graph
in which different paths through the network model
different translations. An open-source toolkit for
system combination implementing this technique is
described in Barrault (2010).

As the combination of translation output using
phrase-based methods may not preserve the under-
lying syntactic structure of the translation backbone,
there also are methods which perform Sentence-
based Combination, trying to select the best option
out of a set of several black-box translations for a
given source text. The concept is similar to Re-
ranking Approaches in statistical MT. See research
described in Avramidis (2011), Gamon et al. (2005),
or Rosti et al. (2007).

Finally, there are methods for Machine-Learning-
based Combination. These usually train classifiers
using, e.g., Support Vector Machines (Vapnik, 1995)
to determine if a given translation is good or bad.
Recent work such as He et al. (2010a) and He et al.
(2010b) applies Machine Learning tools to estimate
individual translation quality and re-rank a given set
of candidate translations on the sentence level. Of
course, there also exist various combinations of the
aforementioned methods, e.g., Avramidis (2011) or
Okita and van Genabith (2011).

3 Methodology

3.1 Classification-Based Hybrid MT

In this section, we describe a Machine-Learning-
based framework for hybrid machine translation.
Given a set of n translations from several, black-box
systems and a development set including reference
text, we perform the following processing steps to
produce a hybrid translation for some given test set:

1. Generate a system ranking on the development
set using some order relation based on quality
assessment of the translations with automatic
metrics. This can be extended to also include
results from manual evaluation;

2. Decompose this system ranking into a set of
pairwise comparisons for any two possible
pairs of systems A, B. As we do not allow for
ties in our comparisons, the two possible values
A > B, A < B also represent our Machine-
Learning classes +1/−1, respectively;

3. Annotate the translation output with feature
values obtained from NLP tools such as, e.g.,
language models,part-of-speech taggers, or
parsers;

4. Create a data set for training an SVM-based
classifier that can estimate which of two given
systems A, B is considered better according to
the available feature values;

5. Train an SVM-based classifier model using,
e.g., libSVM, see Chang and Lin (2011);

Steps 1–5 represent the training phase in our
Machine-Learning-based framework.



1: for s_id in 1..len(sentences):
2: system_wins = {}
3: for (A, B) in system_pairs:
4: joint_feature_vector = compute_feature_vector(A, B, s_id)
5: classification_result = classify(joint_feature_vector)
6: if classification_result == "+1":
7: system_wins[A].append(B)
8: else:
9: system_wins[B].append(A)
10: compute_best_system(system_wins)

Figure 1: Pseudo-code illustrating how an SVM classifier can be used to determine the single best translation using
round robin playoff elimination. This operates on the sentence level, compute best system() finally computes
the system with most “wins” over the competing systems. If two systems A, B have scored the same number of
wins, the algorithm falls back to the comparison of these two systems. As we do not allow for ties in our system
comparisons, the algorithm is guaranteed to terminate and will always return the single best system for a sentence.

We require the availability of a development set and
its reference text to allow the definition of the order
relation which subsequently defines the instances
for the training of our SVM-based classifier. Once
trained, we can use the classifier as follows:

6. Apply the resulting classification model onto
the candidate translations from the given test
set. This will generate pairwise estimates
+1/−1 for each combination of systems A, B;

7. Perform round-robin playoff elimination to
find the single best system from the given set
of candidate translations on the sentence level;

8. Synthesise the final, hybrid translation output.

Steps 6 − 8 represent the decoding phase in which
the trained classifier is applied to a set of unseen
translations without any reference text available. By
computing pairwise winners for each possible pair
of systems and each individual sentence of the test
set, we determine the single best translation on the
sentence level. By combining these, we generate
a hybrid translation improving over the single best
baseline system.

As our methodology allows to also integrate good
parts from otherwise bad systems, we expect the
approach to improve over the individual baseline
systems—this claim will receive more attention in
our experiments described in Section 4.

We need to find solutions for two very important
prerequisites in order to successfully implement the

proposed combination method:

- We must define a sufficiently good order; and

- We need to convert this order, using Machine
Learning tools, into an equivalent classification
model.

We address both issues in the following sections.

3.2 An Extensible, Total Order on Translations
In order to rank the given source translations, we
first need to define an ordering relation over the
set of translation outputs. For this, we apply three
renowned MT evaluation metrics which are the de-
facto standards for automated assessment of MT
quality. We consider:

1. The Meteor score, both on the sentence and
on the corpus level, see Denkowski and Lavie
(2011);

2. The NIST n-gram co-occurence score on the
corpus level, see Doddington (2002); and

3. The BLEU score which is the most widely used
evaluation metric, see Papineni et al. (2002).

While both BLEU and NIST scores are designed
to have a high correlation with results from manual
evaluation on the corpus level (denoted by suffix C),
the Meteor metric can also be used to meaningfully
compare translations down to the level of individual
sentences (denoted by suffix S). We make use of



this property when defining our order ord(A,B) on
translations, as shown in equations 3–7 on Page 9.

Note that the our order ord(A,B) is an extensible,
total order. It can easily be extended to include, e.g.,
results from manual evaluation of translation output.
In fact, this would be a helpful addition as it would
allow to bring in knowledge from domain experts.
However, as a manual annotation campaign for n
systems is both very time-consuming and expensive,
we leave the integration of manual judgements into
our ordering relation to future work.

3.3 Joint, Binarised Feature Vectors
As previously mentioned in Section 2, many
Machine-Learning-based approaches for system
combination use classifiers to estimate the quality
or confidence in an individual translation output and
compare it to other translations afterwards. This
means that the feature vector for a given translation
A is computed solely on information available in A,
not considering any other translation B. Formally,
we define vecsingle(A) ∈ Rn as follows:

vecsingle(A) def=


f1(A)
f2(A)

...
fn(A)

 (1)

We take a different approach and compute feature
vectors for all possible, pairwise comparisons of
translations A, B, storing binary feature values to
model if a given feature value fx(A) for system A is
better or worse than the corresponding feature value
fx(B) for the competing system B.

Effectively, this means that we directly model the
comparison between translations when constructing
the set of feature vectors required for training our
ML classifier. Equation 2 shows our definition of a
joint, binarised feature vecjoint(A,B) ∈ Bn:

vecjoint(A,B) def=


f1(A) > f1(B)
f2(A) > f2(B)

...
fn(A) > fn(B)

 (2)

The reason to store binary features values fx ∈ B
lies in the fact that these can be handled in a more
efficient way during SVM training. Also, previous

experiments have shown that using the actual feature
values fx ∈ R does not give any additional benefit.
Hence, we decided to use binary notation instead.
Note that the order in which features for translations
A, B are compared does not strictly matter. For the
sake of consistency, we decided to compare feature
values using simple A > B operations, leaving the
actual interpretation of these values or their polarity
to the Machine Learning toolkit.

3.4 Feature Set for Training a Binary Classifier
We create the data set for classifier training using a
selection of features. While there are many possible
features which could be added to this feature set, we
restricted ourselves to the following choice, leaving
changes to future work:

- number of target tokens;

- ratio of target/source tokens;

- number of target parse tree nodes;

- ratio of target/source parse tree nodes;

- number of target parse tree depth;

- ratio of target/source parse tree depth;

- n-gram score for order n ∈ {1, . . . , 5};

- perplexity for order n ∈ {1, . . . , 5}.

These features represent a combination of (shallow)
parsing and language model scoring and are derived
from the set of features that are most often used
in the Machine-Learning-based system combination
literature (Avramidis, 2011; Gamon et al., 2005; He
et al., 2010a; He et al., 2010b; Okita and van Gen-
abith, 2011).

3.5 Hybrid MT Using an SVM Classifier
Given an SVM classification model trained on joint,
binary feature vectors as previously described, we
can now create hybrid translation output. The basic
algorithm is depicted in Figure 1. It estimates the
single best translation for each sentence in the test
set, based on the +1/−1 output of the classifier.

For each sentence, we create a dictionary that
stores for some system X the set of systems which
were outperformed by X according to the results



from our classifier. We consider each possible
comparison of systems A, B and compute the
corresponding feature vector which is classified by
the SVM. Only systems winning at least once in
these pairwise comparisons end up as keys in our
dictionary. The cardinality of the set of systems out-
performed by a system X implicitly represents the
number of wins for this system. We determine the
single best translation for a sentence by sorting the
system wins dictionary so that systems with a
larger number of wins come first. There are three
cases to consider:

1. If there exists only one top-ranked system, this
is selected as the winning translation for the
current sentence;

2. If two systems are top-ranked, the winner only
depends on the comparison of these two. As we
do not allow for ties in our comparisons, this is
guaranteed to determine a single winner;

3. If more than two systems are top-ranked, we
check if one of the systems outperforms the
others. This may not yield a unique winner,
in which case we fall back to scoring the top-
ranked systems with ordMeteorC

(A,B), using
the corpus-level system rankings obtained on
the development set to reach a final decision on
the best translation for the current sentence.

We investigate the performance of our methodology
in the following section.

4 Experiments

4.1 Oracle Experiments
Before working on the fine-tuning of the Machine
Learning training method, we want to investigate
more closely what improvements can be achieved
using our method. Hence, we perform a series of
oracle experiments in which we simulate a perfect
classifier resulting in an optimal selection of hybrid
sentences and, thus, an optimal hybrid translation.

4.2 Experimental Setup
We make use of the official results from the
WMT11 (Callison-Burch et al., 2011), including
translation output, automatic metrics’ scores, and
also results from human judgement. We focus on

systems from two special groups, namely rule-based
systems and online translation engines.

We compute what our method—given a perfect
selection on the sentence level—can create given
black-box translation output from 1) rule-based MT
systems, 2) online translators, or 3) both data sets.
We conduct the experiments for all language pairs
involving English, German, Spanish, and French,
a total of six directions from WMT11’s translation
task. Results from the oracle experiments are given
in Table 3 on Page 10.

4.3 Prototypical Experiments

In order to assess the performance of the proposed
approach on real data, we also run experiments on
a prototypical implementation of the approach and
measure the resulting translation quality. Note that
in the data sets used for experimentation individual
system names are anonymised as the translations are
part of a shared task we participated in to test our
method. We train SVM classifiers for two language
pairs: Arabic→English and Chinese→English. For
the first pair we work on translation output generated
by n = 10 different systems, for the latter pair there
are n = 15 systems to consider. The source text
originates from the news domain.

4.4 Training Data

As training data, we receive a development set with
references as well as a test set without reference.
Applying our total order on the given translations,
we determine a system ranking on the sentence level.
We compute pairwise system comparisons for usage
as SVM class labels and annotate each individual
translation with parser output and language model
scores. We use the Stanford Parser (Green and
Manning, 2010; Klein and Manning, 2003; Levy
and Manning, 2003) to process the source text and
the corresponding translations. For language model
scoring, we use the SRILM toolkit (Stolcke, 2002)
training a 5-gram language model for English. In
this work, we do not consider any source language
language models.

4.5 Classifier Training

Figure 3 shows the optimisation grids we obtained
during SVM tuning. They show which settings for
C and γ result in the best prediction rate. Note how



the graphs are similar regarding the optimal area.
We train our final SVM classifiers with parameters
from this area, giving preference to smaller values
for both C and γ to reduce computational cost and
thus training time.

Still, the overall prediction rate achieved with the
aforementioned set of feature vectors is sub-optimal
and needs to be improved in future work. We have
observed promising improvements with re-scoring
of translation output using a shared phrase table and
will investigate this further in upcoming work.

5 Evaluation

5.1 Oracle Experiments
The central result from our oracle experiments is
that our proposed approach can outperform individ-
ual baseline systems for a) each set of systems, and
b) every language pair under investigation. Results
are presented in Table 3 on Page 10.

The big challenge for future research lies in the
definition of a set of features which allows to train a
classifier that can estimate our total order relation
with a very high probability. The better the final
prediction rate of our classification model, the closer
we can get to the upper bound of achievable quality.

5.2 Prototypical Experiments
In order to investigate the quality of the described
Machine-Learning-based approach for real data, we
evaluated the translation quality of our hybrid MT
system (referred to as SVM-combo in Tables 1 and 2)
using BLEU and NIST, both of which are predom-
inantly used in machine translation literature and
evaluation campaigns.

Table 1 shows that our hybrid translation out-
put improved over the single best baseline system
for language pair Arabic→English, both in terms of
NIST score as well as for the BLEU metric. Note
that we are listing more than n = 10 systems here
as not all participating systems from the shared task
agreed to be part of the system combination task.

Interestingly, results from language pair
Chinese→English are different, as depicted in
Table 2. Here, our hybrid translation only achieves
8th rank wrt. NIST score and 4th rank in terms of
BLEU. In summary, it seems we need a refined set
of features to improve for this language pair.

Arabic→English

System NIST Score BLEU Score

sys #1 10.1578 0.4300
sys #2 10.0379 0.4251
sys #3 9.8845 0.4179
sys #4 9.8841 0.4132
sys #5 9.8675 0.4109
sys #6 9.8408 0.4070
sys #7 9.7120 0.4012
sys #8 9.6853 0.3996
sys #9 9.6417 0.3982

sys #10 9.4226 0.3799
sys #11 8.5721 0.3160
sys #12 8.1091 0.2746

SVM-combo 1st 10.3584 1st 0.4523

Table 1: Translation quality measured using NIST and
BLEU scores for language pair Arabic→English. Note
how our SVM-combo system is able to outperform the
individual baseline systems for both metrics.

Chinese→English

System NIST Score BLEU Score

sys #1 8.6996 0.3044
sys #2 8.4245 0.2927
sys #3 8.1160 0.2813
sys #4 8.0534 0.2795
sys #5 7.9788 0.2587
sys #6 7.8969 0.2545
sys #7 7.7679 0.2518
sys #8 7.6965 0.2369
sys #9 7.6461 0.2489

sys #10 7.5181 0.2265
sys #11 7.4819 0.2580
sys #12 7.4045 0.2276
sys #13 7.2969 0.2472
sys #14 6.8456 0.1957
sys #15 6.2852 0.1497
sys #16 6.1679 0.1867

SVM-combo 8th 7.7636 4th 0.2663

Table 2: Translation quality measured using NIST and
BLEU scores for language pair Chinese→English. Here,
our SVM-combo system only achieves 8th rank in terms
of NIST score, 4th rank according to the BLEU metric.



6 Conclusion

6.1 Summary of Findings

We have described a Machine-Learning-based
framework for hybrid MT. We explained how a total
order on translation output can be defined and used
for feature vector generation. Our method differs
from previous work as we consider joint, binarised
feature vectors instead of separate feature vectors for
each of the available source systems. We proposed
an algorithm to make use of a classification model
trained on these feature vectors for the creation of
hybrid translations.

We reported on a series of oracle experiments in
which we simulated optimal translation selection on
the sentence level. In summary, these experiments
illustrated what translation quality could be achieved
using the proposed method. Notably, our approach
outperformed the individual baseline systems for all
language pairs under investigation.

In our experiments with real data for language
pairs Arabic→English and Chinese→English, we
observed improvements in terms of both NIST and
BLEU scores for the first and mixed results for the
latter language pair. We found that our classifier was
able to make use of good translation output from
systems which performed bad on the corpus level.

6.2 Outlook on Future Work

The total order on translation defined in Section 3
can be extended to include results from manual
judgements regarding the quality of translations
from candidate systems. It will be interesting to get
a better understanding how such a refined order re-
lation impacts the training of the SVM classifier and
the quality of the hybrid translation output.

Our classifier can also be changed to generate
probabilistic estimates p ∈ R instead of absolute
class values +1/−1. This would give us a parameter
to tune the classifier for a better prediction rate on
the development set. It remains to be investigated
how such a classification scheme would affect the
selection of translations on the sentence level and
the quality of the final, hybrid output.

While it is clear that the classification model’s
prediction rate and the quality of the resulting
translation output are strongly interrelated, their
connection needs to be investigated in more detail

to find out how changes of the former would affect
and alter the latter.

Finally, we intend to conduct a manual evaluation
campaign to investigate in more detail the selection
quality of our combination method and to find out
if the selected translations are actually the best (or at
least good) translations considering the given source
sentence. We look forward to interesting challenges
and findings in the future.

Acknowledgments

This work has been funded under the Seventh
Framework Programme for Research and Techno-
logical Development of the European Commission
through the T4ME contract (grant agreement no.:
249119). We are grateful to the anonymous review-
ers for their valuable feedback.

References
Eleftherios Avramidis. 2011. DFKI System Combina-

tion with Sentence Ranking at ML4HMT-2011. In
Proceedings of the International Workshop on Using
Linguistic Information for Hybrid Machine Transla-
tion (LIHMT 2011) and of the Shared Task on Ap-
plying Machine Learning Techniques to Optimise the
Division of Labour in Hybrid Machine Translation
(ML4HMT), Barcelona, Spain, November.

Loic Barrault. 2010. Many: Open source machine trans-
lation system combination. Prague Bulletin of Math-
ematical Linguistics, Special Issue on Open Source
Tools for Machine Translation, 1(93):145–155.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar Zaidan. 2011. Findings of the 2011 work-
shop on statistical machine translation. In Proceedings
of the Sixth Workshop on Statistical Machine Transla-
tion, pages 22–64, Edinburgh, Scotland, July. Associ-
ation for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A Library for Support Vector Machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Yu Chen, Andreas Eisele, Christian Federmann, Eva
Hasler, Michael Jellinghaus, and Silke Theison. 2007.
Multi-engine machine translation with an open-source
SMT decoder. In Proceedings of the Second Work-
shop on Statistical Machine Translation, pages 193–
196, Prague, Czech Republic, June. Association for
Computational Linguistics.

Michael Denkowski and Alon Lavie. 2011. Meteor
1.3: Automatic Metric for Reliable Optimization and



Evaluation of Machine Translation Systems. In Pro-
ceedings of the Sixth Workshop on Statistical Machine
Translation, pages 85–91, Edinburgh, Scotland, July.
Association for Computational Linguistics.

George Doddington. 2002. Automatic Evaluation
of Machine Translation Quality Using n-gram Co-
occurrence Statistics. In Proceedings of the Second
International Conference on Human Language Tech-
nology Research, HLT ’02, pages 138–145, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Andreas Eisele, Christian Federmann, Hervé Saint-
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ordBLEUC
(A,B) def=


1 if ABLEUC

> BBLEUC

−1 if ABLEUC
< BBLEUC

0 else

(3)

ordNISTC
(A,B) def=


1 if ANISTC

> BNISTC

−1 if ANISTC
< BNISTC

ordBLEUC
(A,B) else

(4)

ordMeteorC
(A,B) def=


1 if AMeteorC

> BMeteorC

−1 if AMeteorC
< BMeteorC

ordNISTC
(A,B) else

(5)

ordMeteorS
(A,B) def=


1 if AMeteorS

> BMeteorS

−1 if AMeteorS
< BMeteorS

ordMeteorC
(A,B) else

(6)

ord(A,B) def= ordMeteorS
(A,B) (7)

Figure 2: Definition of a total order on translation output. Each pair of translationsA,B is compared using a) sentence-
based (denoted by suffix S) Meteor scores, and b) corpus-based (denoted by suffix C) Meteor, NIST, and BLEU scores.
Meteor is preferred as previous experiments have shown that it has a better correlation with human assessments than
both NIST and BLEU. Conflict resolution in case of ABLEUC

= BBLEUC
is described in Section 3.5.

Figure 3: Optimisation grids of SVM parameters C and γ obtained during tuning for language pairs Arabic→English
and Chinese→English. Note the similarity of the grids, indicating that our selected set of feature vectors is language
independent. Also note the low values for prediction rate, signaling that further research on helpful features needs to
be undertaken to achieve hybrid translation quality comparable to the theoretical upper bound as reported in the oracle
experiments on WMT11 translation task data.



RBMT Online Combined

System Score System Score System Score

E
nglish→

G
erm

an

rbmt-1 0.35147 online-A 0.36535 rbmt-combo 0.40279
rbmt-2 0.33472 online-B 0.38436 online-combo 0.40845
rbmt-3 0.35527 full-combo 0.43591
rbmt-4 0.34430
rbmt-5 0.33935

G
erm

an→
E

nglish

rbmt-1 0.29265 online-A 0.31352 rbmt-combo 0.33519
rbmt-2 0.28089 online-B 0.31726 online-combo 0.35176
rbmt-3 0.29429 full-combo 0.36549
rbmt-4 0.29214
rbmt-5 0.28131

E
nglish→

Spanish

rbmt-1 0.50936 online-A 0.55937 rbmt-combo 0.55667
rbmt-2 0.49807 online-B 0.56629 online-combo 0.57535
rbmt-3 0.51901 full-combo 0.59962
rbmt-4 0.50729
rbmt-5 0.49491

Spanish→
E

nglish

rbmt-1 0.34027 online-A 0.34600 rbmt-combo 0.37601
rbmt-2 0.32835 online-B 0.34099 online-combo 0.37719
rbmt-3 0.33177 full-combo 0.40510
rbmt-4 0.33470
rbmt-5 0.33166

E
nglish→

French

rbmt-1 0.49596 online-A 0.51778 rbmt-combo 0.54125
rbmt-2 0.47306 online-B 0.55774 online-combo 0.56825
rbmt-3 0.49819 full-combo 0.59366
rbmt-4 0.47064
rbmt-5 0.48620

French→
E

nglish

rbmt-1 0.33422 online-A 0.34434 rbmt-combo 0.37076
rbmt-2 0.31792 online-B 0.34529 online-combo 0.38272
rbmt-3 0.32414 full-combo 0.40156
rbmt-4 0.32564
rbmt-5 0.32118

Table 3: Individual performance in terms of Meteor scores for rule-based and online system submissions in the
WMT11 translation task for all language pairs involving English, German, French, and Spanish. We compare these
scores to the oracle scores for three data sets: rbmt, online, and full which contains both rbmt and online. Note that,
theoretically, each data set can be improved over the single best baseline score, provided system selection performs
sufficiently well. The scores reported in this table represent the theoretical upper bound of achievable translation
quality for translation output from participating systems of the WMT11 translation tasks.


