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Abstract 

Tranditional n-best based training and decoding 
method of system combination can propogate 
the error because of imprecision parameter 
estimation and too early prunning. In order to 
alleviate the problem, the paper proposes 
hypergraph (HG) based three-pass training and 
three-pass decoding for different features. In 
order to construct HG, this paper introduces 
simplified bracket transduction grammar 
(SBTG) into HG based system combination. At 
three-pass decoding, decoder uses each-pass 
features to generate target translation. At three-
pass training, we introduce minimum risk (MR) 
with deterministic annealing (DA) into the 
training criterion in order to overcome overfit-
ting, and furthermore compare two training 
procedures: minimum error training (MERT) 
on n-best and MR&DA on HG. The unified 
training and decoding approaches of HG based 
system combination outperform baseline using 
conventional Cube Prunning on Chinese-to-
English benchmark corpus NIST08 test set. 

1 Introduction 

System combination has been proven that consen-
sus translations are usually better than the transla-
tions of individual systems (Matusov et. al., 2006; 
Rosti et. al., 2007). Confusion network (CN) (Ma-
tusov et al. 2006 and Rosti et al. 2007) for word-
level combination is a widely adopted approach for 
combining SMT output, which can significantly 
outperform sentence-level re-ranking methods and 
phrase-level combination (Rosti et. al., 2007). Dur-
ing constructing CN, word alignment between ske-
leton/backbone and hypothesis and skeleton 
selection are two key issues in this approach. To 
solve first issue, Translation Error Rate (TER) 

Figure 1: The pipeline of three-pass training and 
decoding for HG generation, HG reranking and 
HG model mixture 

(Snover et al., 2006) based alignment was pro-
posed in Sim et al. (2007); IHMM (He et al., 2008) 
got the better alignment using source language as 
pivot language; ITG-based alignment (Karakos et 
al., 2008) uses the ITG constrain during construct-
ing CN; lattice-based system combination (Feng et 
al., 2009) normalized the alignment between the 
skeleton and the hypothesis into the lattice without 
breaking the phrase structure; incremental strategy 
(Rosti et al., 2008; Li et al., 2009) was added into 
the monolingual alignment algorithm including 
TER and IHMM in order to avoid pairwise align-
ment error. To solve second problem, joint optimi-
zation (He and Toutanova, 2009) integrated CN 
construction and decoding into a decoder without 
skeleton selection; multiple CNs was first proposed 
in (Matusov et al.2006; Rosti et al., 2007), and was 
implemented via combining several different hypo-
thesis alignment metrics (Du and Way, 2009).  

However, there are few works about training and 
decoding for system combination. Tranditional n-
best training method train feature weights at li-
mited hypothesis space and propogate the errors to 
target translation. These errors will severely hurt 
the translation quanlity. To alleviate such error, a 
HG was applied to many areas, such as translation 
rule extraction (Mi and Huang, 2008; Tu et al., 
2010), model training (Li and Eisner, 2009b), de-
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coding (Liu et al.,  2009; Li et al., 2009a; Kumar et 
al., 2009; DeNero et al., 2009) in the field of ma-
chine translation, constituent parsing (Huang and 
Chiang, 2005). Overall, HG gives large search 
space for training and decoding which is expected 
to avoid the search error caused by the imprecision 
parameter estimation and early prunning.  

This paper introduces HG into system combina-
tion and explores to address three problems: 

 (1) Since the HG technology gives better per-
formance than conventional training and decoding 
method in many natural language processing areas, 
would the technology still be efficient in system 
combination?  

(2) Models in SMT exhibit spurious ambiguous 
(Li et al. 2009).We can resolve it by using the re-
estimation of n-gram probability on HG. Does HG 
based system combination model have the same 
problem as models in SMT? 
    (3) During constructing CN, different system 
combination models use the different construction 
strategy. Are these models of system combination 
complementary? 

To answer these questions, we will mix models 
of system combination through three-pass decod-
ing and three-pass training (Figure 1) for different 
features, which are firstly for HG generation, se-
condly for HG re-ranking according to three types 
of n-gram probability and finally for mixing the 
HG model of system combination. MR 
with/without DA on HG or not, which attempts to 
solve the increasingly difficult optimization prob-
lem, is introduced into training procedure. 

This paper is structured as follows. After intro-
ducing the definition of SBTG on HG of system 
combination in section 2, we first, in the section 3, 
show training criterion on HG, and then in section 
4, we give the details about several n-gram proba-
bility computation methods on HG decoding. In 
section 5, experiment results and analysis are pre-
sented. In section 6, we review the related work of 
this paper. 

2 SBTG on HG 

Formally, a HG in system combination is defined 
as a 4-tuple H=<V, E, G, R> , where V is a finite 

set of hypernode, E is a finite set of hyperedge, G
R is the unique goal item in H, and R is a set of 

weights. For a input sentence of target language 
, each hypernode is in the form of , 

which denotes the partial translation of target par-
tial language  spanning the substring from i-
1 to j. Each hyperedge e E is a triple tuple 
e=<T(e), h(e), w(e)>, where T(e) V is a vector of 
tail nodes, h(e) V is its head, and w(e) is a weight 
function from R|T(e)| to R. 

Our HG-based system combination is 
represented by simplified bracket transduction 
grammar (SBTG). Formally, the set of these 
hyperedges can be defined as a 3-tuple E=<T, N, 
P>, where T is a set of the terminal word symbol in 
target language, N is a set of the non-terminal 
symbol including three symbols N={S, X1, X2}, P 
is a set of production rules including two types: 

 Lexical rule:            X w,  w D 
 Non-terminal rule : S X1 X2, 

X X1 X2 
where D is a dictionary including null word (ε ) 
for normalization in system combination, start 
symbol (G R) and single word. Non-terminal rule 
is like straight ordering in bracket transduction 
grammar (BTG).   

For example, suppose we have one skeleton “he 
gives me an apple” and one hypothesis “he gave 
me apple”. We can obtain the tabular form (Li et al. 
2009) of CN in Figure 2(a) through some align-
ment metrics. We can obtain CN in the lower part 
of Figure 2(b) using some alignment metric. Figure 
2(b) show the generation of HG through a set of 
production rule (lexical and nonterminal rule) in 
SBTG. The hyperedges between nodes denote the 
decision steps that produce head node from tail 
nodes. For example, the incoming hyperedge of the 
hypernode <”he … gave”, 0-2> could correspond 
to two lexical rules and a nonterminal rule in 
SBTG; the two incoming hyperedges of the hyper-
node <”he … apple”, 0-5> could correspond to 
two non-terminal rules in SBTG; the one incoming 
hyperedge of the hypernode <”S”, 0-5>could  
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Figure 2: (a) the tabular form of confusion network (b) a HG produced by rules in SBTG. Solid and 
dashed lines denote the alternative rule for the same hypernode.  If we use 2-gram language model, 1-
gram left and right equivalent state is introduced into the hypernode.  
 
correspond to S X1 X2 in SBTG. Using S X1 
X2 in SBTG is for decoding convenience. S and X 
are two non-terminal in SBTG. 

3 Decoding on HG 

To integrate HG into system combination, we 
model the derivation generation using the probabil-
istic SBTG. The viterbi decoding for latent varia-
ble model can be formalized as: 

,

,

ˆ arg max max ( , | )

exp( ( , , ))
 arg max max

exp( ( , , ))

 arg max max exp( ( , , ))

d De

i i
i

d De i i
e d i

i id De i

e p e d f

h e f d

h e f d

h e f d

 
(1) 

where D is the set of all derivations generated by a 
set of production rules, d is one such derivation, 

 is a nomalization con-
stant, is the i-th feature,  is the feature 
weight of i-th feature,  is the best translation 
through searching the HG. Hyperparameter  is 
shown in section 4. Generic features in decoder are 
the same as Rosti et al. (2007), inculding word 
posterior of every system, language model,  pe-
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nalty and word penalty. At first-pass decoding, we 
find the best target translation using generic fea-
tures. At second-pass and third-pass decoding, the 
best translation can be obtained using n-gram 
probability (in section 3.1) and mixture factor (in 
section 3.2) features respectively.  
 

 
Algorithm 1 Computation of N-gram Mod-
el/Posterior/Count Expectation  

 
1: run inside and outside algorithm  
2: compute hyperedge posterior probability 
p(e|H) 
3:  for v H   for each topological hypernode 
4:   initialize the quantities Iv (wn), c(wn) and  

c(h(wn)) of hypernode v 
5:    for e IN(v) for each incoming  hyperedge 
6:    initialize the quantities ( )nb w and b of 

hyperedge e 
7:         b = p(e) Iant(v) 
8:         ( ) ( )( ) ( ) ( ( ))n ant v ant v nb w p e I I w  
9:          if  wn e  
10:               c(wn) += p(e|H)  
11:               c(h(wn)) += p(e|H) 
12:                Iv(wn) += b  
13:         else  
14:                ( ) ( )v n nI w b b w              

15:   

16:   
17: return n-gram model score p(wn) 
18:            n-gram count expectation c(wn) 
19:            n-gram posterior probability q(wn)  

 
Figure 3: the Computation of N-gram Model/Count 

Expectation/Posterior  

3.1 N-GRAM Probability 

We present an extension of the algorithm in Li et al. 
(2009a) that allows us to efficiently compute n-
gram probability encoded in HGs. We employ 
three types of n-gram estimation probability in 
Figure 3, and then compare these probabilities. The 
algorithm can compute them including n-gram 
model (Li et al.2009a) that is just as unsmothed n-
gram probability in language model, n-gram count 
expectation (DeNero et al., 2009) that is the expec-

tion of n-gram count, n-gram posterior (Kumar et 
al. 2009; DeNero et al., 2010) that is the ratio of n-
gram inside score and regular inside score of root.  

This algorithm1 can in principle compute n-
gram model, count expectation and posterior prob-
ability on HG. For each hypernode, we track four 
quantities:  
(1) the regular inside scores Iv that sum the scores 

of all derivations rooted at v and can be com-
puted by inside recursion procedure;  

(2) n-gram inside scores Iv (wn) that sum the scores 
of all derivations rooted at v that contain n-
gram wn; 

(3) soft count c(wn) and c(h(wn)) that sum the 
posterior probabilities of all hyperedges intro-
ducing wn or h(wn) into HG.  

For each hyperedge, we track two quantities: b 
that sum the scores for all derivations through the 
hyperedge e; ( )nb w that sum the scores for deriva-
tions that don’t contain wn through the hyperedge e. 
We have two probability form about the hyperedge: 
one for the posterior probability p(e|H) (Li et al. 
2009) of the hyperedge, the other for the weight 
p(e) of the hyperedge. ant(v) and h(wn) denote the 
antecedent of hypernode v and (n-1)-gram prefix of 
n-gram word wn respectively. 

In order to construct hypernode, we merge 
hyperedge of the same left and right equivalent (n-
1)-gram state (  is the order of language model we 
use) into the same hypernode, which already 
removeε . 

3.2 Mixture Factor 

Rosti et al., 2007 first proposed using multiple CN 
even though Matusov et al., 2006 proposed it first. 
Multiple CN consists of many individual CNs 
which are constructed based on the same alignment 
metric. Super CN (Du and Way, 2009) has the 
same idea with multiple CNs, but it uses the differ-
ent alignment metric for each CN.  

The idea of multiple CNs proves the comple-
mentarities of system combination models. We 
follow the complementary from another way that 
combine identical n-gram and model probability 
from each HG of system combination.The decod-
ing formulation of mixture model is as follow: 

1 1

ˆ arg max ( ( , , )) ( , , )

( , , )                               

I N
n n v
i i i i

d i n

l

d w h e f d w v e f d

w l e f d

(2) 
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   We use a linear model with three types of feature 
functions of a derivation: n-gram probability 

 scores a derivation of each component 
model according to the n-grams it contains; viterbi 
model score  is the dot product of the 
vectors of generic feature value and weight; length 
function  is the length of a derivation of 
each model in system combination. I is the number 
of system, and N is n-gram number. If we have two 
models of system combination and use the 5-gram 
probability model, we have 2*5+2+1=13 mixture 
factor numbers. The optimization of mixture factor 
is at third-pass training and third-pass decoding. 
We initially construct the hypergraph bottom-up. 
After the construction, we use lazy Algorithm 3 
(Huang and Chiang, 2005) to generate k-best trans-
lations in three-pass decoding.  

4 MR Training on HG  

To overcome the overfitting, Smith and Eisner 
(2006) smoothed the risk function by DA to ensure 
the search space is as large as possible before ob-
jective function achieves the optimal weight. The 
objective function can be defined as follow:        

, ,
,

( ) ( )H H
e d HG

L R p T E p
 
(3) 

where  is definded in equation (1),  is 
the entropy of probability distribution  , and  
is the scaling hyperparameter, when  giving 
the uniform distribution; when  giving the 
original model probability distribution; and as 

, the probability approaches the winner-
take-all Viterbi function, and  is feature weight 
vector. 

In order to optimize by gradient descending, we 
need the gradient of two types of parameter. We 
use the first- and sencond-order semiring(Li et al. 
2009b) to compute them. Both of them can be de-
fined as follow: 

, ,
,

( ) ( )H H
e d HG

L R p T E p
 
(4) 

where T>0 is a temperature parameter which is 
gradually lowered as the optimization progresses 
according to some annealing schedule. We perform 
the optimization in two steps: first optimizing  ; 
second optimizing . So the optimizer could exact-
ly compensate for the increase of  by decreasing 
the  vector proportionately. 

5 Experiments 

We use NIST MT06 data set including 1099 sen-
tences as the development set and NIST MT08 
data set including 1357 sentences from both 
newswire and web-data genres as the test set. To 
save computation effort, the result on the develop-
ment and test set are reported in case-insensitive 
BLEU score. The above system generates the 10-
best of every sentence as input of system combina-
tion through the max-BLEU training (MERT). The 
language model used for the model is a 5-gram 
model trained with Xinhua portion of LDC English 
Gigaword corpus version 3. The parameter and 
distortion model of incremental IHMM were set as 
Li et al. (2009).  The lexical translation probabili-
ties used in semantic similarity model are from a 
small portion (FBIS+GALE) of the constrained 
track training data. The skeleton is selected by 
minimum bayesian risk (MBR) and the loss func-
tion is BLEU.  

 
Alignment  NIST06 NIST08 

Worst Single 
System 

27.33 21.45 

Best Single  
System 

32.60 27.75 

Inc TER 38.21 31.35 
Inc IHMM 39.34 32.82 

Table 1: The result of single and system combina-
tion on the development and test set 

 
We combine outputs of eight SMT systems1 . 

Table 1 shows the performance of single system 
and combination system. Compared to the worst 
and best single system, incremental TER yield a 
large improvement (+5.61~+10.88 BLEU) on de-
velopment set and (+3.6~+9.9 BLEU) on test set. 
Incremental IHMM achieve better performance (up 
to +1.13 and 1.47 BLEU score on the development 
and test set) than incremental TER. 

We compare each-pass decoding of system 
combination based on HG. We report performance 
using incremental IHMM (Li et al., 2009) during 
first two-pass decoding. The components of mix-
ture model in last-pass decoding are incremental 
TER and incremental IHMM. 

                                                           
1 The input of system combination is the same as Li et al. 
(2009). 
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5.1 First-pass HG Decoding  

During first-pass decoding, HG decoding with 
stack size 500 outperform the baseline (incremen-
tal IHMM) by +0.28 and +0.57 BLEU point on 
development and test set. Incremental IHMM 
model use Cube Prunning (Chiang 2007) and HG 
decoding use Cube Growing (Huang and Chiang 
2007). Mixing model mixes the output of incre-
mental IHMM and HG decoding model. 
 

Model  NIST06 NIST08 
Inc IHMM 39.34 32.82 

HG Decoding 39.47 33.02 
Mixing 39.62 33.39 

Table 2: The result of first-pass HG decoding on 
the development and test set 

5.2 Second-Pass HG Decoding  

During second-pass decoding, we use the same 
beam size as first pass decoding because the out-
side probability estimation of the second-pass de-
coding is discriminative enough to guide second-
pass HG Decoding. We develop a unified algo-
rithm of three n-gram probabilty which are n-gram 
model (denoted by ngram_1), n-gram count expec-
tion (denoted by ngram_2) and n-gram posterior 
probability (denoted by ngram_3), and then com-
pare the performance of them. 

The Effect of n-gram Model: as shown in Table 3, 
decoding with 1-5-gram+wp (word penalty de-
noted by wp) model of different estimation me-
thods improve (+0.66, +0.35 and +0.29 BLEU 
score) over first-pass training and decoding (beam 
size is 500) on the development set, and we 
achieve an absolute improvement (+0.59, +0.60 
and +0.56 BLEU score) on the test set. The expe-
rimental result proves that n-gram feature is effec-
tive.   

The effect of Viterbi model can be seen through 
comparing Table 4 with Table 3. The various in-
terpolation models show an improvement of +0.25, 
+0.3 and +0.27 BLEU points over model without 
Viterbi on the development set, and +0.25, +0.13 
and +0.04 BLEU point on test set. By comparing 
with one-pass HG decoding, the best performance 
of three types of n-gram probability can improve 
by +0.91 and +0.84 BLEU score on the develop-
ment and test set respectively. If we compare it 
with baseline (incremental IHMM), the best per-

formance of three types of n-gram probability can 
be obtained when the setting is Vi+1-5gram_1+wp. 
It obtains +1.19 and +1.41 BLEU score on the de-
velopment and test set respectively. 

The experimental results prove the effeciency of 
n-gram and Viterbi+n-gram model. 

 
n-gram model NIST06 NIST08 
1-5gram_1+wp 40.28 33.98 
1-5gram_2+wp 39.97 33.99 
1-5gram_3+wp 39.91 33.95 

Table 3: The quality of second-pass decoding 
on the development and test set 

 
Viterbi+n-gram NIST06 NIST08 
Vi+1-5gram_1+wp 40.53 34.23 
Vi+1-5gram_2+wp 40.27 34.12 
Vi+1-5gram_3+wp 40.18 33.99 

Table 4: The quality of second-pass decoding with 
Viterbi baseline on the development and test set 

The Effect of MR with DA: We compare the five 
training schema: MERT vs. MR with different set-
ting, which are with/without DA, with/without 
quenching scaling factor  and on HG. With the 
entropy constrains, starting temperature T=1000; 
quenching temperature T=0.001. The temperature 
is cooled by half at each step; then we double  at 
each step. Once T is quite cool, it is common in 
practice to switch to rising  directly and rapidly 
until some convergence condition. We optimize 
feature weight vector  and hyperparameter  
through BFGS optimization. 

The configures of the experiment use the interpo-
lation between 1-5gram_1 and Viterbi model. We 
compare five settings on the development in Figure 
4 and the test set in Table 5. MERT, MR without 
DA&quenching, MR&DA without quenching, 
MR&DA with quenching and MR&DA with 
quenching on HG achieve a BLEU score of 40.53, 
40.17, 40.37, 40.50 and 40.50 on the development 
set. The best performance can be obtained by 
MERT on the development set, and meanwhile the 
worst performance can be obtained by it on test set. 
The fact proves the overfitting of MERT. The rea-
son of decreased performance of 2-th iteration MR 
with DA is the intialization bias. 

 
Training Criterion NIST08 
MERT 34.23 
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MR without DA&queching 34.24 
MR&DA without quenching 34.28 
MR&DA with quenching 34.29 
MR&DA with quenching on HG 34.29 

Table 5: The MERT and MR with/without DA per-
formance of the test set 

 

 
Figure 4: The MERT and MR with/without DA 

performance on the development set 
 

Compared to MERT, MR&DA on HG has almost 
the same performance on test set because of a 
small number of features (Li and Eisner, 2009b) or 
a sparse feature of the non-terminal rule which on-
ly includes language model probability. In total, 
MR&DA on HG outperform baseline (incremental 
IHMM) using Cube Prunning up to +1.47 in BLEU 
score. 

5.3 Third-Pass HG Decoding  

Firstly, the n-gram features are extracted from in-
cremental TER and IHMM model via second-pass 
decoding. Then, we mix both n-grams on one of 
HG. Finally, we can search the HG during third-
pass decoding.  
 
Model NIST06 NIST08 
Incremental TER 39.99 33.19 
Incremental IHMM 40.50 34.29 

Mixture Model 
(MR&DA) 

40.37 34.41 

Mixture Model 
(MR&DA on HG) 

40.39 34.42 

Table 6: The performance comparison of MR&DA 
with/without HG on the development and test set 

 
Compared to incremental IHMM and TER mod-

el after two-pass decoding, mixture model of 
MR&DA on HG in Table 6 achieves +0.13 and 
+0.23 BLEU point improvement. Though the third-
pass doesn’t yield better improvement, we con-
clude that there is little complementary between 
two models or the consensus are already modeled 
by CN construction. In total, the three-pass training 
and decoding outperform baseline up to +1.6 
BLEU point.  

6 Related Work 

A unified framework (Pauls et al., 2009, Arun et 
al., 2010) was employed in MBR training and de-
coding. However, their methods aren’t based on 
the HG. In this paper, we present a unified frame-
work of training and decoding on HG. On the other 
hand, there are several research on HG based de-
coding (Li et al., 2009a; Kumar et al., 2009; Dene-
ro et al., 2009), which use the n-gram probability 
to further improve the performance of the single 
system. In this paper, we compare three n-gram 
probability. 

In the view of HG mixture, our method is most 
similar to the mixture model based on HG in SMT. 
Duan et al. (2010) proposed a two-pass parameter 
optimization: first for n-gram probability weight 
for each system; second for mixture model weight 
whose number is the same as the number of system. 
DeNero et al. (2010) employed one-pass training 
for tuning the weight of n-gram posterior and mod-
el score, and don’t achieve the best tuning effect of 
each search space on model score. There are two 
major differences between our approach and above 
two approaches. Firstly, our model has three-pass 
training phase. Secondly, we have many weights 
for every n-gram probability and Vitebi score in 
each involved component model. 

7 Conclusion and Future Work 

In this paper, we present a system combination 
based on HG. Comparing to conventional training 
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and decoding method, our method on HG uses 
more features to refine the expressive ability of the 
model. We have empirically verified the success 
on HG of system combination in three aspects: HG 
decoding, HG re-ranking and mixture model.      
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