
A Unified SMT Framework Combining MIRA and MERT

Shujie Liu†, Chi-Ho Li‡ and Ming Zhou‡
†School of Computer Science and Technology
Harbin Institute of Technology, Harbin, China

shujieliu@mtlab.hit.edu.cn
‡Microsoft Research Asia, Beijing, China

{chl, mingzhou}@microsoft.com

Abstract

Translation sub-model is one of the most im-
portant components in statistical machine trans-
lation, but the conventional approach suffers
from two major problems. Firstly, translation
sub-model is not optimized with respect to any
of automatic evaluation metrics of SMT (such
as BLEU). The second problem is over-fitting
to training data. This paper presents a new uni-
fied framework, by adding a scalable transla-
tion sub-model into the conventional
framework. The sub-model is optimized with
the same criterion as the translation output is
evaluated (BLEU), and trained using margin in-
fused relaxed algorithm (MIRA) to handle
over-fitting. Under our new framework, MIRA
and minimum error rate training (MERT) are
unified into an interactive training process. Our
approach has not only shown to improve per-
formance over a state-of-the-art baseline, but
also generalize well in-domain training data to
out-of-domain test data.

1 Introduction

The conventional approach to statistical machine
translation (SMT) adopts a log-linear framework to
incorporate various features. While there have
been a few works in improving the standard mini-
mum error rate training (MERT) for optimizing the
weights of the features, most SMT researchers fo-
cus on some specific feature used in the log-linear
framework. Note that a feature can be a complicat-
ed model in itself, such as translation sub-model,
distortion sub-model, and language sub-model.
The conventional approach trains each sub-model
separately, and then integrates them in the log-
linear framework. The entire framework is opti-

mized with respect to an evaluation metric, e.g.
BLEU, only in the step of feature weight tuning.
The training of each model, be it generative or dis-
criminative, has nothing to do with the evaluation
metric.

Among the features, translation sub-model plays
a key role as it measures the faithfulness of a trans-
lation candidate to the source input sentence.
Translation sub-model is usually represented as a
huge table of their pairs, each of which is a phrase
pair, hierarchical phrase pair, or even more com-
plicated structure of synchronous grammar. The
translation pairs are usually acquired from word
alignment matrices using heuristics. The probabili-
ties of the translation pairs are usually assigned by
maximum likelihood estimation (MLE). That is,
conventional translation modeling never takes
translation evaluation metric into consideration.
Moreover, this method of translation modeling suf-
fers from over-fitting which is critical especially
when test data is not similar to training data.

In this paper, we propose a new unified frame-
work to add a discriminative translation sub-model
into the conventional linear framework, and the
sub-model is optimized with the same criterion as
the translation output is evaluated (BLEU in our
case). Similar to Blunsom et al. (2009), each trans-
lation pair is a feature in itself, and the training
method can affect the pairs directly so as to handle
over-fitting. Unlike any previous approach(Liang
et al., 2006; Arun and Koehn, 2007; Chiang et al.,
2008), in which the weights of translation pair fea-
tures and those features of sub-models are tuned in
the same process, we propose a new scalable sub-
model which integrates all the translation pairs,
and then combine the new sub-model with other
sub-models into the conventional framework. The

181

over-fitting problem of the new scalable sub-model
is well tackled by MIRA. The scalable training
(MIRA) of the new sub-model and the standard
training (MERT) of conventional framework are
unified into an interactive training process.

In the following, the previous approaches to
translation modeling are reviewed in Section 2.
Then we will elaborate the unified translation
modeling, the unified training framework and the
details of the scalable training methods in Sections
3, 4, and 5 respectively. Experiment result and
analysis are given in Section 6.

2 Translation Modeling

The task of translation modeling can be defined as,
given a bilingual training corpus, the search of the
optimal set of translation pairs with two goals:

1) Explanatory capacity: i.e. the training data
can be fully represented by the translation
pairs.

2) Generalization capacity: i.e. the translation
pairs can also predict the correct translation
given unseen source input. In other words,
the translation pairs can avoid over-fitting.

The conventional approach to translation model-
ing comprises three steps (Och, 2003): Firstly, the
sentence pairs in training corpus are aligned at
word level. Secondly, translation pairs are extract-
ed using a heuristic method. Lastly, MLE is used
to compute translation probabilities. There are a
few shortcomings of this method: 1) Inconsistent
format of translation knowledge: word alignment
in training vs. translation pairs (phrase pairs) in
decoding. 2) The training process is not oriented
towards translation evaluation metric: BLEU is not
considered in the scoring of translation pairs. 3)
This method may cause over-fitting: it is not con-
sidered whether the phrases are extracted from a
highly probable phrase alignment or from an un-
likely one.

To unify the format of translation knowledge,
Marcu and Wong (2002) proposed a phrase-based,
joint probability model with EM training to do di-
rect phrase alignment of training data. Since this
method suffers from over-fitting, subsequent re-
searchers introduced prior into the generative pro-
cess: Blunsom et al. (2008) and DeNero et al.
(2008) proposed to use dirichlet processing to do
structure alignment with sampling training. How-
ever, it is still very difficult to integrate various

kinds of features, and the model cannot be opti-
mized for SMT performance directly.

To integrate various kinds of features and opti-
mize translation sub-model regarding BLEU di-
rectly, Deng et al. (2008) proposed a
discriminative phrase extraction method with data-
driven features to capture the quality and confi-
dence of phrases and phrase pairs. The feature
weights are optimized jointly with the translation
engine to maximize the end-to-end system perfor-
mance. Huang and Xiang (2010) further proposed
the use of annotated alignment results to extract
annotated translation pairs which are used as train-
ing samples for discriminative model training.
DeNero and Klein (2010) also used annotated
alignment results in a similar way using MIRA
training with precision and recall of the translation
pairs as training objective (not BLEU-oriented).
Such models may still suffer from over-fitting, as
the features used may not be powerful enough to
separate highly probable translation pairs from un-
likely ones.

yu bei han
you bangjiao

have diplomatic relation
with North Korea 0.05

yu X1 you X2 have X2 with X1 0.5

bei han North Korea 0.4

bangjiao diplomatic relation 0.1

0.02

(a)

(b)

(c)

yu bei han you bangjiao

have diplomatic relation with North Korea

Figure 1. An example for over-fitting

Unlike explanatory capacity, generalization ca-
pacity is not well studied for discriminative models
(Dirichlet processing is a good choice to handle
over-fitting for generative translation modeling). In
Figure 1, the sentence pair: "yu bei han you
bangjiao"/"have diplomatic relation with North
Korea" has two alternative explanations: 1) this
sentence pair is generated by only one translation
pair, as shown in (b). 2) this sentence pair is gener-
ated by the combination of three translation pairs,
as shown in (c). An over-fitted model prefers long
translation pairs, and thus overestimates their
probabilities while underestimating those of short
ones. Such model will fail to generalize on unseen
data, such as "yu riben you jingmao guanxi"/"have
trading with Japan".

182

The only solution to over-fitting for nearly all
discriminative translation modeling approaches is
the length constraint to the source and/or target
side of translation pairs. That is, the long transla-
tion pairs, which have weak generalization capaci-
ty, are simply filtered away. This solution,
however, also discards long but useful phrases like
"I would like to have".

Blunsom et al. (2008) used a discriminative la-
tent variable model with each translation pair as a
feature and a regularization to deal with over-
fitting, and in order to incorporate language model,
sampling method is adopted for training. Wuebker
et al. (2010) used leaving-one-out (L1O) to deal
with over-fitting and forced alignment to deal with
the errors introduced by incorrect word alignment.
The basic idea is to use the trained SMT decoder to
re-decode the training data, and then use the de-
coded result to re-calculate translation pair proba-
bilities. Since the correct target sentence (i.e. the
target side of training data) is not guaranteed to be
generated by SMT decoder, forced alignment is
used to generate the correct target sentence by dis-
carding all phrase translation candidates which do
not match any sequence in the correct target sen-
tence. Since only the correct target sentence can be
generated, language model is useless during decod-
ing, so the weight for language model is set to be
zero. Leaving-one-out (L1O) estimation is com-
puted in the following way: For a sentence pair

, firstly, is removed from the training
data, and a translation sub-model is
trained on the remaining data. Then the partial
count1 for translation pair extracted from

 is defined as the translation probability giv-
en by . The final translation sub-model
is calculated using MLE based on this partial count.

3 Unified Translation Modeling

Purely discriminative model (PDM) is widely used
to integrate various kinds of features into a linear
framework, including sub-model features (such as
language sub-model and conditional translation
probabilities) and fine-grained features (such as
translation pairs) (Liang et al., 2006; Arun and
Koehn, 2007; Chiang et al., 2008). The weights of
the sub-model features cannot be reliably tuned,

1 In conventional pipeline, partial count means the exact num-
ber of translation pairs extracted from a sentence pair.

since the very few sub-model features are over-
whelmed by the huge number of fine-grained fea-
tures. Moreover, each sub-model feature
corresponds to a particular kind of knowledge,
while the fine-grained features are simply indicator
features of the same kind of knowledge (viz. trans-
lation sub-model). Therefore it is inappropriate to
handle them in a single training process. We intro-
duce a new sub-model which integrate all the indi-
cator features, and then combine the new sub-
model with other sub-model features into the con-
ventional framework, so that the explanatory ca-
pacity of the indicator features can be maintained
and the weights of the sub-models can be balanced.

Based on the linear framework and the conven-
tional sub-models:

we introduce a new purely discriminative transla-
tion sub-model :

 (1)

where is the source sentence and and are
the translation candidates. is the original sub-
model vector. is the weight vector for and .
The whole model (equation (1)) is called unified
translation model (UTM). is trained with
BLEU, and is defined as:

 (2)

where is the feature vector, and here we use all
the pairs in the translation table. is the feature
weight vector for .

There are two reasons to take all translation
pairs as features Translation pairs are the primary
objects in SMT decoding. It is much better to make
the training process directly alter the value of each
translation pair rather than through mediation of
data-driven features (such as features used in Deng
et al. (2008)). Using translation pairs as features
also allows training method to affect the pairs di-
rectly so as to handle over-fitting, and punish the
incorrect translation pairs generated by word
alignment errors.

Note that in equation (1), there are only a small
number of sub-models, and the sub-model weights
in this linear framework can still be tuned by
MERT over a small development dataset. In equa-
tion (2), however, there are a huge number of fea-

183

tures, and their feature weights can only be trained
by scalable method over the entire training data
(Chiang, 2008). The complete training dataset is
used to train . In our unified framework, we
can combine the MERT and scalable training with
a huge number of features, and also use both train-
ing data and development data to improve SMT
performance.

4 The Unified Training Framework

We train by MERT and by three scalable
training methods, which are further discussed in
section 5. MERT and scalable training are unified
into an interactive training process, as shown in
Figure 2.

Algorithm Interactive Training
INPUT: Training data ; Develop data

OUTPUT: and
1: while(BLEU on is improved)
2: fix , and train using scalable method on
3: fix , and train using MERT on
4: Return and

Figure 2. Training method for UTM

Given initial and , we first fix and train
using scalable method on training data , then
we fix the new and update using MERT on
development data . MERT and scalable
training continue interactively until translation per-
formance is not improved on development data

. We use 0 as initial and the trained sub-
model weights (using MERT) as initial . Our
scalable training methods are based on the n-best
translation candidates of . Since the n-best lists
nearly never use all the features (translation pairs),
multiple iterations of scalable training are needed
for a stable stagnation point of feature weights.

5 Scalable Training for

Scalable training methods (Perceptron, MIRA and
OWL-QN) are used to train the purely discrimina-
tive translation model with large number of
features. In order to optimize SMT performance,
the scalable training tunes the weights to push
the best translation candidate upward to be the first
one in n-best list according to equation (1).

In order to perform scalable training, the n-best
candidates should be ranked according to the simi-
larity with the correct target sentence. BLEU is the
most natural choice to be the similarity measure as

it is also the ultimate evaluation criterion. However,
BLEU is a document-level metric rather than sen-
tence-level. Accordingly, this paper adopts the sen-
tence-level approximated BLEU proposed in
Chiang et al. (2008) 2. The re-ranked best-1 list is
called for the training data in
the following. This ranking process of the n-best
candidates is referred as oracle ranking.

5.1 Perceptron

Perceptron (Rosenblatt, 1962) is an incremental
training procedure (i.e. stochastic approximation)
which optimizes a minimum square error (MSE)
loss function. Here, we use the average perceptron
(Collins, 2002) for our scalable training, which is
shown to be more effective than the standard one.
The update rule on an example is:

 (3)

where refers to the ith source sentence in training
data, refers to the oracle candidate and re-
fers to the best translation candidate for (in
equation (1)). is the feature vector of the trans-
lation candidate (in equation (2)). is the feature
weight for training in purely discriminative transla-
tion sub-model (in equation (2)).

Algorithm Perceptron

INPUT: Training data: ; Initial sub-model
weights: ; Initial weights:

OUTPUT: Trained weights:
1: while(BLEU is improved)

2: decode to acquire the n-best results with
 and , compute BLEU

3: get oracle set from using oracle
ranking method.

4: while(BLEU is improved)
5:
6: for each () in (F, ,)
7: if(!=)
8:
9: else do nothing
10
11: re-rank with w, and compute BLEU
12: Return

Figure 3. Perceptron for

The average perceptron algorithm for our scala-
ble training is listed in Figure 3. The training starts
with the n-best candidates from an initial and

2 We also try the method in Watanabe et al. (2007), and it was
found that the method made scalable training unstable in our
frame work.

184

(line 2). Then, with the oracle results from oracle
ranking (line 3), average perceptron is applied to
update until BLEU reaches stagnation point be-
fore re-decoding the training data (line 5-11). Fi-
nally, we perform re-decoding of the training data
with the updated , and run perceptron again until
it reaches stagnation point. Note that the trained
weight vector should be used as the initial
weight vector for the next perceptron training
(line 6), otherwise, the weights for the features
which are not used in the new n-best list will be
trained to be 0, even though they are harnessed in
the n-best lists in previous loops and the trained
model will be unstable.

5.2 MIRA

MIRA is widely used for various NLP tasks, espe-
cially for parsing (McDonald et al., 2005) and
SMT (Watanabe et al., 2007; Chiang et al., 2008).
This paper also uses MIRA to train our pure dis-
criminative translation sub-model . The gist of
MIRA is to keep the norm of the updates to the
weight vector as small as possible, while maintain-
ing a margin larger than the loss (BLEU is used to
compute loss in equation (5)) of the incorrect clas-
sification. The updated rule is to update to the
value of which minimizes:

 (4)

where is a positive parameter which controls the
influence of the slack term on the objective func-
tion and it is set to be 0.01 here. is the (sentence)
BLEU loss of the best candidate 3 compared
with the oracle result for the ith source sentence

:

 (5)

and is computed by:

By solving equation (4) using the Lagrange dual
form, we can get the update rule on sample :

 (6)

3 We find prediction-based (PB) and max-loss (ML) (Cram-
mer et al., 2006) can achieve similar performance in our
framework and we use PB for efficiency.

where

The final training process is also a perceptron
like training by replacing the update equation (3)
with the new update equation (6).

5.3 OWL-QN

We try to add regularizer to enhance the gener-
alization of . To optimize with is not
very easy since its gradient is discontinuous when
some weights are equal to zero. Andrew and Gao
(2007) described an estimation method with a
modified L-BFGS called OWL-QN (orthant-wise
limited-memory quasi-newton), and this method
can effectively handle the discontinuous gradient.

OWL-QN forbids any two consecutive points
forming a line passing through zero, and it uses L-
BFGS to approximate the Hessian matrix with .

Algorithm OWL-QN
INPUT: Training data: ; Model weights: ; Initial

weights:
OUTPUT: Trained weights:

1: ={};
2: while(BLEU is improved)

3: decode to acquire the n-best results with
 and , compute BLEU

4:

5: build the positive/negative samples with
using oracle ranking method

6: train with OWL-QN
7: Return w

Figure 4. OWL-QN for

Optimization is challenging when expending
BLEU with as loss function, and here, we use
logistic loss instead. The training process using
OWL-QN with logistic loss is shown in Figure 4.
When we get the n-best candidates for (line 3),
we add them to the candidate pool (line
4). Each iteration adds extra samples to ,
so that more feature weights could be updated. We
adopt the oracle ranking method to rank ,
and the top half candidates in are used as
the positive samples and the left as the negative
samples (line 5). At last, we use OWL-QN to op-
timize using the positive and negative samples
(line 6).

185

6 Experiment

The experiments evaluate the performance of our
model and training methods in a Chinese-English
setting. Translation performance is evaluated by
case-insensitive BLEU4.

Our decoder is a state-of-the-art implementation
of hierarchical phrase-based model (HPM) (Chiang,
2007) with standard features, including language
sub-model, translation sub-model, etc. Our 5-gram
language model is trained from the Xinhua section
of the Gigaword corpus. FBIS newswire corpus is
our training data, which is used to extract transla-
tion pairs and train the scalable feature weights
in equation (2). The translation pairs are extracted
as in Chiang (2007) from word alignment matrixes,
which are generated by running GIZA++ (Och and
Ney, 2003) in two directions, and then symme-
trized using the grow-diag-final method (Koehn et
al., 2003). The idea of unification of MERT and
MIRA in UTM is evaluated against PDM, which
uses the same features as in UTM. The generaliza-
tion capacity of UTM using MIRA (UTMMIRA) is
evaluated against three baselines, viz. leaving-one-
out (L1O), UTM using Perceptron (UTMPERC) and
UTM using OWL-QN (UTMOWL).

The NIST’05 test set is used as our development
dataset to tune the sub-model weights in equation
(1) and the NIST’06 and NIST’08 test sets are used
as our test sets.

6.1 Explanatory Capacity

As mentioned in section 2, one of the goals of
translation modeling is to well represent the train-
ing data. Here we use BLEU for training data as
the measure of explanatory capacity. In the first
experiment, we measure the explanatory capacity
of trained by three scalable training methods.
The baseline results are HPM, PDM and L1O,
shown in Table 1. PDM can get a much better
BLEU score on training data compared with other
two baselines. The reason may be that BLEU on
the training data is the objective function during
the PDM training.

System HPM PDM L1O
BLEU on Training 22.94 24.72 24.19

Table 1. Explanatory capacity of baselines

All three scalable training methods are not guar-
anteed to improve BLEU in any iteration of train-

ing phase on the training data. In fact, we found
that after 10 iterations, the performance (in BLEU)
becomes unstable, so in our experiments we only
run the scalable training for 10 iterations on the
whole training corpus. Table 2 shows BLEU of the
10 iterations of the three training methods. The n-
best size for scalable training is 50. All three scala-
ble training methods can significantly improve the
SMT performance on training data. UTMPERC and
UTMMIRA get almost the same performance on
training data (as they share the same framework),
while UTMOWL is slightly worse.

Iteration UTMPERC UTMMIRA UTMOWL
0 22.94 22.94 22.94
1 24.93 24.95 22.33
2 24.62 24.61 23.59
3 25.33 25.45 23.61
4 25.1 25.56 24.16
5 25.45 25.58 24.07
6 25.57 25.59 24.33
7 25.71 25.63 24.45
8 25.67 25.68 24.53
9 25.67 25.70 24.51

Table 2. BLEU for the 10 iterations on training
dataset

The reason why UTMOWL cannot improve
BLEU as significantly as the other two methods
could be the loss function we used, which is lo-
gistic loss (not BLEU). UTMOWL treats translation
as binary classification and uses half of the candi-
dates with higher BLEU as positive samples, while
the other half as negative. Binary classification is
simply inconsistent with the scaling nature of
BLEU.

There are 1,165,405 features (translation pairs)
in the end-to-end translation sub-model, and
243,840 features used by the best output (the best
candidate for each source sentence in training data)
of the baseline system. We distinguish the features
used for training (#Feature of Used, the features
those have an opportunity to be trained) from the
features whose weights are not trained to be zero
(#Feature of Trained) in Table 3. Note that, there
are a large number of the pairs which are never
used in the n-best lists, so the weights for them will
always be zero. It is not surprising that UTMOWL
leads to much more features, because UTMOWL can
use all the candidates in the n-best lists to update
the weights, while Perceptron and MIRA can only

186

use two candidates (the best one and the oracle) of
the n-best list for each source sentence in training
data.

#Feature UTMPERC UTMMIRA UTMOWL
Used 507,403 513,327 578,625

Trained 483,220 474,054 557,701

Table 3. Numbers of features after training

6.2 Translation Performance

We compare the scalable training methods on test
datasets against the baselines of HPM, PDM and
L1O. The results are shown in Table 4.

 Nist’06 Nist’08
HPM 30.54 22.51
PDM 30.97 23.34
L1O 30.63(+0.09) 23.23(+0.72)

UTMPERC 31.06(+0.52) 22.95(+0.44)
UTMOWL 31.10(+0.56) 23.52(+1.01)
UTMMIRA 31.49(+0.95) 23.91(+1.40)

Table 4. Final results on test datasets

L1O improves the performance on Nist’08 but
not significantly on Nist’06. Since both UTMPERC
and UTMMIRA get almost the same performance on
training data, and UTMMIRA outperforms UTMPERC
on the two test datasets a lot, it is confirmed that
UTMMIRA is better in generalization capacity4 (to
be deeply analyzed in the next section). UTMOWL
with logistic loss is not very good on Nist’06,
while it significantly improves the performance on
Nist’08. UTMMIRA gets larger improvement than
other methods. Note that the BLEU differences
between UTMMIRA and the three baselines are sta-
tistically significant (Koehn, 2004). Compared
with PDM, UTMMIRA achieves a better improve-
ment, and also the training time of our method (34
hours, for UTMMIRA, UTMPERC and UTMPERC)5 is
much shorter than that of PDM (119 hours) 6 .

4 This observation is contrary to that in Arun and Koehn
(2007), which shows perceptron and MIRA get comparable
results on a small in-domain training (one-eighth of our train-
ing dataset) and test datasets.
5 The most time-cost step is the decoding of the training data,
and the time of scalable training is almost the same for
UTMMIRA, UTMPERC and UTMOWL
6 Our experiments were run on a machine with 16 CPU cores
(each 2520MHz) and 32G RAM. No distributed computing
was involved; instead the system is speeded up by multi-
threading (16 threads).

Similar with MERT, the MIRA training for PDM
needs to decode the training data iteratively, and it
took 20 cycles before convergence. In contrast,
UTM requires took only 5 cycles.

6.3 Generalization Capacity

The Nist’08 evaluation set is a mixture of news-
wire text and web text. 691 sentence pairs in
Nist’08 are in the same domain with the training
data (newswire), while the rest sentence pairs (web
data) are not. We evaluate these two portions sepa-
rately to confirm the better generalization capacity
of our method. The results are shown in Table 5.

 Nist’08(News) Nist’08(Web)
HPM 27.70 15.49
L1O 28.48(+0.78) 15.91(+0.42)

UTMPERC 28.11(+0.41) 15.87(+0.38)
UTMOWL 28.47(+0.77) 16.72(+1.23)
UTMMIRA 28.84(+1.14) 17.14(+1.65)

Table 5. Evaluation for News/Web portion

It is obvious that L1O performs not very well on
out-of-domain data. UTMOWL performs better on
web portion (1.23) than on news portion (0.77).
For L1O, the improvement regarding out-domain
data (0.42) is not significant, which means L1O
performs not very well in generalization capacity.
For UTMPERC, performance is not improved signif-
icantly on both parts. The improvement of
UTMMIRA on web text (1.65) is much larger than
that of UTMPERC (0.38). The better performance on
out-of-domain data confirms the better generaliza-
tion capacity of UTMMIRA. UTMMIRA also improves
significantly on news data (1.14).

7 Conclusion

In order to handle the inconsistence between trans-
lation modeling and decoding, we propose a new
discriminative translation sub-model, which is op-
timized with the same criterion as the translation
output is evaluated (BLEU). The new translation
sub-model uses all translation pairs in the transla-
tion table as features, and avoids over-fitting by
MIRA training. MIRA for the new sub-model and
MERT for the conventional framework are unified
into an interactive training process. The unification
of MIRA and MERT under our new framework
can help the training process to achieve a better
stagnation point. Our framework achieves better

187

performance than the state-of-the-art baseline and
purely discriminative model. Within our frame-
work, we also confirm the better generalization
capacity using MIRA than perceptron as the scala-
ble training method.

In the future, we will try to compare the effect of
different kinds of regularizers (and) for the
over-fitting problem of translation modeling, and
we will also try to add new scalable distortion sub-
model and language sub-model in the same way as
the new added translation sub-model.

References
Galen Andrew and Jianfeng Gao. 2007. Scalable Train-

ing of L1-Regularized Log-Linear Models. In Pro-
ceedings of ICML.

Abhishek Arun and Philipp Koehn. 2007. Online Learn-
ing Methods For Discriminative Training of Phrase
Based Statistical Machine Translation. In Proceed-
ings of MT Summit XI.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Del-
la Peitra, Robert L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Esti-
mation. Computational Linguistics, 19(2): 263-311.

Phil Blunsom and Miles Osborne. 2008. Probabilistic
Inference for Machine Translation. In Proceedings of
EMNLP.

Phil Blunsom, Trevor Cohn, Chris Dyer and Miles Os-
borne. 2009. A Gibbs Sampler for Phrasal Synchro-
nous Grammar Induction. In Proceedings of ACL
and IJCNLP. Pages: 782-790.

David Chiang. 2007. Hierarchical Phrase-based Trans-
lation. Computational Linguistics, 33(2).

David Chiang, Yuval Marton and Philip Resnik. 2008.
Online Large-Margin Training of Syntactic and
Structural Translation Features. In Proceeding of
ACL. Pages: 224-233.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
EMNLP. Pages:111-118

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2003. Online
passive aggressive algorithms. In Proceedings of
NIPS.

John DeNero, Alexandre Bouchard-Cote and Dan Klein.
2008. Sampling Alignment Structure under a Bayesi-
an Translation Model. In Proceedings of ACL and
HLT. Papers: 25-28.

John DeNero and Dan Klein. 2010. Discriminative
Modeling of Extraction Sets for Machine Translation.
In Proceedings of ACL. Pages: 1453-1463.

Yonggang Deng, Jia Xu and Yuqing Gao. 2008. Phrase
Table Training For Precision and Recall: What
Makes a Good Phrase and a Good Phrase Pair. In
Preceedings of ACL. Pages:81-88.

Fei Huang and Bing Xiang. 2010. Feature-Rich Dis-
criminative Phrase Rescoring for SMT. In Proceed-
ings of COLING, Pages: 492-500.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
EMNLP, Pages: 388-395.

Percy Liang, Alexandre Bouchard-Cote, Dan Klein, and
Ben Taskar. 2006. An end-to-end discriminative ap-
proach to machine translation. In Proceedings of
COLING and ACL, Pages:761-768

Daniel Marcu and William Wong. 2002. A Phrase-
Based, Joint Probability Model for Statistical Ma-
chine Translation. In Proceedings of EMNLP, Pages:
133-139.

Ryan McDonald, Koby Crammer and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceeding of ACL. Pages: 91-98.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1): 19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of
ACL, Pages: 160-167.

Franz Josef Och and Hermann Ney. 2003. The Align-
ment Template Approach to Statistical Machine
Translation. Computational Linguistics, 30(4): 417-
449.

Stephan Vogel. 2005. PESA: Phrase Pair Extraction as
Sentence Splitting. In Proceedings of MT Summit.

Taro Watanabe, Jun Suzuki, Hajinme Tsukada and
Hideki Isozaki. 2007. Online Large-Margin Training
for Statistical Machine Translation. In Proceeding of
EMNLP. Pages: 764-773.

Joern Wuebker, Arne Mauser and Hermann Ney. 2010.
Training Phrase Translation Models with Leaving-
One-Out. In Proceeding of ACL. Pages: 475-484.

Hao Zhang, Chris Quirk, Robert Moore, and Daniel
Gildea. 2008. Bayesian learning of non-
compositional phrases with synchronous parsing. In
Proceedings of ACL, Pages: 314-323.

188

