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Résumé. Dans cet article nous présentons une série d’adaptatioregiarithme du "cadre d’apprenstis-
sage guidé" pour résoudre différentes taches d'étiquetagepécificité du systéeme proposé réside dans sa capa-
cité a apprendre I'ordre de l'inférence avec les paramétnedassifieur local au lieu de la forcer dans un ordre
pré-défini (de gauche a droite). L'algorithme d’entrainatresst basé sur I'algorithme du "perceptron”. Nous ap-
pliquons le systeme a différents types de taches d’'étigegtaur atteindre des résultats au niveau de I'état de I'art
en un court temps d’exécution.

Abstract. In this paper we present a series of adaptations of the Guidaching framework to solve
different tagging tasks. The specificity of the proposedesysslies in its ability to learn the order of inference
together with the parameters of the local classifier instéddrcing it into a pre-defined order (left-to-right). The
training algorithm is based on the Perceptron Algorithm.apply the system to different kinds of tagging tasks
reaching state of the art results with short execution time.

Mots-clés : Bidirectionnel, Classification de Séquence, Apprentissagidé.
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1 Introduction

The system described in this paper carries out tagging teithksemi-supervised training.We extend to the Guided
Learning (GL) framework presented in (Shenhal, 2007). This approach has been applied in the past to POS
tagging task with excellent results. One of the aims of thisgy is to show that GL can be adapted to solve a wide
set of tagging and chunking tasks obtaining good performanith short execution time. This framework is more
complex than supervised learning. The system can learrattaareters for the local classifier from gold standard
labels, but has no indications on the order of inferenceirBahe learning algorithm on the Perceptron scheme
allows one to keep a low system complexity and moderate ¢éxectime, without sacrificing learning capability
and quality of the results. Compared to other systems treaauRerceptron algorithm, such as (Collins, 2002),
GL introduces a bidirectional search strategy. Insteadiifig the order of the tagging in a left-to-right fashion,
any tagging order is allowed. GL follows an easiest-firstrapph and incorporates the learning of the order of
inference in the training phase. In this way right-contend didirectional-context features can be used at little
extra cost. In a direct comparison with (Collins, 2002) wewslthat it is possible to achieve better accuracy with
shorter execution time allowing the inference order to keslfmted by the system instead of using an exhaustive
search strategy.

We test the effectiveness of this approach applying it téedéht tagging tasks, taking part in shared tasks or
experimenting on widely used corpora, this allows us to nsas@mparison between our system and the state of the
art. The tasks we focus on are : Part of Speech Tagging, Notas@IChunking, and Named Entity Recognition.
NP chunking and NER are defined as chunking tasks, but faliptfie general guidelines of (Ramshaw & Marcus,
1995) we can solve these problems as tagging tasks. For thkicly tasks, we apply a voting system between
multiple data representations of text chunks (Shen & SagG5).

2 Bidirectional Guided Classification

The input of the Inference Algorithm is a sequence of tokgns- - - ¢,,. For each token;, we have to assign a
labell; € L, with L being the label set. A subsequerge - ¢; is called a span, and is denoted;]. To each span
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s is associated a set of hypothegés and each hypothesis € H, is composed by a sequence of lengtfover
L.

Spans are started and grown by means of tagging actionse kimds of actions are available : it is possible to
start a new span by labeling a token which doesn’t have anteggror expand an existing span by labeling a
token adjacent to the span, or merging two spans by labdladgaken between them. In this last case, the two
originating spans become subsequences of the resultimg apd the labeling action of the token between the
spans use both right and left context information. In outesysa trigram model is used. So if the sgary] has
already been tagged, we can use its hypothesized two lefidaoylabelg!;, [, 1) as right context when choosing
the label for the token;_;.

For each hypothesis associated with a span we maintain its most recent tagging actiofh), and the hypo-
theses, if any, that have been used as left comtét) and right contexk..(h). h;(h) is the top hypothesis among
the hypothese#; that are compatible with the left context used by the taggittipn ; and similarlyz,.(h) is the
top hypothesis among the hypotheggsthat are compatible with the right context used by the taggution. The
score function for hypotheses is computed in a recursiiidasadding the score of the tagging actiétu(h))

to the scores of the left contekt(h;(h)) and right context’ (h.,.(h)) hypotheses :

V (k) =V (hi(h)) + V(hy(h)) + U(a(h)) (1)

The score of the tagging acti@i(a(h)) is computed through a linear combination of the weight veetand the
feature vector of the actiofi(a(h)) :

Ula(h)) = w- f(a(h)) )

We define the top hypothesig for a spans to be the hypothesis if/; with highestl/(h) score. So at each step

of the algorithm we keep two kind of score#/{-) the score of an action represents the confidence for the next
labeling action, and (-) the score of a hypothesis represents the overall qualitpaftal result. The selection for
the next tagging action directly depends on the score ofdhiera On the other hand, the score of the hypothesis
is used to maintain the top partial results for each spane@oge the search space explored during inference
we apply a beam search strategy. For each span we consigeher®® hypotheses with highest scov&h). So

in the worst case the computation of the top B hypotheses f@wnaspan involves the scoring of every possible
combination of the most recent action, left context, antitrapntext, for a complexity ob (B?|L|).

Algorithm 2 Guided Learning
for (i «+ 1;4 < I;i++) do
for (r + 1;7 < R;r++) do

Algorithm 1 Inference Algorithm
initialize the set of accepted spans S;
init@alize the queue of candidate spans Q ; initialize the set of accepted spafis
Wh!sa(r?f 0) do . initialize the queue of candidate spa@s
S <— argmaxsEQ alng ) Whlle do
updateS with s’ ; (@ #0)

spans’ Ula(h)));
updateQ with s’ andS'; pans’ « argmax ¢, U(a(hs))

if hl, = gold then

updateS with s’ ;
1] [w_s],[w_1],[wo].[wi].[wa].[w—_1,wo],[wo,w:] updateQ with s’ ands';
2 [1-2], [1-1], [1-2.0-1], else
[1_2,wo], [I—1,wol, [1—2,1_1,wo] promote(w, f(gold));
3| [L], [l2], [ll2], [l,wol, [l2,wol, [11,l2,wol demote(w, f(a(h)));
4 [l-1,01], [1-1,l1,w0] TA OWTA

(Dell’Orletta, 2009) | 96.34% | 91.07%

TABLE 1: Context feature templatesl) word features,
GL (Gesmundo, 2009b) 95.85% | 91.41%

2) left context features}) right context featurest) bidi-
rectional features.

TABLE 2: Top two systems in Evalita 2009 POS task.

Algorithm 1 describes the Inference Algorithm. The tokequsencet; - - - t,,, the beam widthB and the weight
vectorw are provided as input. The algorithm works using two groupspans :S is the list of accepted spans,
and @ is the a queue of candidate spans. At the beginning of theeinée algorithm,S is initialized with the
empty set, and) is filled with candidate spans, | for each tokert; ; to these spans are associated thbest
hypotheses consisting of a single tagging action, with ntexd, associating a labéle L to ¢;. This provides
the set of starting hypotheses. The loop of the algorithreatglly selects a candidate spafrom (), so that its
top hypothesig?, has the highest tagging action scéfé(-)). Thus we pick the span that results from the next
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tagging action we are most confident about. Then westseupdateS andQ. First we updates, addings’ and
removing the spans included éh Then letS— be the set of spans removed frémWe updat&) replacing each
span adjacent te’ or which takes as context one of the span§inwith a new candidate span takisgas its
new context. The algorithm terminates whegmontains a single span covering the whole token sequenc&and
becomes empty. The loop is guaranteed to terminate sin@ehtieration a span is expanded or addefl,iand
considering thats' cannot have overlapping spans we can conclude that the mwhiterations needed is linear
with the size of the token sequence.

Algorithm 2 is the pseudocode for the Guided Learning Altjonithat learns the weight vecterwith a Perceptron-
like Approach. A set of input samplegg7;, L,)}1<r<m iS provided as input. To each token sequefite=
(t1,t2,---t,) is paired a gold standard label sequence of the same Iéngth (11,1, - - - ,1,). We provide also
the beam widthB and the number of iterations Before processing every input samglg., L,.), we initialize

S and@ as we do in the inference algorithm. Then we iterate selgetifrom @), so that its top hypothesis!,
has the highest tagging action sc@féu(-)). If the top hypothesis of’ matches the gold standard, we updste
and@ as in the inference algorithm. Otherwise, we update the weigctorw by promoting the features of the
gold standard, and demoting the features(@f’,). Then we use the updated weight veatoio compute the new
scores of the candidate spangjnNote that the update of the weight vectois done in an aggressive fashion.
S will not be updated and the weights are repeatedly modifieitl aicorrect tagging action is chosen from the
gueue of candidate spafs In our implementation we have used the Averaged Percef@oltins, 2002) and
Perceptron with margin (Krauth & Mézard, 1987).

3 Experiments

In this section we describe the set of experiments conddotate different tagging tasks and report and discuss
the results. For all the tasks we set the beam wiglth 3, as a trade-off between speed and accuracy. In Table 1
we report a basic set of context feature templates that weowseploit the bidirectional context window over the
labels and words. The basic set of lexical features confaimgions to detect the presence of special characters
as digits or hyphenation, prefixes and suffixes up to lengthafaracters, and capitalization pattern of the word
in relation to the capitalization on context words. We uss fasic set of contextual and lexical features as base
to be adapted for the different tasks.

For the chunking tasks (NER and NP Chunking), we appliediagalystem between multiple data representation
of text chunks, following (Shen & Sarkar, 2005). We consifigfifferent data representations for text chunks :

IOB1; I0B2; IOEL1; IOE2; O+C. We generate 5 versions of thepogt one for each text chunk representation.
Then we train one instance of system on each of the five vexsitthe corpus. As final step we generate 5 different
predictions for the test set from each of the five represiemaipecific systems, and merge the predictions with
a majority vote. Differently from (Shen & Sarkar, 2005) wesasiate the votes to chunks instead of associating
them to the single labels. This enforces more consistendyemutput label sequence resulting from the voting

system, and improves accuracy of results.

For some tasks we apply the semi-automatic technique togensew feature templates described in (Gesmundo,
2007). This technique is based on iterations. During eamfatibn we aim to select the feature template that
added to the current set of features will give higher perforoe improvements than any other candidate. The
heuristic function is based on short experiments of 3 tngrriounds on a development set for each candidate
feature. The value returned by the heuristic is based oneadinombination of parameters resulting from this
short experiments, liké, or entropy of the distribution of the new features genetaléhe search space of
candidate feature templates is restricted with hand writtnstraints on the size of the feature template or on the
number of different types of labels taken in consideration.

3.1 POS Tagging on Wall Street Journal Corpus

In (Shenet al, 2007) the GL framework has been tested on the POS Taggikgtathe Wall Street Journal
corpus, annotated with Penn Treebank tag-set. This is a8melatd data-set for POS on English corpus. For this
experiment we use the basic feature set. On this corpus gtemsyachieves an error rate of 2.67%, this result is
recognized to be the state of the art result for POS taggirtgngtish.
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3.2 POS Tagging on Evalita 2009 Corpus

For the Evalita 2009 POS Tagging shared task, we used a cofg04 3 sentences extracted from an Italian news
paper, and tagged with the Tanl tag-set consisting of 3284dalkach label consists of a combination of lexical
and morphological features.

Considering the fine grained structure of the tag-set usedntsroduced a new kind of context feature that consi-
ders just the prefix of the actual POS tag, excluding the nadgglical information encoded in the last part of the
label, this led to a 3% relative error reduction. We also s#fed the treatment of the capitalization pattern of the
first word of the sentence obtaining a relative error redunctif 0.9%.

In Table 2 we report the results for the top two systems in thal fiank of the EVALITA 2009 POS shared
task. GL is the only single system among the top performaesother models are based on the combination
of multiple systems. For example, the top ranking (Dell&dd, 2009) proposed a combination of 6 different
single models. We can also notice that the Guided Learnipgoagh obtained the best result on the Unknown
Words Tagging Accuracy (UWTA). We consider this as a coneaqa of the freedom in the inference order :
as explained earlier, the Guided Learning approach follawegging order based on an easiest-first heuristic, so
difficult labeling decisions (as is the case for unknown vgdare postponed, and a label is assigned when more
context is available.

We recorded short execution times despite the large tag4set20 rounds of training were completed in 12 hours,
and the prediction of the test set was done in 2 minutes. Quhie training phase 1M features were generated.

3.3 Named Entity Recognition on CoNLL2003 Corpus

The experiments for NER on English are executed on the CoNM32lata-set, this dataset is based on the
Reuters Corpus, consisting on a total of 20717 sentenceactad from news articles. The corpus is annotated
with 4 NE classes : Person ; Organization; Location ; Misgebus. As additional input data were provided POS
and Syntactic Chunk labels.

To exploit the Syntactic Chunk tags we added 3 feature teieplaanually selected to the basic features set, these
features are reported in Table 3 line 6, adding these featedelo a relative; improvement of 3.21%. Then we
preprocessed the Syntactic Chunk tags removing all thekshdifferent from the Noun Phrase Chunks. With the
idea that all the NE chunks are contained in a Noun Phraseviegnthe useless information should reduce noise
in the decoding phase. Our intuition was confirmed kiy; aelative improvement of 0.38%. At this point we tried

to add manually selected context features that exploit tb8 Bigs information, but any candidate added to the
feature set resulted in a performance decrement. So weeatktidesort to the semi-automatic feature selection
technique to find new feature templates that exploit POSdagsS\P chunks tags. These automatically selected
feature templates are reported in Table 3 line 7 and 8. Aditiese feature resulted in a relatik¥e improvement

of 1.09%.

As external data for the final experiment we used gazetteghs Mk names of organizations, 42k names of
locations and cities, 38k English proper names, and 7k és@ous named entities. Comparing our performances
with the CoNLL rank we can see that our system surpasses itiiebibst result. In Table 6 we report our best
result , along with the two systems that perform better aGbBLL 2003 task. (Chieu & Ng, 2003) uses global
features, extracting information about words in same deamnin(Florianet al, 2003) applies a combination of

4 different NER systems. Even if our system uses only locatuiees, small gazetteers and no combination of
different systems, it was able to reach a competitive resuttpared to the CoNLL rank.

Recently (Ratinov & Roth, 2009) recorded the best resulthismdorpus applying to a standard model a rich set
of calibrated features like : wide scope global featurestext aggregation, large gazetteers and word clusters
generated from unlabeled text. As extension of this wonkioitild be interesting to apply these effective features
to the GL approach.

The 13 rounds of training were completed in 2 hours, and tediption of the test set was done in 1 minute.
During the training phase 425k features were generated.
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B
5 | [lo, co], [lo,l-1, co, c—1], [lo.l1, co, c1] 1 (Florianet al, 2003) 88.76
6 [lo, c1, e2], [lo, L1, 11, I, ], 2 (Chieu & Ng, 2003) 88.31
[lo, 11, 1, 2, c-2, ¢, 1, 2, 3 | GL with voting & gazetteery 87.53
7 [loyll,p—l,pl], [l01l11l21p2]y
[l-2 .o, p-1]. [lo, p—2, p-1, po, 1, p2] TABLE 6: Results for the Conll2003 NER.
TaBLE 3: Features added for CoNLL 2003 NER. j2A
(Zanoliet al, 2009) | 82.00
|5] [o,-1], [n—2,m1,l-1], [n—2,n1,02,l1,11]]| GL (Gesmundo, 2009a)) 81.46
(Mehdadet al, 2009) | 81.09

TABLE 4: Features added for EVALITA 2009 NER.
TABLE 7: Top three systems at EVALITA 2009 NER.

5 [w_g, w_l], [wl, ’wg]

6 [p—2],[p—1].[pol,[p1].[p2] P.(%) | R.(%)| I

7 [p,Q,pfl],[pfl,po],[po,pl],[pl,pg] (Shen & Sarkar, 2005) 95.11 | 95.35 | 95.23

8 | [p—2.p—1.p0)i[p-1.po.p1l:[Po.p1.p2] Guided Learning | 94.78 | 94.34 | 94.56
(Sunetal, 2008) | 94.65| 94.03 | 94.34

TABLE 5: Feature templates added for NP Chunking.
TABLE 8: Top three systems known for NP Chunking.

3.4 Named Entity Recognition on EVALITA 2009 I-CAB Corpus

The corpus for the Evalita 2009 NER shared task is composdd ?27 sentences extracted from an lItalian
newspaper, the corpus is labeled with 4 NE classes : Persggan@ation; Geo-political entity ; Location. As
input data were provided POS labels.

In Table 4 are reported the features obtained with the seoir@atic method for feature selection. Adding these
features that use POS information led to a relafivemprovement of 1.1% on the development set. As external
resources, we used gazetteers with 11k names of geogrhjauatons, 49k Italian proper names and names,
14k organizations. The use of external resources led to®6r@lativeF; improvement. After adding the voting
system we recorded a relativg improvement of 0.8% on the development set. In Table 7 wertépe official
score for the two best results for the EVALITA 2009 NER SharFadk. Also in this task GL reached the second
position even if competing with more complex models thatlofggreater amount of external resources.

The 8 rounds of training were completed in 1 hour and a hatf tha tagging of the 4136 sentences of the test set
took less then 2 minutes. During the training phase 500kifeatwere generated.

3.5 Noun Phrase Chunking

The experiments for NP Chunking were executed on the WadleBtrournal Corpus, sections 15-18 (8936 sen-
tences) for the training set and section 20 (2012 sentef@e®sting. This dataset is the standard one for NP
Chunking on English (Ramshaw & Marcus, 1995). For this taskused the same set of contextual feature used
in (Collins, 2002), Collins also uses the same corpus towgreldP Chunking experiments. This allows a direct
comparison between our GL and the HMM-Perceptron systeipgsexd by Collins. To apply the same feature set
we extend the base feature set with those features repaorfble 5. In his best system (Collins, 2002) records
an Iy of 93.53, with the same feature set GL obtains 94.44. Evdreifdollin’s perceptron deploys an exhaustive
search strategy (Viterbi decoding) and our system appliEsaan search approximate inference strategy, the latter
is able to achieve better performance in shorter time. We\rethis improvement is due to the ability of the GL
approach to dynamically learn to predict the order of infiees instead of applying a monotonic order of inference
(left-to-right) as in (Collins, 2002).

In Table 8 we report metrics for our best result obtained witting scheme, and in the same table we report also
the score of the only system that recorded a better perfaengnNP Chunking. We believe that the difference
with the top system (Shen & Sarkar, 2005) is due to the use péeialization technique, that consist in changing
the input and output of the function being learned, enrighire tagset adding POS and lexical information to the
NP labels as proposed in (Molina & Pla, 2002). As an extensfdhis work it would be interesting to adapt such
a technique to the GL approach.
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The 25 rounds of training needed for convergence of the Pemewere completed in 1 hour and 10 minutes,
and the tagging of the 2012 sentences of the test set toolc8Bd& During the training phase 400k features were
generated.

4 Conclusion

In this paper we extended the work on the Guided Learningagmbr, adapting it to a set of tagging tasks, and
applying new features. The evaluation results show thatiee results are reached for all the tasks tested, proving
the ability of the GL framework to adapt successfully toeliffnt tasks and corpora in different languages. We have
shown that GL effectively integrate the order of inferenad Bcal classification in the learning phase. This results
in a good generalization behavior during the decoding phadeallows it to reach good unknown words tagging
accuracy. We have also shown how the ability to learn andigtréiee inference order allows GL to produce better
results in shorter time when compared to the exhaustivesiséeft-to-right Perceptron-like approach of (Collins,
2002). The use of simple but effective training and infeeealgorithms results in moderate execution time. We
have also confirmed the validity of a voting system for déferdata representations for text chunking, applying
and improving with success the work of (Shen & Sarkar, 2005).
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