Principled Induction of Phrasal Bilexica

Markus Saers and Dekai Wu
Human Language Technology Center
Dept. of Computer Science and Engineering
Hong Kong University of Science and Technology
Hong Kong
{masaers|dekai}@cs.ust.hk

Abstract

We aim to replace the long and com-
plicated, pipeline employed to produce
probabilistic phrasal bilexica with a the-
oretically principled, grammar based, ap-
proach. To this end, we introduce a
learning regime to learn a phrasal gram-
mar equivalent to linear transduction gram-
mars. The stochastic version of this new
grammar type also has the property that
the set of biterminals constitute a natural
probability distribution, making it similar
to a probabilistic translation lexicon. Since
we learn a phrasal grammar, we are, in ef-
fect, learning a probabilistic phrasal bilex-
icon. As a proof of concept, we show that
phrasal bilexica, induced in this manner,
can be used to improve the performance of
a traditional phrase-based SMT system.

1 Introduction

The aim of the paper is to show that it is possi-
ble to replace the long and complicated pipeline
that turns a parallel corpus into a phrasal bilexicon,
with a theoretically principled, grammar based ap-
proach. The ultimate aim, towards which this pa-
per is a step, is to eliminate the mismatch between
learning and translation that plagues the statistical
machine translation SMT systems of today.

When phrase-based statistical machine transla-
tion (SMT) systems replaced the token-based, a
significant boost to translation quality was experi-
enced. Rather than having to rely on broad gener-
alizations, the system simply memorizes chunks of
text and their translation. The degrees of freedom

(© 2011 European Association for Machine Translation.

to make errors are thus severely restricted, mak-
ing the system more accurate at the cost of storing
huge amounts of fixed chunks. Since a surface-
based system has no mechanism for generalizing
in a systematic way, this is a good work-around.

Although structured SMT systems are capable
of making generalizations beyond the scope of
surface-based systems, it is also imperative to be
able to handle chunks of text. This is the cor-
rect way to capture phenomena such as figures
of speech, whose translations go beyond the valid
generalizations of the language. However, distin-
guishing between the phrasal biterminals that can
be handled by generalization and the ones that can-
not, is a hard problem. Indeed, finding a can-
didate set of phrasal biterminals is a hard prob-
lem. Naively enumerating all possible phrasal en-
tries found in a parallel corpus and determine their
probability by relative frequency, is doomed to fail
because of the sheer amount of possible phrasal
entries. The same is true for constructing transduc-
tion grammars with phrasal biterminals: the size of
the grammar makes it impossible to handle, which
is why transduction grammars are usually thought
of as being restricted to handle single-token ter-
minals. Although formal proofs are often easier
to construct for the normal form of a grammar, the
grammar itself is not restricted to this normal form;
and although the runtime complexities of parsers
are tied to the normal form of the grammar be-
ing parsed, algorithms generally exists to normal-
ize the grammar on the fly, making the existence of
a normal form is the important part.

In this paper, we introduce a method for itera-
tively extending biterminals. Rather than collect-
ing all biterminals that could occur in the train-
ing corpus, we are collecting only those that could
occur in a valid parse tree in the training cor-

Mikel L. Forcada, Heidi Depraetere, Vincent Vandeghinste (eds.)
Proceedings of the 15th Conference of the European Association for Machine Translation, p. 313-320

Leuven, Belgium, May 2011

pus (according to the grammar we have induced
so far). We thus start by inducing a transduc-
tion grammar based on single-token terminals di-
rectly from the parallel corpus using expectation-
maximization (EM). When it has stabilized, we
collect all biterminal pairs that could form larger
biterminals and incorporate them into the gram-
mar to produce a multi-token transduction gram-
mar. The process is then repeated until large
enough units are learned. Since maximum likeli-
hood learning methods such as EM tends to favor
longer chunks over shorter, we introduce a length
penalty for multi-token terminals.

Since induction of transduction grammars is
very time consuming, we opt to view the paral-
lel corpus as a linear transduction (Saers et al.,
2010b; Saers, 2011). This assumption allows us
to use something that is equivalent to linear trans-
duction grammars (LTGs), which can approximate
the search for a parse forest given a sentence pair
in linear time. LTGs do not, however, have an ex-
plicit biterminal concept, making it non-trivial to
map the grammar to a probabilistic bilexicon. To
fix this, we introduce preterminalized linear inver-
sion transduction grammars (PLITGs), which will
allow the desired parameterization.

Learning a stochastic bracketing PLITG from a
parallel corpus is equivalent to building a proba-
bilistic bilexicon based on this corpus. Iteratively
extending the biterminals of the grammar makes
them phrasal, giving us a probabilistic phrasal
bilexicon. This constitutes the key component of a
standard phrase-based SMT system, making it easy
to compare our approach to the standard approach.

2 Background

There has been some recent interest in bringing
structure into SMT, with various approaches to how
grammars can be learned and used in the transla-
tion process. Transduction grammars are gram-
mars that generate pairs of strings—bistrings—
rather than just strings. Since a transduction is a set
of bistrings, just as a language is a set of strings,
it can be regarded as a relation between two lan-
guages. The most well-studied and used trans-
ductions are the finite-state transductions, handled
by finite-state transducers and finite-state trans-
duction grammars. These are very efficient, but
not expressive enough to generate the structural
differences we see between languages on a sen-
tence level. A more powerful class of transduc-

314

tions is the syntax-directed transductions, gen-
erated by syntax-directed transduction grammars
(SDTGs). These were introduced by Lewis and
Stearns (1968) and further developed and formal-
ized by Aho and Ullman (1972). If the finite-state
transductions can be said to be the bilingual case
of finite-state languages, syntax-directed transduc-
tions can be said to be the bilingual case of context-
free languages. By bilingual case, we mean that
the transduction relates two languages of that class
to each other.

The original notation for SDTGs called for con-
ventional CFG-rules in language F' augmented
with rephrased E productions, either in curly
brackets, or comma separated. To differentiate
identical nonterminal symbols, indices were used
(the bag of nonterminals for the two productions
are equal by definition).

A— BW ¢ B® {zBM B
=A— BW ¢ B® 5 M A

The semantics of the rules is that one nontermi-
nal rewrites into a bag of nonterminals that is dis-
tributed independently in the two languages, and
interspersed with any number of terminal symbols
in the respective languages. As with CFGs, the
terminal symbols can be factored out into preter-
minals with the added twist that they are shared
between the two languages, since preterminals are
formally nonterminals. The above rule can thus be
rephrased as:

A— BW 9 B@ 9 1) B
Gl —a =z

where [#] is a preterminal symbol unique for the

translation of the terminal a to the terminal z. In
this way, rules producing nonterminals and rules
producing terminals can be separated. Since, by
definition, only nonterminals are allowed to move,
their movement can be represented as the original
sequence of nonterminals and a permutation vector
as follows:

A—B[3] B; 1,0,2

[t —a =

To keep the reordering as monotone as possible,
the terminals a and z can be produced separately,
but doing so eliminates any possibility of parame-
terizing their lexical relationship. Instead, the in-
dividual terminals are paired up with the empty

string (e):

(] —a, e

] =€ x

Lexical rules involving the empty string are re-
ferred to as singletons. Whenever a preterminal
is used to pair up two terminal symbols, we refer
to that pair of terminals as a biterminal.

The computational complexity of translating
with an existing SDTG (between the two related
languages) is comparable to parsing with context-
free grammars. This makes them a desirable
alternative to surface-based translation methods,
which represent an NP-complete search problem
that needs to be heavily pruned to be practically
useful. The problem with SDTGs is that they are
very time consuming to learn from parallel cor-
pora. Whereas all context-free grammars can be
reduced to an equivalent grammar in a two-normal
form, SDTGs cannot. With an arbitrary-rank SDTG,
parsing a sentence pair requires O(n?"*2) time,
which makes induction from parallel corpora in-
tractable.

One way to make induction tractable is to
restrict the search to a subset of the syntax-
directed transductions. This approach was pio-
neered in a series of papers by Wu (1995a; 1995b;
1996; 1997), where inversion transductions and
the corresponding inversion transduction gram-
mars (ITGs) were introduced. This restricted set
of grammars can parse a sentence pair in O(n®)
time, making it tractable but not practical to in-
duce grammars from data. Several attempts have
been made to approximate biparsing, see for ex-
ample Zhang et al. (2008), Saers et al. (2009) and
Haghighi et al. (2009).

An even more aggressive restriction to SDTGs
was proposed in Saers et al. (2010b). Where the
original ITGs allow branching, the introduced lin-
ear ITGs (LITGs) do not, allowing for biparsing in
O(n*) time. By approximating the search, linear
time complexity is attainable. Saers (2011) later
introduced the more general class of linear trans-
duction grammars (LTG), which are equivalent to
LITGs in terms of generative capacity.

Searching for linear transductions rather than in-
version transductions or full syntax-directed trans-
ductions makes the grammar induction tractable.
It does, however, also make the biterminals — the
building blocks of our bilexicon — intricately en-

315

tangled with the nonterminal symbols of the gram-
mar. To address this, we introduce the class of
preterminalized LITGs (Section 4), which has the
property that each biterminal is associated with ex-
actly one parameter. It does not, however, mean
that we can induce a phrasal bilexicon. To do that,
we would need a grammar with phrasal bitermi-
nals. Learning such a grammar poses a different
kind of challenge: rather than time-constraints, we
are faced with space-constraints. Induction with
EM requires the explicit storage of every rule that
could be used anywhere in the training corpus.
Naturally, the number of rules explodes when we
need to consider all the possible phrasal transla-
tions that could have occurred somewhere in the
training corpus as individual rules in our grammar.

Our solution to this problem is to start with a to-
ken based grammar, and then extract larger biter-
minals that occur in the parse forest of the sim-
pler grammar. This allows us to avoid enumerating
phrasal biterminals that would likely be weeded
out by EM anyway, and thus saves considerable
amounts of space (Section 5). Another approach
to this problem is reported in Blunsom and Cohn
(2010), involving sampling. Up until the point that
a rule is actually sampled, it can be implicitly rep-
resented with the probability distribution it is to be
drawn from.

3 Linear Transduction Grammars

Linear transduction grammars constitute the natu-
ral bilingualization of linear grammars (LGs). This
class of grammar has received relatively little at-
tention, mostly because there is no obvious use
for it. LGs lie between finite-state grammars and
context-free grammars in computational complex-
ity, but all you get is palindromes. Another way
to look at LGs is that they relate the beginning
of a string to the end of it. In this sense, a lin-
ear language defines a transduction between begin-
nings and ends, and they are indeed equivalent to
finite-state transduction grammars as noted early
on by Rosenberg (1967) and Ginsburg and Spanier
(1966) independently.

A linear transduction grammar (LTG) relates two
linear languages to each other. As linear languages
relate two finite-state languages to each other, a
linear transduction can be said to relate four finite-
state languages to each other, with the caveat that
two of them are also related to each other.

Definition 1. An LTG over languages L, and Lo

is a tuple G = (N, %, A, S, R) where N is a fi-
nite, nonempty set of nonterminal symbols, 3. is a
finite, nonempty set of L1 symbols, A is a finite,
nonempty set of Lo symbols, S € N is the desig-
nated start symbol, and R is a finite, nonempty set
of linear transduction rules on the forms:

A —a/z Bb/y,
A—a/x

where A,B € N, a,b € ¥X* and z,y € A*.

Linear inversion transduction grammars
(LITGs), on the other hand, are inversion trans-
duction grammars, ITGs (Wu, 1997) that have
been subjected to a linearity constraint. An ITG
is a transduction grammar restricted to have
only context-free rules, and only monotonic
permutations (specifically identity or inversion
permutation). By subjecting an ITG in normal
form to a linearity constraint, we replace one of
the nonterminal symbols with biterminal symbols,
thereby significantly reducing the expressive
power of the grammar, for a significant efficiency
boost. LITGs were introduced in Saers et al.
(2010b), and subsequently compared to full ITGs
in Saers et al. (2010a). The rules in an LITG take
the following forms:

A — [a/x B,
A — (a/x B),
A — [Ba/z],
A — (Ba/z),
A—fafeB), (=A—(
A — [e/z B, (=A— (Be/x
A—[Bajd, (A
A—[Befa], (A
A—e/e

Where productions enclosed in angled brackets are
read left-to-right in L;, and right-to-left in L.
Since it makes no different whether the empty
string is to the left or right of the nonterminal, any
inverting rule producing a singleton can be equiv-
alently expressed as a straight rule.

4 Preterminalized LITGS

LTGs and LITGs have the unusual property that
they are not closed under the addition of pretermi-
nals to the grammar, unlike ITGs or SDTGs, both of
which allow adding preterminals while remaining

ITGs or SDTGSs. In contrast, in an LTG or LITG, re-
placing a biterminal with a preterminal violates the
condition that the right hand side can only contain
a single nonterminal.

This becomes problematic because to induce a
bilexicon from a transduction grammar, we would
like to have a natural probability distribution over
the lexical entries present in the grammar, repre-
senting the lexical translation probabilities of word
or phrase translations. This is not available for
LTGs or LITGs, and to remedy the situation we in-
troduce preterminalized LITGs (PLITGS).

A preterminal is to be understood as a nontermi-
nal symbol that can only rewrite into terminal sym-
bols. This retains the computational complexity of
terminals, as identifying preterminals is compara-
ble to scanning for terminals, while at the same
time allowing for the desired parameterization.

Definition 2. A PLITG over languages Ly and Lo
is a tuple G = (N, P,%,A, S, R), where N, ¥,
A and S are the same as for LTGs, P is a finite,
nonempty set of preterminal symbols and R is a
[finite, nonempty set of preterminal linear inversion
transduction rules on the forms:

A — [BY], A—[vB],
A — (BY), A — (YB),
A — €/, X —a/x

where A, B€ N, X,Y € P,a € X*andx € A*.

Lemma 1. For every PLITG we can construct an
LITG that generates the same transduction.

Proof. Let G = (N,P,%,A,S,R) be a PLITG
and let G’ = (N, %, A, S, R') be the correspond-
ing LITG where:

R' ={A — [a/zB]|A — [XB|,X — a/z € R}
U{A — [Ba/z]|A — [BX],X — a/z € R}
U{A — (a/xzB)|A — (XB),X — a/x € R}
U{A — (Ba/z)|A — (BX),X — a/x € R}
U{A — ¢/e|]A — ¢/e € R}

The grammars G and G’ clearly generate the same
transduction. O

Lemma 2. For every LITG we can construct a
PLITG that generates the same transduction.

Proof. Let G = (N, %, A, S, R) be an LITG and
G = (N,P,X,A,S,R') be the corresponding

316

PLITG where:

where [$] is a preterminal symbol unique for the

biterminal a/x, and P is the set of all unique
preterminals introduced when building R’. The
grammars G and G’ clearly generate the same
transduction. O

Theorem 3. PLITGs and LITGs generate the same
class of transductions.

Proof. Follows from Lemmas 1 and 2.]

Corollary. Since PLITGs are equivalent to LITGs
(Theorem 3), and since LITGs are equivalent to
LTGs (Saers, 2011), PLITGs are equivalent to
LTGs.

Adding preterminals as a dedicated class of
symbols in the grammar is potentially contro-
versial, but we believe that it is imperative in
this specific case. For finite-state transduction
grammars, preterminals are meaningless, as they
merely change the label of a terminal symbol. For
ITGS/SDTGs, there is no reason to separate the
preterminals from the nonterminals, as they are
merely a special case, and the formalism is already
capable of handling the general case. For LTGs
and LITGs, on the other hand, preterminals serve
a very specific purpose. Since they only rewrite to
biterminals, they are terminal in a computational
sense (the length of their yield is constant with re-
spect to the length of the string), while still group-
ing a number of biterminals into one unit that can
be associated with a parameter during learning. It
also has the side-effect of compacting the gram-
mar, which is nice since we are concerned about
the space complexity of adding phrasal rules to the
grammar.

5 Extracting phrasal biterminals

The natural parameterization for PLITGs allows us
to learn probabilistic bilexica through grammar in-
duction on parallel corpora through expectation
maximization (EM). The problem is that EM is lim-
ited to fit the given parameters to the data, and we
cannot enumerate all the possible phrasal rules that
could possibly be encountered in a corpus of any

317

useful size. Our solution to this problem is to iter-
atively combine existing biterminals that cooccur
in the data.

We start by building a grammar with all biter-
minals linking one token to another token (or the
empty string) that could possibly be encountered
in the training corpus. For efficiency reasons, we
keep to a bracketing grammar, meaning that there
is only one nonterminal and one preterminal sym-
bol. Rather than setting their probability to a uni-
form distribution, we use relative cooccurrence
frequency as a starting point. To collect counts for
the singletons we assume that there is one empty
string in each sentence. The structural rules share
their probability mass equally. This has the effect
of initializing the grammar such that:

p(A — [AX]) =0.2
p(A — [XA]) =02
p(A — (AX)) =0.2
p(A— (XA))=0.2
p(A —€/e) =0.2
p(X = afr) = A0D

where c(-, -) is the corpus counting function and C
is the corpus constant defined as:

1 ifa=ex=f
cla,z) = Z Z { .
e.fre(ar) eceuiey (O otherwise
fefu{e}
C= 3 (el+n(fl+1)

(&f)e(E.F)

where (F, F') is the corpus, and & represents bag
union.

We then run five iterations of expectation max-
imization with conditional grammar pruning to
weed out the biterminals that are on the way out.
Conditional grammar pruning is enforced by in-
sisting that the conditional probability of a biter-
minal reaches over a threshold value. Given the
threshold ¢, the pruning ensures that the following
condition holds after each iteration:

p(X —a/z) .
>t if X
Sop(X Sajey ~ T X elreR
and
PX=a/T) ¢ X LafmeR

D P(X —d/x)

Even with a very low t-value (we used t =
10299), the set of rules is considerably reduced
after only a few iterations of EM. Having pruned
down the grammar, we proceed to collect new
biterminals wherever we find two consecutive
biterminals that can combine to a legal rule. As
EM tends to favor longer biterminals, we also ap-
ply a length penalty. Consider the derivation:

AA = XA AX =
= aXA XAz =

= abXAyXAzx
= abec, yzx

aA, Az
abA, yAx
= abcA,yzAx

From this we could extract the rule X — bc/yz,
but not the rule X — ab/yx. The reason is that the
biterminal bc/yz occurs in the derivation whereas
the biterminal ab/yx does not (the terminal yz is
punctured by a nonterminal). To add in the penalty
when collecting fractional counts, we modify each
count such that, if we would ordinarily count it as
occurring z times (r < 1), we instead count it as
occurring 2 times, where

Jal+le|
A={ 2
1

where |-| is the length of a terminal defined as the
number of tokens it contains. This penalty does not
affect the original token-based subset of the rules,
as they are not penalized.

if |a| + |z| > 1

otherwise

6 Experimental setup

To test whether the phrasal bilexicon extracted
from the above process learns anything useful, we
use it in an existing phrase-based SMT system.
We decided to stay close to the guidelines for the
2008 Workshop of Statistical Machine Translation
(WMTO08) with a few minor changes. Focusing on
the French-English translation task, we limited the
training data to sentence pairs where none of the
two sentences were longer than 20 tokens (see Ta-
ble 1). Our train—tune—test pipeline includes:

1. Preprocessing tools: tokenizer, corpus
cleaner and case folder (supplied by the or-
ganizers).

2. Language model: 5-gram model using
SRILM (Stolcke, 2002).

3. Translation model: Phrase-based model
extracted and scored with with the Moses

318

Size
381,780 sent. pairs
2,000 sent. pairs
2,000 sent. pairs
1,412,546 sentences

Corpus
French—English (train)
French—English (tune)
French—English (test)
English (LM)

Table 1: Corpora used in the experiments.

toolkit (Koehn et al., 2007) using the
grow-diag-final-and heuristic
(Koehn et al., 2005) on bidirectional word
alignments obtained through IBM-models
(Brown et al.,, 1993) and HMM-alignment
(Vogel et al., 1996) using GIZA++ (Och and
Ney, 2000).

4. Tuning: Minimum error-rate training (Och
and Ney, 2002).

5. Decoder: Moses (Koehn et al., 2007).

6. Postprocessing: recaser (trained with the
Moses toolkit) and detokenization (supplied
by the organizers).

7. Evaluation: NIST (Doddington, 2002) and
BLEU (Papineni et al., 2002).

This constitutes the baseline. Our system replaces
the translation model with a phrasal bilexicon from
PLITG induction. To isolate the effect of the bilex-
icon (which is the main focus of this paper), we
refrained from using the more advanced reorder-
ing model that the Moses toolkit can build from
alignments. This is a concept that is completely
orthogonal to the bilexicon, and rather than simu-
lating it when converting the PLITG to a bilexicon,
we chose to leave it out.

The PLITG bilexicon was induced by combin-
ing existing biterminals three times, with five it-
erations of expectation maximization after each
combination iteration. This means that the longest
biterminal we could possibly get would have a to-
tal size of eight times eight tokens (2%), which is
fully comparable to the baseline system. We used
the approximate biparsing algorithm described in
Saers et al. (2010b) with b = 50.

Having two lexical sources could prove to be
an advantage over a single source, and in testing
this, we devised two strategies for phrasal bilex-
icon combination. The first is the cautious com-
bination, where one bilexicon is allowed to domi-
nate the other. The second is a weighted average

System NIST | BLEU | Lexicon entries
Baseline | 6.8439 | 27.13 7,340,369
PLITG 6.8025 | 26.71 2,926,745
ccC 6.8505 | 27.05 9,797,754
WA 6.9276 | 27.63 9,797,754

Table 2: Results from the experiments. The PLITG
system uses the induced phrasal bilexicon, the CC
system uses a cautious combination of the baseline
(dominant) and the PLITG bilexicon, and WA uses
a weighted average of the baseline and the PLITG
bilexicon.

based on lexicon size. In the cautious combina-
tion we use the features from the dominant lexi-
con whenever possible, and when there is an en-
try in the subordinate lexicon that is not present in
the dominant, the features of that entry are down
weighted. In the weighted average combination,
all features are down weighted, but the feature
scores are added up, giving an advantage to en-
tries found in both lexica. The two approaches dif-
fer only in the weighting, so for every bilexicon
entry [in the union of the two bilexica we have
two sets of features. These are paired up as h; and
ha, and the combined weight is computed to be
h = XNhy + (1 — X\;)ha, where)\; is the weight for
the entry defined as:

1
A= Byl
| B1|+|B2]
for the cautious combination approach (using B

to mean the dominant bilexicon and By to mean
the subordinate), and as:

ifl € By

otherwise

| B

N=
"7 B + B

for the weighted average approach. A missing en-
try is considered to have feature scores zero across
the board.

7 Results

The results are summarized in Table 2. As ex-
pected, the combinations seem to help. Although
the cautious approach is equivalent to its dominant
system (slightly higher NIST score and slightly
lower BLEU score), the weighted average scores
clearly higher than any of the other systems. It
is also interesting to see the PLITG bilexicon do
as well as it does, considering that it is less than

319

half the size of the baseline lexicon. By combining
the two bilexica, we can also compute the overlap,
which is a mere 469,360 entries. This is a surpris-
ingly low number, and the fact that they comple-
ment each other so well in terms of coverage might
explain why the combination performs better than
any of them in isolation.

8 Conclusions

We have presented a method for induction of prob-
abilistic phrasal bilexica from parallel corpora.
Rather than using a complex pipeline of mod-
els and heuristics, we have defined a theoreti-
cally principled stochastic transduction grammar
that includes a natural probability distribution over
phrasal bilexicon entries (preterminalized linear
inversion transduction grammars, PLITGs), which
was fitted to the observed parallel corpus. The
resulting bilexicon performed competitively with
the standard method when used in a phrase-based
SMT system, despite being significantly smaller.
The overlap between the two bilexica was mini-
mal, which lead us to try a system using two dif-
ferent combinations, one of which outperformed
any of the two isolated bilexica.

We have showed that the neither of the two types
of bilexica is superior to the other, but that a com-
bination outperforms them both. The combina-
tion methods presented here could, however, be
improved. There rather than letting the size of
the bilexicon determine its weight during combina-
tion, this could be controlled by a hyperparameter,
whose value needs to be determined empirically.

Acknowledgments

This work was funded by the Defense Advanced
Research Projects Agency (DARPA) under GALE
Contract Nos. HR0011-06-C-0023 and HROO11-
06-C-0023, and the Hong Kong Research Grants
Council (RGC) under research grants GRF621008,
GRF612806, DAGO03/04.EG09, RGC6256/00E,
and RGC6083/99E. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not nec-
essarily reflect the views of the Defense Advanced
Research Projects Agency.

References

Aho, Alfred V. and Jeffrey D. Ullman. 1972. The
Theory of Parsing, Translation, and Compiling.
Prentice-Halll, Englewood Cliffs, NJ.

Blunsom, Phil and Trevor Cohn. 2010. Inducing
synchronous grammars with slice sampling. In
HLT/NAACL2010, pages 238-241, Los Angeles,
California, June. Association for Computational Lin-
guistics.

Brown, Peter F., Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263—
311.

Doddington, George. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In HLT-2002, pages 138145,
San Diego, California.

Ginsburg, Seymour and Edwin H. Spanier. 1966.
Finite-turn pushdown automata. Society for Indus-
trial and Applied Mathematics Journal on Control,
4(3):429-453.

Haghighi, Aria, John Blitzer, John DeNero, and Dan
Klein. 2009. Better word alignments with su-
pervised ITG models. In ACL/IJCNLP2009, pages
923-931, Suntec, Singapore, August. Association
for Computational Linguistics.

Koehn, Philipp, Amittai Axelrod, Alexandra
Birch Mayne, Chris Callison-Burch, Miles Os-
borne, and David Talbot. 2005. Edinburgh system
description for the 2005 IWSLT speech translation
evaluation. In Proceedings of the International
Workshop on Spoken Language Translation.

Koehn, P, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. In ACL2007, Demo
and Poster Sessions, pages 177-180, Prague, Czech
Republic, June.

Lewis, Philip M. and Richard E. Stearns. 1968.
Syntax-directed transduction. Journal of the Asso-
ciation for Computing Machinery, 15(3):465-488.

Och, Franz Josef and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of the
38th Annual Meeting of the Association for Com-
putational Linguistics, pages 440-447, Hong Kong,
October.

Och, Franz Josef and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 295-302, Philadelphia,
Pennsylvania, July.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, July.

320

Rosenberg, Arnold L. 1967. A machine realization of
the linear context-free languages. Information and
Control, 10:175-188.

Saers, Markus, Joakim Nivre, and Dekai Wu. 2009.
Learning stochastic bracketing inversion transduc-
tion grammars with a cubic time biparsing algorithm.
In IWPT’09, pages 29-32, Paris, France, October.

Saers, Markus, Joakim Nivre, and Dekai Wu. 2010a. A
systematic comparison between inversion transduc-
tion grammar and linear transduction grammar for
word alignment. In SSS74, pages 10-18, Beijing,
China, August. Coling 2010 Organizing Committee.

Saers, Markus, Joakim Nivre, and Dekai Wu. 2010b.
Word alignment with stochastic bracketing linear in-
version transduction grammar. In HLT/NAACL2010,
pages 341-344, Los Angeles, California, June. As-
sociation for Computational Linguistics.

Saers, Markus. 2011. Translation as Linear Trans-
duction: Models and Algorithms for Efficient Learn-
ing in Statistical Machine Translation. Ph.D. thesis,
Uppsala University, Department of Linguistics and
Philology.

Stolcke, Andreas. 2002. SRILM — an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Process-
ing, pages 901-904, Denver, Colorado, September.

Vogel, Stephan, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical
translation. In Proceedings of the 16th International
Conference on Computational Linguistics, volume 1,
pages 836—841, Copenhagen, Denmark, August.

Wu, Dekai. 1995a. An algorithm for simultaneously
bracketing parallel texts by aligning words. In Pro-
ceedings of the 33rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 244-251,
Cambridge, Massachusetts, June.

Wu, Dekai. 1995b. Trainable coarse bilingual gram-
mars for parallel text bracketing. In Proceedings of
the Third Annual Workshop on Very Large Corpora,
pages 69-81, Cambridge, Massachusetts, Jun.

Wu, Dekai. 1996. A polynomial-time algorithm for
statistical machine translation. In Proceedings of the
34th Annual Meeting of the Association for Com-
putational Linguistics, pages 152-158, Santa Cruz,
California, June. Association for Computational Lin-
guistics.

Wu, Dekai. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377-403.

Zhang, Hao, Chris Quirk, Robert C. Moore, and
Daniel Gildea. 2008. Bayesian learning of non-
compositional phrases with synchronous parsing.
In Proceedings of ACL-08: HLT, pages 97-105,
Columbus, Ohio, June. Association for Computa-
tional Linguistics.

