
Integrating Machine Translation with Translation Memory:
A Practical Approach

Panagiotis Kanavos
Freelance Technical Translator

K. Varnali 20, K. Aharnai, 136 71
Athens, Greece

panoskanavos@gmail.com

Dimitrios Kartsaklis
Freelance Software Engineer

M. Mpotsari 46, Petroupolis, 132 31
Athens, Greece

dimkart@gmail.com

Abstract

The purpose of this work is to show how
machine translation can be integrated into
professional translation environments using
two possible workflows. In the first workflow
we demonstrate the real-time, sentence-by-
sentence use of both rule-based and statistical
machine translation systems with translation
memory programs. In the second workflow we
present a way of applying machine translation
to full translation projects beforehand. We also
compare and discuss the efficiency of statis-
tical and rule-based machine translation sys-
tems, and propose some ideas about how these
systems could be combined with translation
memory technologies into a unified translation
application.

1 Introduction

Machine Translation (MT) has been evolving
rapidly, drawing attention from other professionals
besides researchers. However, we cannot claim that
it is generally accepted as a useful and productive
technology by the professional translation industry.
On the one hand this is partly due to unrealistic ex-
pectations as to what MT should be able to do and
how it should be able to achieve it. On the other
hand, it is true that the MT community focus mainly
on research, overlooking practical issues. This is
reflected in various online surveys and forums re-
lated to professional translation, where translators
and language service providers consider MT an ex-
perimental technology suitable for draft translations
of e-mail messages and web pages. To this respect,

Computer-Assisted Translation (CAT) vendors have
been reluctant or uninterested in investing further in
MT technologies, with the exception of Google’s
MT service which is offered as a plugin to a few
CAT programs.

We will demonstrate that MT–when com-
bined properly with Translation Memory (TM)
technologies–is actually a very useful and produc-
tive tool for professional translation work, contrary
to the common belief that MT is still restricted to
draft Web translations of low quality. Furthermore,
we will show many possible ways to combine MT
systems with TM workflows, as well as the ability
to use both rule-based and statistical MT systems.

2 Methodology

Our workflows and methodologies are divided into
two general categories: the on-demand, sentence-
by-sentence application of MT, and the one-time ap-
plication of MT into the whole translation project.
In both cases, we use and combine various tools,
MT systems, even operating systems and platforms,
to provide a unified translation environment which
most professional translators are familiar with. The
CAT programs used are Swordfish II (a Java appli-
cation) in a Linux operating system, Déjà Vu X in
a Microsoft Windows environment, and Wordfast, a
Microsoft Word macro template, also used in a Win-
dows operating system. The MT systems used are
the Moses statistical system (Koehn et al., 2007),
and a rule-based edition of Systran1.

1Although the Systran edition that was available for our lan-
guage pair was rule-based, newer editions use a hybrid technol-
ogy incorporating both statistical and rule-based elements.

Ventsislav Zhechev (ed.): Proceedings of the Second Joint EM+/CNGL Workshop “Bringing MT to the User:
Research on Integrating MT in the Translation Industry” (JEC ’10), pp. 11–20. Denver, CO, 4 November 2010. 11



For the purposes of our research, we chose to
translate two technical books in the field of infor-
matics from English to Greek. The first one was an
instructive guide (referred to in this paper as Book 1)
to a popular desktop application, which contained a
lot of steps for accomplishing specific tasks and had
a certain amount of repetitive or similar text. This
kind of text is ideal for work in a TM environment
since the TM yields a lot of exact and fuzzy matches.
The other book was an academic one (referred as
Book 2), covering more complex and theoretical top-
ics in the field of Computer Science, and contained
very few repetitive sections or step-by-step instruc-
tions. Such texts do not benefit particularly from
TM matches, although they do benefit from other
features offered by CAT tools, such as concordance
searches, consistency in style and terminology, auto-
matic number and tag checks, etc. The configuration
of the CAT programs was almost identical: we used
the same TM which contained 140,000 translation
units, the same terminology database containing an
average of 30,000 entries, and the same segmenta-
tion rules. All our resources derived from previous
translations in the Informatics domain. Also, the TM
fuzzy threshold was set to 70% for all programs.

We translated both books in our three TM-MT
combinations and obtained measurable results in
terms of time spent, translation quality, and overall
efficiency of our workflows. It should be noted that
the books translated with our workflows were real
assignments from a publishing house and they are
now under publication. We divided each book in six
equal parts (two for each combination) and we cre-
ated separate translation projects for each TM-MT
combination. Then, in each combination, we trans-
lated one part using only the TM and another part
using both the TM and the MT, keeping track of the
time spent so we could measure the effectiveness of
the MT. Productivity is expressed in target words per
hour.

2.1 Applying MT on demand during the
translation process

The ability to use MT engines from within CAT pro-
grams is largely dependent on the CAT program it-
self. Thus, there has to be a way to connect the MT
engine to the TM application and invoke it at will
for selected segments. For this reason, we chose the

Swordfish II CAT program, which offers a flexible
plugin architecture allowing the user to connect to
external applications or scripts, and Wordfast Clas-
sic, which provides a feature for connecting to MT
systems. Although both programs are used under the
same method, their combination with MT systems
varies significantly because of the operating systems
involved and the MT systems they can be connected
to. Swordfish was used with Moses, while Wordfast
was used with the Systran engine. These particu-
lar combinations were chosen based on the tools we
had available and some practical factors (explained
in the following sections) concerning the integration
of each CAT tool with the corresponding MT sys-
tem.

2.1.1 Swordfish’s translation environment
Swordfish’s translation environment offers all the
usual features met in CAT tools, such as the
translation grid where the segmented text is pre-
sented for translation, the TM database results
pane, the terminology database results pane, and
an Auto-Translation pane, which shows the results
of the program’s attempt to assemble translations
using matches from the TM and the terminology
databases. This is of special interest for the purposes
of our work since it is the closest native feature the
application offers to MT. Another feature we will
use for comparison is the application’s GTranslate
plugin which can be invoked by the user on-demand
for automatic translation using Google’s MT engine.

The workflow presented by Swordfish is typical
of CAT programs:

• Import, conversion, and segmentation of the
source files into Swordfish’s native format
(XLIFF)

• Connection of TM and terminology databases
into the project

• Pretranslation of the entire project using the
connected TMs (optional)

• Translation of the project, segment by segment

• Export the project into the original file format

Swordfish integrates seamlessly with any external
application or script due to its plugin architecture.

JEC 2010 “Bringing MT to the User” Denver, CO

12



This is a key feature that let us customize our work-
flow to a great extent. We created a custom Python
plugin that manipulated the current segment. The
exchange file created by Swordfish is in the XLIFF
format (XML-based), so the translatable text can be
easily extracted using Python’s XML modules.

The XLIFF project format used by Swordfish is
very flexible for applying MT since it does not re-
quire any special conversions or additional prepa-
ration steps. Furthermore, integrating the MT re-
sults into Swordfish’s environment was seamless,
since we could automatically create an appropriate
XML element for each machine-translated segment
and make the translation appear into the TM matches
pane.

2.1.2 The Moses Statistical MT System
Moses is a statistical MT system developed by the
EuroMatrix2 and EuroMatrixPlus3 projects and var-
ious institutions and universities and is licensed un-
der the LGPL (Lesser General Public License). Such
systems require large corpora of text for training and
creating phrase tables and language models which
are used during the automatic translation (decoding).
Translators can benefit from such systems since they
already have available considerable amounts of texts
in the form of TMs. All CAT programs offer an op-
tion for extracting the entries of the TMs into the
industry-standard TMX format which can be easily
manipulated for preparing the text corpus.

Moses, along with the required utilities and
scripts, requires a Unix environment and a fairly ca-
pable computing system. These requirements can
impose practical restrictions for wider adoption of
this workflow, since most translators use PCs and
laptops with limited computing power while few of
them work in a Unix environment. This issue is also
discussed in Section 4.1.2. We installed and config-
ured Moses on a Linux Server machine with a dual-
core processor and 8 GB RAM, in a LAN environ-
ment.

The steps we followed for preparing an MT sys-
tem with Moses are outlined in Figure 1. The paral-
lel corpora extracted from our TM contained about
140,000 sentences, an amount not particularly large
for statistical MT training. However, the efficiency

2See www.euromatrix.net
3See www.euromatrixplus.eu

Figure 1. Steps for preparing a Moses MT system

of our MT system was not hindered by the limita-
tion in the amount of sentences because the train-
ing corpus was very domain-specific to our transla-
tion project. This issue is extremely important when
combining MT and TM technologies and it is ana-
lyzed in greater depth in Section 4.

2.1.3 Integrating Moses into Swordfish
The connection of the two systems was achieved
with the custom Python plugin that extracted the
translatable text from the temporary XLIFF file gen-
erated by Swordfish for the current segment and sent
it to Moses for decoding using the XMLRPC API.
The translated text was then copied to the XLIFF
file which, in turn, was inserted back to our current
segment in Swordfish’s translation grid.

Our workflow with this configuration can be sum-
marized as follows:

• We translated our project segment by segment
(pretranslation with the TM was not applied)

• TM matches above 80% were always accepted
and the proposed translations were edited as
necessary

November 4th, 2010 Panagiotis Kanavos and Dimitrios Kartsaklis

13



• When the TM offered matches below 80%, the
quality of the match was evaluated and the
proposed translation was either accepted and
edited or rejected

• When a TM match was rejected, MT was ap-
plied to the segment and the result was edited
accordingly

• For segments with no TM matches, we always
applied MT and the result was either accepted
and edited or rejected (in that case we had to
translate ourselves the whole segment)

Our decision point of 80% for the fuzzy thresh-
old was selected based on our previous experience
with similar setups. Up to this fuzzy threshold,
Moses proposed translation is usually quite accu-
rate and comparable with the TM match. This hap-
pens because the TM used in the current project–
and thus the matching translation unit–was also used
for training our MT system. Furthermore, the trans-
lation unit is also contained in our MT’s language
model. Above this fuzzy threshold, the TM match is
usually very close to the desired translation, so edit-
ing the proposed translation is more time-efficient.
The 80% threshold was also suggested in a similar
study by Carl and Hansen (1999).

A special pattern was followed for testing every
feature our environment could use to provide a sug-
gested translation. In particular, we randomly se-
lected 50 fuzzy matches with a similarity percentage
equal or higher than 80% and source sentence text
length between 25 and 30 words and compared the
TM match, Moses proposed translation, Google’s
MT (utilized with Swordfish’s GTranslate plugin),
and the application’s “Auto-translate” feature which
combines matches from the databases and assembles
translations. The results we obtained from this sam-
pling are listed in Figure 2.

The time spent for completing the translation fol-
lowed a trend typical of our previous work with such
technical books in TM workflows, and varied be-
tween the two books. In particular, the translation
of the instructional book (Book 1) required less time
than the translation of the academic one (Book 2).
As it is illustrated in Figure 3, our productivity was
higher in the instructional book translation due to
the less complex subject and the higher amount of

Figure 2. Comparison of all available auto-
translation tools and features

Figure 3. Productivity scheme with the Swordfish
and Moses combination

repetitions which resulted in more TM matches as
we were progressing in our work. Furthermore, our
productivity starting point was higher in the instruc-
tional book (700 target words per hour) compared to
the academic book (550 target words per hour).

2.1.4 Wordfast translation environment
Wordfast Classic is a Microsoft Word macro tem-
plate that works within MS Word. Thus, the doc-
uments to be translated cannot be imported in a
project but rather they are directly opened in MS
Word and translated one by one. Despite the fact
that Wordfast Classic is restricted to the file formats
recognized by MS Word, it offers a full-featured
translation environment with TM, terminology inte-
gration, and real-time quality checks. Furthermore,
it allows a great deal of customization via macros
which can be invoked at various stages of the trans-

JEC 2010 “Bringing MT to the User” Denver, CO

14



lation process and provides integration with MT sys-
tems.

2.1.5 The Systran MT system
Systran is a widely known MT application that is
available in various editions and language pairs. The
latest editions of Systran include a much improved
hybrid MT engine with many customization options,
and the ability to create custom user dictionaries.
The version we used for this work, however, was
using only rule-based MT technology. The entries
in the user dictionaries are not merely used as word-
to-word translations, but rather they are subject to
the MT engine’s rules and thus they can generate
inflected forms. This provides a great means for im-
proving the MT engine but also imposes a restric-
tion: building the user dictionary before actually
working on a specific translation project is rather te-
dious and time-inefficient for the following reasons:

• The translator can’t possibly know how a par-
ticular term or phrase will be translated in a
specific context by the MT engine

• The custom dictionary entries should be tested
in a sample sentence

• Inflected forms of some entries cannot be trans-
lated correctly by the MT engine so other
means of improving the engine should be ap-
plied (for example, post-editing macros–see the
following section)

It should be noted, however, that after building a
custom user dictionary for a specific domain it can
be used and tweaked for future projects in the same
domain.

2.1.6 Integrating Systran with Wordfast
The integration of the two systems was achieved via
a special Wordfast’s feature that works as follows: if
there is no TM exact or fuzzy match for the segment
currently translated, then the segment is transferred
to the MT engine and the translation is copied into
the target segment.

Our system was also improved by using two sets
of custom Word macros. The first set included
macros that accomplished various pre-translation
tasks which were executed to the source segment

Figure 4. Productivity chart using the Systran and
Wordfast combination

before submission to the MT engine. Such tasks in-
volved the temporary substitution of source words
or phrases that couldn’t be translated properly by
Systran’s engine with other similar that didn’t al-
ter the sentence’s meaning. For example, the en-
gine could not translate correctly the auxiliary verb
“might”, even though the word was properly coded
in our user dictionary. Our macro was simply substi-
tuting “might” with “may”, and after the translation
was returned to our segment the original word was
restored. The second set of macros executed post-
translation actions to the translated segment returned
by Systran. These actions improved the style of the
translated text by various ways, very specific to our
target language.

Our productivity is presented in Figure 4. As it is
illustrated in the chart, our productivity was lower at
the beginning of our work. This was due to the time
we had to spend to build the custom Systran dic-
tionary. When we had completed about 20% of the
translation and had added 80 entries in our custom
dictionary, our productivity increased to our usual
standards. Beyond this point our productivity in-
creased drastically while the number of entries we
had to put in our dictionary was constantly decreas-
ing. By the end of the translation our dictionary con-
tained only 240 entries.

2.2 Applying MT to the full project

The implementation of this approach does not nec-
essarily require a plugin or some other means of con-
necting the CAT program to MT systems, although

November 4th, 2010 Panagiotis Kanavos and Dimitrios Kartsaklis

15



such a feature would be more convenient and restrict
the number of steps required to prepare the project
file. The number of steps is also greatly reduced if
the application’s project file has a standard or open
format such as XLIFF or other XML-based format.
For the implementation of this approach we used
Déjà Vu X, a Microsoft Windows application based
on the Jet Database engine.

2.2.1 Déjà Vu X’s translation environment
Déjà Vu X is based on a concept similar to Sword-
fish’s. It offers a two-column translation grid with
the source segments in the first column and empty
cells in the second column where the user can type
their translations or insert matches from the TM, as
well as TM and terminology match panes. The ap-
plication also includes a special feature called “As-
semble” which applies EBMT (Example-Based Ma-
chine Translation) algorithms for converting fuzzy
matches to exact by combining TM and terminology
entries.

2.2.2 Using Moses with Déjà Vu X
Déjà Vu X does not offer a way to connect to exter-
nal applications or scripts, so using MT segment by
segment is not possible. Instead, the only efficient
way to use Moses with this CAT program was to ex-
tract the whole project file and pretranslate it with
Moses. The application offers an option to export
the whole project file into a table in RTF format.
Each table row consists of three fields and corre-
sponds to a segment. The first field (cell) is a unique
row ID number which must not be altered in any
way because then the application cannot re-import
the file back to the project. The second field is the
source segment, which includes the source text and
the internal formatting tags, and must not be altered
too. The third field is the target segment where a
translation can be typed in. Before we exported the
project, however, we applied pretranslation against
our translation memory with a fuzzy threshold equal
to 80% and then we locked the pretranslated seg-
ments to avoid exporting them with the rest of the
project. With this approach the number of segments
was reduced to some extent so Moses had to trans-
late fewer sentences. The workflow is outlined in
Figure 5.

An alternative workflow that may seem more rea-

sonable at first glance would be to export all the
segments without applying pretranslation; translate
the whole project with Moses; import the translation
back to the project file; and then compare Mose’s
translations with the TM matches and keep the best
translations. However, the benefits with this ap-
proach would be minimal because above the 80%
fuzzy threshold it is more time-efficient to accept the
TM matches and edit them as necessary.

When the file was translated, we reversed the or-
der of the preparation steps in order to re-create
the RTF table and place the machine-translated seg-
ments to their corresponding cells. Then we im-
ported the file back to our project and started work-
ing segment by segment. It should be noted that
the fuzzy match threshold was lowered to our stan-
dard 70%. This resulted in some segments which
were filled with MT translations and also had fuzzy
matches between 70% and 79%. Now our work-
flow was quite different than the one followed in
the Swordfish-Moses combination because all of our
project’s target segments were filled with transla-
tions and our work essentially involved editing. This
workflow consisted of the following steps:

• Segments contained TM matches were edited
as required

• Segments contained MT translations were
quickly evaluated for accuracy and were either
erased or edited

• When an MT translation was rejected, there
were two possible options: if a fuzzy match
was available from the TM, it was inserted in

Figure 5. Steps for translating a Déjà Vu X project
with Moses

JEC 2010 “Bringing MT to the User” Denver, CO

16



Figure 6. Productivity results with the Déjà Vu X
and Moses combination

the target segment and edited; otherwise, the
application’s “Assemble” feature was applied

• If the assembled sentence was not of acceptable
quality, it was also rejected and the translation
was typed from scratch

It should be noted that a 25% of the assembled
translations were accepted. This figure could have
been even higher if the terminology database con-
tained more entries (see Section 4). Our productiv-
ity with this workflow is illustrated in Figure 6. It is
worth noting that the productivity increase observed
with MT was lower than in the segment-by-segment
workflows. The reason for that was the limited con-
trol allowed to the user, and it is further discussed in
Section 3.1.

3 Results and evaluation

The results obtained from each of our workflows
highlight the same fact: the application of MT into
our translation projects increased our productivity to
a level that would not be feasible with a typical TM
workflow. However, variations in our productivity
schemes do exist so the results can be divided and
analyzed into relevant categories. Figure 7 shows
the average productivity increase we gained with the
application of MT into our workflows.

3.1 Using MT in individual segments and in
the whole project

The application of MT in real time, segment by seg-
ment, seems to be more efficient and better con-

trolled. In both real-time MT workflows (Moses
and Systran), we could make quickest decisions as
to whether we should keep a fuzzy match, use MT,
or type the translation from scratch. The decision
speed is a major issue not only for MT results but
for TM matches as well, so all available resources
should be presented to the user seamlessly without
distracting them.

Moreover, the real-time MT approach was the
only possible way to use Systran effectively. Since
the entries inserted into Systran’s custom user dictio-
nary had to be coded properly, using the current seg-
ment for trial and error efforts was very efficient. Of
course, this approach resulted in decreased produc-
tivity but only for the first 20% of our work. After
that point, our productivity was constantly increas-
ing, far beyond our normal levels. It should also be
noted that the decreased productivity phase could be
restricted or even eliminated if custom dictionaries
have already been built from projects in the same
domain. For our statistical MT system, however,
this is not an issue because it can’t be improved in
real-time and thus we enjoyed increased productiv-
ity from the very start of our work. The results ob-
tained with the Systran and Wordfast combination
were very close to the ones presented by Kanavos
and Kartsaklis (2008).

On the other hand, applying MT to the full project
beforehand is the only possible way to use MT with
CAT programs that do not offer an option for con-
necting to external applications. Even with this ap-
proach, however, productivity was still higher than
normal, although lower than in the real-time MT
methods.

3.2 Using statistical MT and rule-based MT
Both workflows increased our productivity notice-
ably despite their differences. The Moses workflow
didn’t impose any penalty in our productivity and
was very efficient right from the start. With Systran,
however, our productivity was initially decreased, at
least until the custom dictionary was filled with ad-
equate entries.

Although the efficiency of both workflows seems
rather close, a few notes should be mentioned.
Firstly, we assume all the CAT programs used in
this case-study provide equal efficiency and perfor-
mance. In fact, variations do exist but usually they

November 4th, 2010 Panagiotis Kanavos and Dimitrios Kartsaklis

17



Figure 7. MT overall efficiency measurement in
both real-time and non-real-time settings

are negligible for measurements in this scale, assum-
ing the user is equally skilled in all the CAT pro-
grams. Secondly, the Systran version that was avail-
able for our target language was rather limited com-
pared to other versions, thus the results could be bet-
ter with an improved version. We should also men-
tion that most recent Systran versions offer hybrid
MT capabilities that could have yielded much better
results if we had the opportunity to use them. On
the other hand, the Moses workflow could have also
been more efficient had we used a factored model
(Koehn and Hoang, 2007). Moses is a very flexible
system that can be enriched with morphological and
syntactical information for more accurate decoding.

4 Discussion and assessment

The results obtained with each workflow can vary
in some degree depending on a number of language,
text context and style, and application-specific fac-
tors. For instance, the quantity and quality of the TM
entries affect directly the performance of the Moses
MT system. The more entries a TM contains, the
more efficient the MT system will be since the train-
ing corpus will also be larger. Furthermore, the qual-
ity of the TM affects both the matches obtained from
it and the efficiency of the MT system, for obvious
reasons. Equally important is the number and the
quality of the terminology entries for yielding better
results from the “assemble” feature offered by the
CAT programs.

Another very important factor is the domain of
the translation material used to train a statistical MT

system. Our workflow with Moses was success-
ful because the TM entries with which we created
the MT system had been derived from informatics
books translations. This can be a serious restric-
tion for translators who work frequently with small
texts covering several different domains. In such
cases, there probably won’t be enough entries from
each domain to build different MT systems. On the
other hand, translation agencies that translate very
high volumes of texts in different domains can eas-
ily build separate MT models and use the appropri-
ate one for each specific project. Systran, however,
does not have these restrictions. What matters most
in a workflow with Systran is the efficiency of the
rules inherent to the MT engine, which admittedly is
high, and the availability of custom user dictionaries
for different domains. The Systran English-Greek
edition we used did not have the ability to use multi-
ple user dictionaries, although this feature is offered
in other editions and language pairs. Thus, while for
a successful Moses system huge amounts of domain-
specific corpora are required, Systran’s custom dic-
tionaries require a few hundred carefully coded en-
tries.

The language pair is also a very important fac-
tor when building statistical models for Moses and
coding efficient Systran user dictionaries. Greek is a
morphologically and syntactically rich language that
can challenge any MT system. Furthermore, it is not
an ideal language for accurate “assembled” transla-
tions that some CAT programs can generate because
the terminology entries used in such operations do
not make use of morphological or syntactical infor-
mation.

Productivity gains may also vary depending on
the style of the translation work. For instance, us-
ing these workflows for translating texts with repet-
itive and step-by-step sections is more productive
than translating texts with a more natural or aca-
demic style. However, in either case there are still
benefits in productivity. It is worth noting that in
all relevant measurements and comparisons the MT
systems (even the mainstream Google Translate ser-
vice which cannot be customized) outperformed the
CAT programs’ native “assemble” features.

Some other important but non-measurable fac-
tors that should be taken into consideration when
evaluating productivity with these workflows are the

JEC 2010 “Bringing MT to the User” Denver, CO

18



so-called “human factors”, such as familiarity with
all involved technologies, experience in the sub-
ject of the translation, volume of the translation
project, ability to identify text patterns and predict
MT results, usability issues, etc (Lagoudaki, 2008).
For general acceptance and use, these technologies
should be integrated into an intuitive end-user appli-
cation. In the following section we attempt to pro-
vide some suggestions and outlines as to how such
an application should be designed and what func-
tions it should be able to perform.

4.1 A proposal for a unified application

An application that would incorporate both tech-
nologies (MT and TM) should mainly be a TM ap-
plication. No matter how efficient an MT system
is, professional translators will always rely on their
TMs and terminology databases. Besides, our in-
creased productivity resulted from the MT systems
in our workflows was possible only because we used
them on top of TM environments. What is actually
needed is a user-friendly “wrapper” application that
will be able to perform the steps in our methodolo-
gies automatically for the user.

4.1.1 Basic features and design
The basic components of the application should be
the translation editor, where the actual translation
work will be performed; the TM databases and the
terminology databases; an editor for examining and
revising the TM and terminology databases; and
a document aligner for creating translation memo-
ries from existing translations. The translation ed-
itor should offer rich text editing features and the
ability to filter and sort segments based on certain
criteria. The editor’s environment should also pro-
vide panes for displaying TM matches, terminology
matches and, for our purpose, MT results. Selective
application of MT and presenting MT suggestions
as another source of reference is a key for success-
ful integration, as it is also mentioned by Lagoudaki
(2008).

Other useful features that could be implemented
include concordance searches against the TM and
terminology databases; ability to assemble trans-
lations from all available databases; interoperabil-
ity with other CAT applications via open standards
(TMX, XLIFF, TBX); automatic quality assurance

control (spell-checking, number and tag checking);
and robust filters for importing and exporting vari-
ous file formats. These features are particularly fa-
vored by TM users (Lagoudaki, 2006).

4.1.2 MT integration
A statistical MT system (such as Moses) integrated
into a CAT program can be trained with existing
TMs. TM databases are usually organized into sub-
jects so our proposed application could monitor the
number of entries in domain-specific TM databases
and provide the user with an option to train an
MT system when this number reaches a satisfactory
level (for example, 50,000 translation units). How-
ever, there are some critical restrictions with this
approach, such as the computing resources and the
time required for training. A solution to this prob-
lem could be the deployment of the MT component
into a separate server machine, either on the user-
side or in a third party’s premises. This third-party
could act as a service provider, so in that case the
MT feature could be offered as Software as a Service
(SaaS). Also, the application may offer an option to
use Moses when there are no TM matches, similar
to the feature offered by Wordfast Classic, and on
demand by the user.

Another statistical MT-related feature that could
be implemented is the ability to build factored mod-
els using the terminology databases. Most modern
CAT tools allow the user to enter linguistic informa-
tion to terminology entries, although this informa-
tion is only used for reference purposes. Our appli-
cation, however, could possibly use it in conjunction
with a POS (Part-of-Speech) tagger to create fac-
tored models for better MT performance.

The statistical MT technology can also find other
uses beyond its main purpose of translating text au-
tomatically, as introduced by the TransType project
(Langlais et al., 2000; Esteban et al., 2004). A typ-
ical example of such use is Caitra (Koehn and Had-
dow, 2009), a CAT tool developed by the Univer-
sity of Edinburgh and based on the Moses decoder.
Caitra uses Interactive Machine Translation, a tech-
nology that offers suggestions of short phrases as
the translator is typing. The suggestions are offered
in an intuitive way without distracting the transla-
tor who has the option to accept the suggestions or
ignore them and continue typing. While the trans-

November 4th, 2010 Panagiotis Kanavos and Dimitrios Kartsaklis

19



lator continues to type, the suggestions offered by
the system change dynamically so the user has al-
ways the option to accept or ignore them. Trados is
a well-known CAT program that implements a sim-
ilar feature called “AutoSuggest”.

Integrating rule-based MT features into a CAT
program seems easier and more flexible. For
instance, Systran requires average computing re-
sources and does not involve any special preparation
steps. However, the efficiency of Systran is greatly
dependent on the quality of the custom dictionaries.
Thus, our unified application should provide a way
to build Systran’s user dictionaries from within the
application. This can be achieved via the terminol-
ogy databases which may include additional fields
for coding Systran’s user dictionaries.

5 Conclusions

All workflows presented in this work lead to the
conclusion that machine translation, either statisti-
cal or rule-based, has already matured and can in-
crease substantially the productivity of professional
translators. Although a comparison with other rel-
evant work would have been of particular interest,
to the best of our knowledge this is the first large-
scale work testing multiple TM-MT configurations
in real-world scenarios. Furthermore, the fact that
our approach is successful with a target language as
highly inflective as Greek means that we can safely
expect productivity increase in many other settings
involving Western language pairs. A crucial factor
is the availability of in-domain corpora, as well as
the domain itself. The benefits of integrating TM
and MT technologies would be even greater for lan-
guage service providers who work with high vol-
umes of technical texts. However, restrictions do
exist, particularly in the implementation of MT in
professional workflows. Currently, there is not a
straightforward way for using MT in TM environ-
ments or a translation software that integrates tightly
both technologies, but work towards this purpose is
in progress by the authors.

The results presented in this work show that trans-
lation workflows are likely to change in the near fu-
ture and machine translation will certainly has its
role in it.

References
Carl, Mark and Silvia Hansen. 1999. Linking Transla-

tion Memories with Example-Based Machine Transla-
tion. In Machine Translation Summit VII, pages 617–
624, Singapore.

Esteban, José, José Lorenzo, Antonio S. Valderrábanos,
and Guy Lapalme. 2004. Transtype2–An In-
novative Computer-Assisted Translation System.
In Proceedings of the ACL-2004 Interactive
Posters/Demonstrations Session, pages 94–97,
Morristown, NJ, USA.

Kanavos, Panagiotis and Dimitrios Kartsaklis. 2008.
Translation and Computers (in Greek). Scientific
American, Greek edition, 6(2):24–31.

Koehn, Philipp and Barry Haddow. 2009. Interactive As-
sistance to Human Translators Using Statistical Ma-
chine Translation Methods. In Machine Translation
Summit XII, pages 73–80, Ottawa, Canada.

Koehn, Philipp and Hieu Hoang. 2007. Factored Trans-
lation Models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL ’07), pages 868–
876, Prague, Czech Republic.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of the Demo and Poster Sessions of the 45th
Annual Meeting of the Association for Computational
Linguistics (ACL ’07), pages 177–180, Prague, Czech
Republic.

Lagoudaki, Elina. 2006. Translation Memory Systems:
Enlightening Users Perspective. Key Findings of the
TM Survey 2006 Carried out During July and August
2006. Imperial College London.

Lagoudaki, Elina. 2008. The Value of Machine Trans-
lation for the Professional Translator. In Proceedings
of the 8th Conference of the Association for Machine
Translation in the Americas, pages 262–269, Waikiki,
Hawaii.

Langlais, Philippe, George Foster, and Guy Lapalme.
2000. Transtype: A Computer-Aided Translation Typ-
ing System. In EmbedMT ’00: ANLP-NAACL 2000
Workshop: Embedded Machine Translation Systems,
pages 46–51, Morristown, NJ, USA.

JEC 2010 “Bringing MT to the User” Denver, CO

20


