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Abstract

Most phrase-based statistical machine translation systems
use a so-called distortion limit to keep the size of the search
space manageable. In addition, a distance-based distortion
penalty is used as a feature to keep the decoder to translate
monotonically unless there is sufficient support for a jump
from other features, particularly the language models.

To overcome the issue of setting the optimum distortion
parameters in the phrase-based decoders and the fact that
different sentences have different reordering requirements,
a method to predict the necessary distortion limit for each
sentence and each hypothesis expansion is proposed. A dis-
criminative reordering model is built for that purpose and
also integrated into the decoder as an extra feature. Many
lexicalised and syntactic features of the source sentences are
employed to predict the next reordering move of the decoder.
The model scores each reordering before the sentence trans-
lation, so the optimum distortion limit can be estimated based
on these score. Various experiments on Turkish to English
and Arabic to English pairs are performed and substantial
improvements are reported.

1. Introduction

Non-hierarchical phrase-based statistical machine translation
systems are one of the most successful machine translation
approaches currently available. Various researchers worked
on different aspects of these systems and many alternatives
and improvements have been proposed. Some of the advan-
tages of the phrase-based systems are fast decoding and bet-
ter coverage of huge numbers of syntactic and non-syntactic
phrases over other approaches [1]. On the other hand, hier-
archical and syntax-based methods learn complex reordering
rules as a part of the translation model building. There are
well-established reordering models to compensate for this in
phrase-based systems, however, they are still limited by some
parameters to make the search process feasible.

An important parameter in most phrase-based systems,
which controls the size of the search space explored by the
decoder, is the so-called distortion limit. The distortion limit
specifies the size of the window which the decoder consid-
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ers to choose the next source phrase. The best value for
this parameter is different for different language pairs. Lan-
guage pairs such as French and English do not need a long
distortion span, since they are very similar in their word
order differences and most of the reorderings can be cap-
tured by the extracted phrases from the bi-text. On the other
side, there are language pairs such as Turkish and English
with fundamentally different word orders. Turkish is gen-
erally a Subject-Object-Verb (SOV) language, which means
for many of the sentences a long reordering is required to
translate the verb in the right place in the English sentence.
However, with a very rich morphology, Turkish word order
can vary and some sentences may not need such long dis-
tance reorderings.

To improve the phrase-based systems’ reordering capa-
bilities, we aim to build a model that scores different reorder-
ing decisions based on lexicalised and syntactic features. In
addition, we use this model to guide the decoder to dynami-
cally change the size of the reordering window according to
the state of translation. Consider the example sentence in fig-
ure 1. We want a model to encourage the decoder to skip the
first word (mn), but translate the next four words monotoni-
cally (mkAn fY AlYAbAn Ant) and finally jump back to
translate the uncovered first word. Thus, we condition our
jumps not only on the start and end of the jump, but also on
the words jumped over. Additionally, in order to increase
the size of the reordering window, we dynamically adjust the
distortion limit according the requirements of the reordering
model. In other words, the size of the window for hypothesis
expansion in the decoder is determined by the current state of
the decoder. The latest translated phrase and all the phrases
that are about to be translated are taken into account to find
the required distortion limit for the next step.

The rest of the paper organised as follows: Section 2
overviews some of the approaches for reordering in phrase-
based models. Section 3 investigates the importance of dis-
tortion in translation quality and speed. Sections 4 and 5,
explain our approach to deal with reordering and Section
6 reports experiments done based on the proposed models.
Section 7, concludes the paper.
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where | | in japan are you

Figure 1: A word alignment example of an Arabic to English
sentence pair. The Arabic sentence is romanised according
to Buckwalter’s method.

2. Related Work

Word order difference between natural languages has been
a major challenge in machine translation. Many approaches
and models have been proposed to deal with the problem.
Syntax-based approaches rely on their syntactic rules to per-
form the reorderings and produce grammatically correct out-
put. On the other hand, phrase-based approaches deal with
most of the local reorderings with the help of extracted
phrases and rely on additional features or pre-processing
steps to tackle the rest of the reordering requirements.

Transforming the source sentence to comply with the
structure of the target language is a method that has been ap-
proached from different angles. [2] automatically extracted
syntactic rules to transform the source sentence and mono-
tonically decode the transformed source sentence. [3, 4, 5]
used a set of hand-crafted rules and syntactic trees to reorder
the source sentence. Source reordering has the advantage of
being able to employ complex syntactic information specific
to the languages involved. Additionally, since reordering the
source is a pre-processing step, it can easily be integrated
into many machine translation systems. On the other hand,
reordering decisions are made independent of the other fea-
tures in the decoder, such as the language model. If an incor-
rect permutation is selected, it is not easy for the decoder to
undo it.

Another category of reordering models, called lexicalised
reordering, can be integrated into the decoder as an addi-
tional feature or features, so the reordering scores are com-
bined with evidence provided by other features. Lexicalised
reordering models were first introduced by [6]. They con-
dition the reordering on the previously translated phrase and
the next phrase to be translated considering the source and
target sides. Different movements are grouped together to
deal with data sparsity. [7] conditioned the exact jumps on
the source side words (unigram) and had three features added
to the decoder. [8] considered both source side and target side
phrases and predicted three different types of movements of
the phrases'. [9] argue that previous lexicalised reordering
models fail capturing long distance reorderings and propose
a hierarchical lexicalised reordering model. Despite dealing

IThe model is implemented in the open source SMT system, Moses
http://www.statmt.org/moses. Itis possible to configure the sys-
tem to build the model with different contexts. For example, only source
side or only previous phrases.

with hierarchical reordering rules, their method does not rely
on cubic-time parsing algorithms such as those used in hi-
erarchical phrase-based models ([10]). The model analyses
the alignments beyond adjacent phrases to extract reordering
rules, which are more complex than predicting the orienta-
tion between blocks of consecutive phrases. They classify
lexicalised reordering models into word-based, phrase-based
and hierarchical orientation models and demonstrate that the
latter performs significantly better than the others.

[11] have considered reordering in machine translation
as a case of Linear Ordering Problem and learned the rela-
tive orders of words in a sentence based on multiple features.
A dynamic programming algorithm based on chart parsing
is developed to find the best reordering within a neighbour-
hood. They have used the method as a preprocessing step
to translate German to English and reported improvements
over a strong baseline equipped with a lexicalised reordering
model.

[12] proposed a method based on maximum entropy prin-
ciple to combine different features and predict the word
orientation. They combined multiple lexicalised features
and for generalisation, considered features based on word
classes. They concluded that features based on the source
sentence words perform better than those based on the target
side and allowing for more context always helps. Since pre-
dicting the exact position is not easy, the next positions are
grouped together and the model predicts the class of the next
jump. Although, they only report the results for a small set
of classes (backward, monotone and forward), their model is
general enough to predict more fine-grained classes. Inspired
by their work, [13] have built two models for each transition.
One based on the features of the outbound word (the word
that has just been translated) and one model based on fea-
tures of the inbound word (the word, we are about to trans-
late). Their feature set includes words, part of speech (POS)
tags and sentence length features. They argue that using the
new models renders the linear future distortion cost inappro-
priate and add future distortion cost as another feature to be
optimised through MERT. In [14] a maximum entropy based
model is proposed to predict the orientation of neighbouring
blocks in their BTG?-based decoder. They have two types of
BTG merging rules, straight or inverted and the reordering
model weights the merging rules using lexicalised features
of the source and target side. Following [15], they extend the
model to include linguistically-aware features.

With the same motivation as ours, that different sentence
types require different reordering treatments, [16] classify
the Chinese sentences under three categories and build re-
ordering models for each category. For sentence type identi-
fication, a Support Vector Machine (SVM) classifier is built,
with features including all the words in the sentence. They
report substantial improvements over the baseline for the
Chinese-to-English IWSLT 2007 task.

2Bracketing Transduction Grammar
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3. Distortion and Translation Quality

As mentioned before, due to the complex nature of decod-
ing in machine translation [17], many parameters are used to
manage the size of the search space. Distortion limit or the
skip widow size is one of the most important parameters that
controls the freedom of the decoder in permuting words to
capture the word order differences between the source and
the target languages. The best results on different language
pairs need different settings for the distortion limit. It is
common to set the parameter according to the nature of lan-
guages involved and with respect to speed and memory re-
quirements. Longer limits lead the decoder to generate more
hypotheses and increase translation time. However, increase
in time is not the only drawback of having a longer distortion
limit. More hypotheses are generated, therefore more burden
is put on the language model to choose the best reordering
decision.

Figure 2 shows the result of decoding with distortion lim-
its between | and 15. Although both graphs show the results
of an identical system on two data-sets, the best result for
each one of them is achieved by different parameters. One
way to find the best distortion limit is to run the tuning pro-
cess with a range of distortion limits and choose the one with
the highest score. Apart from the substantial amount of work
required to perform the tuning several times, it is not even
guaranteed that the best distortion limit for the development
set is the best for the unseen test set.

Another parameter related to distortion is the reordering
constraint strategy, which controls the decoder in how to skip
words and return back for open positions. [18] investigated
different reordering constraints and reported their differences
on multiple translation tasks. [19] also proposed a method to
find the best reordering constraint independent of other fea-
tures and solely based on the ability of the constraint to cover
all the needed n-grams in a sentence. Figure 3 shows the
translation quality for two different reordering constraints on
a Turkish-to-English translation task. One graph of figure 3
is constrained by the so-called “Window length” constraint,
which restricts the decoder by not letting it to choose a phrase
with more than dl words distance from the first open position
of the source sentence. The constraint in the other graph is
“Maximum distortion”, which is more relaxed and the only
restriction is the distance between the last translated phrase
and the next one [20]. As one can see, the Turkish-English
language pair requires relatively long distortion limits, how-
ever, the maximum distortion strategy reaches the best re-
sults earlier than the window length strategy and overall has
a higher score.

We propose a method of selecting the best distortion limit
in each step of hypothesis expansion. This method deter-
mines the size of the window required to be searched for
the next phrase to be translated. Adjusting the distortion
limit prevents the decoder to explore undesirable parts of the
search space. This saves both time and improves the perfor-
mance by avoiding extra noise during the search. In the next
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Figure 2: The effect of the distortion limit parameter on the
quality of the translation system. Both graphs are results
of the baseline system (see Section 6) on Arabic-English of
BTEC task, tuned on IWSLTO03.ar-en.
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Figure 3: Results of two different reordering constraints on
the Turkish-English of the BTEC task. Both graphs are the
BLEU score of the baseline system on the IWSLTO3.tr-en
tuning set.

section, we first describe a lexicalised reordering model to
establish the main set of features required for a discrimina-
tive reordering model.

4. Reordering Models
4.1. Lexicalised Reordering Model

We build a lexicalised reordering model based on [7] with
three additional features modelling the costs of jumping
from, jumping to and jumping over the words involved in
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VBD DTNN CcC CD

PRP VBZ CD IN CD

it ’S five after one

Figure 4: A word alignment example of a sentence from the
Arabic-English training data. The Arabic sentence is roman-
ised according to Buckwalter’s method.

the reordering. Assume we want to collect training frequen-
cies from the example sentence in figure 4. We loop over the
target sentence and collect the jump statistics by considering
e; and e;y1, where 0 <= ¢ < I. For example, for ; = 1,
we consider e; and ey, which are aligned to fo and fs3 re-
spectively. The following words are the local context of this
jump (from fy to f3) and their respected frequencies will be
increased by one:

1. fo as outbound word
2. f3 as inbound word
3. f1 and f5 as jumped over words

To avoid collecting evidence for a jumped over word multiple
times, the frequency of being jumped over for a position only
increases once. We collect the above frequencies for all the
jumps in one sentence and all the sentences in the training
data.

The training examples defined above will be used to add
three additional features to the decoder:

count,(fj,d; ;)

lo(fi]ajajladj,j’) = W (hH

which is smoothed by a factor («) as:

count, (d; ;/)

aZdeD count, (d) + COllnto(fj, djvj')

lo(fi]ajaj/adj,j') = count (f)
] ol [

@)
where, d; ; is a class associated with a range that the distance
between j and j’ belongs to. D is the set of all jump classes.
The distance between j and j’ is defined as:

j—j3 =1 ifj>4
distance(j, /) =47,/ 70 T2
7= ifj<j
Two more features I; (inbound) and [; (jumped-over),
similar to this are also added for inbound and jumped-over
words.

We performed a small series of experiments to evaluate
the effect of these features on the translation quality and the
system equipped with these features improved the baseline
(see Section 6) for the two best performing distortion limits
of the baseline. Table 1 shows the results.

SET | RuN | pL=6 DL=10
BASELINE | 0.5348 0.5449
IWSLTO08(dev) LEX 0.5461 0.5534
BASELINE | 0.5022 0.5128
IWSLTO07(test) LEX 0.5121 0.5142

Table 1: Comparing the baseline and the lexicalised reorder-
ing model with inbound, outbound and jumped-over features.
The results are on Arabic-English of BTEC task.

4.2. Discriminative Reordering Model

The results in the previous section show that the distance-
based distortion penalty plus the language model are not
enough for making the best reordering decisions. Lexicalised
reordering models [6, 21] have been shown to be effective
for many language pairs in improving the translation qual-
ity. However, because we want to predict the distortion limit,
we need to calculate all the reordering costs before decoding
the sentence. Additionally, we want to incorporate features
extracted from the whole sentence, along with surface fea-
tures of the phrases we are about to translate in the reorder-
ing model. Lexicalised reordering models rely on surface
forms of the source and target phrases that have been trans-
lated or the ones we are about to translate. Factored models
[22] have been proposed to incorporate features such as POS-
tags, however, global features such as chunk information are
not easily included.

Inspired by [12], we build a maximum entropy classifier
[23] that predicts the length of the next jump based on the
local lexicalised features and the sentence structure. To in-
crease the classification accuracy, we divide the jumps into a
set of classes. For example, jumps with length 2 to 4 are in
one class, those with length 5 to 9 in another, etc. Feature
functions are binary functions of the form:

hk(fi]7jvj/7dj,j’) “4)

where, fj is the source sentence with all the syntactic in-
formation including POS and chunking tags. hj is a binary
function which is 1 when the feature is present for the spe-
cific jump decision and 0, if it is not. j and j’ are source
positions and d; ;- is the jump class between them. The de-
cision formula is:

N

. 1 .
p(dj ol fi.5,3") = ZGXP(Z Mehi (4,5 dj ) (5)
k=1
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where Z is a normalisation factor:

N
7 = Zexp (Z/\khk(fi]a]ajlvd)) (6)
k=1

deD

One of the main benefits of using a discriminative model
for this classification task is the ability of these models to
learn millions of inter-dependent features. We define an ex-
tensive set of features including mostly local context of each
jump and some of the characteristics of the sentence. The
following list is the set of features used in training the model
for a jump from j to 5 in sentence f;':

e inbound (IN) and outbound (OUT) words, f; and f}/
o both words together (PAIR), f; + f;/

e jumped over (OVER) words, all the words between j
and ;' as described in Section 4.1

e part of speech tags of inbound, outbound, pairwise and
jumped over words (IN.POS, OUT.POS and ...)

o bigram inbound (IN2) and outbound (0UT2), f;_1+f;
and fjr + fir41

e are both j and j’ in the same syntactic chunk or not
(1CHUNK and 2CHUNK)?

e does fi] contain a question mark (15.Q)?

e is there a question mark or full stop between j and j’
(CROSS.FULL)?

e is there a punctuation mark between j and j’
(CROSS.PUNCT)?

Table 2 shows the contribution of each set of features to
the quality of the model. We used the Arabic-English train-
ing data for these experiments. 500 sentences were heldout
for validation and 500 sentences were set aside for testing.
The rest of the collection was used for training the model.

5. Dynamic Distortion

In Section 3, we argued for the importance of determining
the optimum distortion limit. Both translation quality and de-
coding speed are influenced by changing this parameter. The
discriminative model described in the previous section, pro-
vides us with some information about the reordering needs
of a sentence before starting to decode it. This enables us to
determine the best distortion limit for this particular sentence
and this particular hypothesis expansion.

Changing the distortion limit for each sentence or more
specifically for each hypothesis expansion, has a few advan-
tages: Firstly, it removes the need for tuning the system with
many different distortion limit settings to find the best one.
As it is clear from the results of Section 3, the best value for
the parameter on one data set may not be the best for another.

357

Features | Accuracy | FV [ #" | M
OuUT, IN 0.7127 0.5306 | 0.6538 | 0.4935
+OVER 0.8337 0.6265 | 0.7720 | 0.5874

+PAIR 0.8460 0.6617 | 0.7940 | 0.6197
+(*.POS) 0.8826 0.6909 | 0.8496 | 0.6503
+(*.P0OS2) 0.9024 0.7666 | 0.8392 | 0.7290
+18.Q,CROSS.* 0.9042 | 0.7806 | 0.8525 | 0.7404
+IN2,0UT2 0.9085 0.7964 | 0.8643 | 0.7566
ALL 0.9091 0.7958 | 0.8737 | 0.7503

Table 2: Classification results of the maximum entropy clas-
sifier with different features and the contribution of each set
of features. F'M, #M and ﬁM are macro I'-measure, macro-
precision and macro-recall respectively. macro F'-measure is
calculated by averaging over the F'-measures of each class.
*.POS means all the features that their name end with .POS.
The evaluation is done on the Arabic-English data set.

Secondly, the limit can be very long for some sentences or
some parts of a sentence. Changing it for each hypothe-
sis expansion can compensate for long distortion in terms of
decoding speed. Basically, we increase the distortion when
it is needed and save time when there is no need for long
distance reorderings. Thirdly, adjusting the distortion limit
reduces the amount of unnecessary jumps in some parts of
the sentence and hence decreases noise in the search process,
which leads to better translation quality. Additionally, other
parameters of the search algorithm that control the size of
the search space, such as beam width or stack size can be
increased without increasing the decoding time substantially.

Before decoding sentence f;/, we use the classifier de-
scribed in the previous section to compute the probability
p(dj | f{.j,7") for each j and j/, where 0 <= j,j’ <=
J+1landforalld € D. 0 and J + 1 are also considered
to include the initial move after the start and the final jump
before the end symbol. In the next step, the most probable
jump after each source position is calculated and the distance
is saved as the best distortion limit after that position. To
score the jumps after each source position j, equation 7 is
used:

j//:j/ ‘?”:J—’—l
si(7) = TI p(dirlfl.5.5") 1] Q-pldjnlfi.5.5")
j"=0 =341

(7
and the distortion limit estimated by this approach for posi-
tion j equals to:

di(j) = distance(j, arg max{s;(j')}) 8)
i
where distance is defined in equation 3. This way we find
the most likely jump after f; and set the distortion limit at
position j to length of the jump. The above equations are for
forward distortion and similar equations are used for back-
ward distortions.
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Data set | Source lang | Sentences | Average. len | Words | Vocabulary [ OOV [ Number of refs
train Arabic 19972 8.50 169943 14519 - -

train Turkish 19972 8.12 162198 6098 - -
IWSLT03.ar-en Arabic 506 6.56 3323 1095 111(3.34%) 16
IWSLT04.ar-en Arabic 500 6.95 3479 1189 101(2.90%) 16
IWSLTO05.ar-en Arabic 506 6.66 3375 1182 124(3.67%) 16
IWSLT(07.ar-en Arabic 489 6.45 3158 1100 165(5.22%) 6
IWSLT08.ar-en Arabic 507 6.73 3414 1130 153(4.48%) 16
IWSLTO03.tr-en Turkish 506 6.18 3131 1142 152(4.85%) 16
IWSLT04.tr-en Turkish 500 6.19 3096 1209 175(5.65%) 16

Table 3: Corpus statistics and OOV token rates for the development and test sets used for the experiments.

6. Experiments

To examine the effects of the discriminative reordering
model and the dynamic distortion on translation quality, we
have chosen the Arabic-to-English and Turkish-to-English
data sets from the IWSLT BTEC task as they involve many
short, medium, and long distance re-orderings. Some of the
statistics of the data sets are shown in Table 3.

6.1. Baseline

The preprocessing stage for Arabic-to-English includes to-
kenisation of both sides and lower casing of the English side.
We removed all the diacritic characters from the Arabic side
and normalised punctuation. For tokenising Turkish, we used
Morfessor [24] to automatically analyse the morphology of
the source side. Lower casing was applied to both source and
target sides of Turkish and English.

The decoder is a common multi-beam, multi-stack
phrase-based decoder, described in [25] with the following
features:

e phrase translation probabilities and lexical probabili-
ties for both directions

e a4-gram language model
e phrase and word penalties
e distance-based re-ordering penalty

The weights for the features are optimised by MERT [26]
to maximise the BLEU [27] score. We optimised the discrim-
inative model using the L-BFGS implementation within the
MALLET toolkit [28]. The built model is used to score the
reordering options before the decoding.

6.2. Results

For the Turkish-to-English task, we tune the base-
line (BASELINE) and the discriminative reordering model
(D1scrIM-REO) for distortion limits O to 17 and tune
Arabic-English for distortion limits 0 to 15. For both tasks
dynamic distortion method (DYNAMIC-DL) is tuned. Ta-
bles 4 and 5 show the results for the Turkish-to-English and

Arabic-to-English tasks, respectively. For both tasks we ran
the baseline with the lexicalised reordering model of Moses
[8], with no significant improvements, so we did not include
the results of the lexicalised reordering model here.

In the Arabic-to-English task the window length con-
straint performs better than the other constraints. In this con-
straint the size of the jump is restricted by the first uncovered
position of the source sentence. However, since we change
the distortion limit during decoding for the dynamic distor-
tion method, an uncovered position outside the window for
one move can be inside the distortion limit window for an-
other. Therefore, we relax this restriction in the dynamic dis-
tortion method and allow the decoder to make jumps, even if
the first uncovered position remains outside the current dis-
tortion. Also, we relax the backward distortion limit restric-
tion if there is an uncovered position outside it.

In most cases, DISCRIM-REO performs better than the
baseline, particularly on longer distortion limits, which is ex-
pected given the fact it has an extra feature to deal with the
large amount of reordering decisions. In all the experiments,
confirming previous findings [13], we found that the future
distortion cost is crucial for the quality of the translation, par-
ticularly for systems with long distortion parameters.

Overall the discriminative model and the dynamic dis-
tortion method performed better for Turkish-to-English com-
pared to Arabic-to-English. This can be justified by the fact
that Turkish-to-English translation requires more reorderings
than Arabic to English.

7. Conclusions

We showed that choosing the best distortion limit for a
language pair or even a data set can gain substantial im-
provements in phrase-based statistical machine translation
decoders. To avoid the difficulty of running with all possi-
ble settings, we proposed a method of dynamically adjusting
the distortion limit for each hypothesis expansion in phrase-
based decoders. To determine the best value for the distortion
limit at each move, a discriminative reordering model with
numerous features is built and integrated into the decoder as
an extra feature.

Results of the experiments by DISCRIM-REO show that
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SET RUN | bL=6 pL=11 DL=17
BASELINE 0.4500 0.4576 0.4574

IWSLTO03(dev) | DISCRIM-REO | 0.4591 0.4641 0.4669
DyNaMIC-DL | 0.4640 0.4640 0.4640

BASELINE 0.4273  0.4366  0.4363

IWSLTO04(test) | DISCRIM-REO | 0.4378 0.4434 0.4412
DyNAMIC-DL | 0.4492 0.4492 0.4492

Table 4: Experimental results on Turkish-English data sets. The first three rows show
rest of the results on the test set. set.

the result on the development set and the

SET RUN \ pL=3 DL=6 pL=9 bpL=12 DL=15
BASELINE 0.5358 0.5348 0.5464 0.5383 0.5416

IWSLTO08(dev) | DISCRIM-REO | 0.5338 0.5458 0.5507 0.5489 0.5489
DyNaMiICc-DL | 0.5571 0.5571 0.5571 0.5571 0.5571

BASELINE 0.6001 0.6024 0.6199 0.6076 0.6129

IWSLTO03(test) | DISCRIM-REO | 0.6034 0.6053 0.6220 0.6123 0.6137
DyYNAMIC-DL | 0.6228  0.6228 0.6228 0.6228  0.6228

BASELINE 0.5619 0.5733 0.5765 0.5789 0.5784

IWSLTO04(test) | DISCRIM-REO | 0.5534 0.5748 0.5794 0.5820 0.5844
DyNaAMIC-DL | 0.5856 0.5856 0.5856 0.5856 0.5856

BASELINE 0.5789 0.5875 0.5966 0.5841 0.6007

IWSLTO5(test) | DISCRIM-REO | 0.5815 0.5922 0.6002 0.5941 0.5853
DyNaAMIC-DL | 0.6016 0.6016 0.6016 0.6016 0.6016

BASELINE 0.5010 0.5022 0.5103 0.5130 0.5098

IWSLTO07(test) | DISCRIM-REO | 0.5047 0.5091 0.5196 0.5136 0.5141
DyYNAMIC-DL | 0.5242 0.5242 0.5242 0.5242 0.5242

Table 5: Experiment results on Arabic-English data sets. The first three rows show the result on the development set and the rest

of the results on the test set.

more features in the discriminative reordering model helps to
improve the accuracy of the classification and the quality of
the translation, however, lexical features are more effective
than POS or chunk-based features.

Since there is no difference between the features
of DISCRIM-REO and DYNAMIC-DL, the improvements
achieved by the latter is due to the change of the search space
explored by the decoder. Therefore, guiding the decoder dur-
ing the search can be effective in improving the quality of
translation.
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