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tWe des
ribe a simple and general 
onstru
-tion, whi
h 
an be used to bootstrap use-ful SMT models from an interlingua-basedMT system and add non-trivial robustness.As in previous work, the rule-based sys-tem is used to generate aligned data, whi
his then used to train SMTs. The nov-elty des
ribed here is to introdu
e an �in-terlingua grammar� whi
h asso
iates in-terlingua representations with surfa
e textstrings in a reversible way, making it pos-sible to fa
tor the indu
ed SMT translationinto Sour
e ! Interlingua and Interlingua! Target 
omponents. We des
ribe sev-eral re�nements of the basi
 s
heme. If thesour
e and target languages have widelydifferent word-orders, performan
e 
an begreatly improved by de�ning two differentsurfa
e forms for the interlingua grammar,based on the sour
e and target languagesrespe
tively; the interlingua grammar 
anbe used to res
ore N-best SMT translationhypotheses; and, �nally, one 
an 
ombineSMT and RBMT modules into a hybridsystem, in
reasing robustness without sa
-ri�
ing pre
ision. We have implementedthese ideas inside English ! Fren
h andEnglish ! Japanese versions of the OpenSour
e MedSLTmedi
al spee
h translator,and present an evaluation.1 Introdu
tionAt the moment, the dominant paradigm for ma-
hine translation is the statisti
al one (Statisti
alMa
hine Translation; SMT), but rule-based ma-
hine translation (RBMT) is far from dead. The
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advantages and disadvantages of ea
h approa
h arewell known. SMT systems are robust, and 
anbe built qui
kly if suf�
ient quantities of bilingualdata are available. RBMT systems, on the otherhand, 
an be built without mu
h training data, andappear to be more reliable, at least in limited do-mains (Seneff et al., 2006; Wilks, 2007). In appli-
ations where training data is hard to obtain, andpre
ision is more important than re
all, there isstill mu
h to re
ommend them.To get the best of both worlds � a robust systemthat 
an be 
onstru
ted without a large bilingual
orpus � there is a natural way to 
ombine SMTand RBMT: we use the RBMT to 
reate arti�
ialtraining data for an SMT model. A prominent re-
ent example is (Dugast et al., 2008), whi
h de-s
ribes an experiment where SYSTRAN was usedto translate a monolingual Fren
h 
orpus, 
reatingan aligned 
orpus whi
h then served as trainingdata to 
reate a Fren
h ! English SMT model.The present paper has as its starting point an ear-lier study, des
ribed in (Rayner et al., 2009), whi
hused MedSLT (Bouillon et al., 2008), a medium-vo
abulary interlingua-based multilingual OpenSour
e medi
al spee
h translator. The goal wasto bootstrap a useful SMT from the RBMT. Wegenerated large parallel 
orpora from English !Fren
h and English ! Japanese versions of thesystem, trained SMTmodels from them, and testedthese models on data whi
h was outside the 
over-age of the RBMT. Our hope that the SMT wouldbe able to add robustness to the RBMT, re
over-ing on some input whi
h the RBMT was unable topro
ess, but the results reported were negative. Al-though the SMT did produ
e good translations forabout 15% of the out-of-
overage senten
es, aboutas many more were translated in
orre
tly. We 
on-
luded that the major loss of pre
ision rendered thesmall improvement in re
all worthless.
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Here, we show, on the 
ontrary, that it is infa
t quite possible to a
hieve the goals we setourselves in the earlier paper, if we 
orre
tly ex-ploit the interlingua-based ar
hite
ture of the orig-inal RBMT system to train separate SMT mod-els for translation from sour
e language to inter-lingua, and from interlingua to target language.The key te
hni
al idea is to de�ne an �interlinguagrammar�, whi
h asso
iates ea
h interlingua rep-resentation with a surfa
e text form, whi
h we will
all an �interlingua gloss�. We 
an then 
onstru
taligned 
orpora whi
h pair sour
e or target sen-ten
es with interlingua glosses.Fa
toring SMT translation through the interlin-gua turns out to offer several advantages. To beginwith, the original RBMT system's ability to offeruseful performan
e on noisy spee
h input depends
ru
ially on the interlingua; in the live appli
ation,ea
h senten
e produ
ed by the spee
h re
ogniser is�rst translated into the interlingua, and then �ba
k-translated� into the sour
e language. The user isgiven a 
han
e to approve or abort the ba
ktrans-lation before a target language senten
e is pro-du
ed. The system gives reliable translations forsenten
es whi
h produ
e good ba
ktranslations,while the remaining ones are dis
arded. If SMT isperformed using the interlingua as a pivot, it is pos-sible to employ the same basi
 ar
hite
ture. As wewill show later, a hybrid system 
an also use SMTto translate into the interlingua and then ba
ktrans-late the result before translating to the target, im-proving robustness without 
ompromising reliabil-ity.On
e the interlingua grammar is available, itturns out that we 
an also exploit it for other pur-poses. First, if the SMT de
oder is set to produ
eN-best output, we 
an use the interlingua grammaras a knowledge sour
e to reorder N-best hypothe-ses, preferring ones whi
h the grammar de�nes aswell-formed. Se
ond, when the sour
e and tar-get languages have widely different word-orders,SMT translation 
an be made far more a

uratewhen it is broken up into several pro
essing steps.Here, we were partly inspired by (Xu and Sen-eff, 2008), who address the problem arising fromword-order differen
es when translating from En-glish to Chinese. They �rst perform RBMT fromthe English sour
e to an intermediate representa-tion they 
all �Zhonglish�, in whi
h English wordsare arranged in a Chinese order; they then use anSMT to produ
e the �nal Chinese result. For En-

glish to Japanese translation, we have a similar setof modules, but 
onne
ted in a different order: we�rst use SMT to translate English into an English-like interlingua, then reformulate the interlinguainto a Japanese-ordered �Japlish�, and �nally useRBMT to generate Japanese.The rest of the paper is organised as follows.Se
tions 2 and 3 present ba
kground on the Med-SLT system, and the way it uses interlingua; Se
-tion 4 des
ribes the experimental framework, andSe
tion 5 the experiments themselves; Se
tion 6gives the results; and Se
tion 7 
on
ludes.2 Ba
kground: the MedSLT SystemMedSLT (Bouillon et al., 2008) is a medium-vo
abulary interlingua-based Open Sour
e spee
htranslation system for do
tor-patient medi
alexamination questions, whi
h provides any-language-to-any-language translation 
apabilitiesfor all languages in the set fEnglish, Fren
h,Japanese, Arabi
, Catalang. Both spee
h re
ogni-tion and translation are rule-based. Spee
h re
og-nition runs on the Nuan
e 8.5 re
ognition plat-form, with grammar-based language models builtusing the Open Sour
e Regulus 
ompiler. As de-s
ribed in (Rayner et al., 2006), ea
h domain-spe
i�
 language model is extra
ted from a gen-eral resour
e grammar using 
orpus-based meth-ods driven by a seed 
orpus of domain-spe
i�
 ex-amples. The seed 
orpus, whi
h typi
ally 
ontainsbetween 500 and 1500 utteran
es, is then used ase
ond time to add probabilisti
 weights to thegrammar rules; this substantially improves re
og-nition performan
e (Rayner et al., 2006, x11.5).Performan
e measures for spee
h re
ognition inthe three languages where serious evaluations havebeen 
arried out are shown in Table 1.At run-time, the re
ogniser produ
es a sour
e-language semanti
 representation in AFF (AlmostFlat Fun
tional Semanti
s; (Rayner et al., 2008)).This is �rst translated by one set of rules intoan interlingual form, and then by a se
ond setinto a target language representation. The inter-lingua and target representation are also in AFFform. A target-language Regulus grammar, 
om-piled into generation form, turns the target repre-sentation into one or more possible surfa
e strings,after whi
h a set of generation preferen
es pi
ksone out. Finally, the sele
ted string is realised asspoken output.



Language Vo
ab WER SemEREnglish 447 6% 11%Fren
h 1025 8% 10%Japanese 422 3% 4%Table 1: Re
ognition performan
e for English,Fren
h and Japanese heada
he-domain re
ognis-ers. �Vo
ab� = number of surfa
e words in sour
elanguage re
ogniser vo
abulary; �WER� = WordError Rate for sour
e language re
ogniser, on in-
overage material; �SemER� = semanti
 error rate(proportion of utteran
es failing to produ
e 
or-re
t interlingua) for sour
e language re
ogniser, onin-
overage material. Differen
es in vo
abularysize are mainly related to differen
es in in�e
tionalmorphology.3 Interlingua and interlingua grammarsThe spa
e of well-formed interlingua representa-tions in MedSLT is de�ned by yet another Regu-lus grammar (Bouillon et al., 2008); this grammaris designed to have minimal stru
ture, so 
he
k-ing for well-formedness 
an be performed veryqui
kly. During spee
h understanding, the well-formedness 
he
k is used as a knowledge sour
eto enhan
e the language model for the sour
e lan-guage. The spee
h re
ogniser is set to gener-ate N-best re
ognition hypotheses, and hypothe-ses whi
h give rise to non-well-formed interlingua
an safely be dis
arded. Use of this �highest-in-
overage� res
oring algorithm is found to redu
esemanti
 error rate during spee
h understanding byabout 10% relative.The interlingua grammar is built in su
h a waythat the surfa
e forms it de�nes 
an also be usedas human-readable glosses. We will make heavyuse of these glosses in what follows. The usualform of the �interlingua gloss language� is mod-elled on English. It is, however, straightforward toparametrize the grammar so that glosses 
an alsobe generated with word-orders based on those o
-
urring in other languages; here, we have 
reatedone based on Japanese.Table 2 shows examples of English domain sen-ten
es together with translations into Fren
h andJapanese, and interlingua glosses in English-basedand Japanese-based format. Note the very sim-ple stru
ture of the interlingua gloss, whi
h is inmost 
ases just a 
on
atenation of text representa-tions for the underlying AFF representation; sin
e

AFF representations are unordered lists, they 
anbe presented in any desired order. Thus the AFFfor the �rst example, �does the pain usually lastfor more than one day� is1[null=[utteran
e_type,ynq℄,arg1=[symptom,pain℄,null=[state,last℄,null=[tense,present℄,null=[freq,usually℄,duration=[spe
,[more_than,1℄℄,duration=[timeunit,day℄℄The English-format interlingua gloss, �YN-QUESTION pain last PRESENT usually dura-tion more-than one day� presents these elementsin the order given here, whi
h is approximatelythat of a normal English rendition of the senten
e.In 
ontrast, the Japanese-format gloss, �more-than one day duration pain usually last PRESENTYN-QUESTION� makes 
on
essions to standardJapanese word-order, in whi
h the senten
e nor-mally ends with the verb (here, tsuzuki masu), fol-lowed by the interrogative parti
le ka.Similarly, in the se
ond example from Table 2,we see that the English-format gloss puts �s
-when� (�subordinating-
onjun
tion when�) beforethe representation of the subordinate 
lause; theJapanese-format gloss puts �s
-when� after, mir-roring the fa
t that the 
orresponding Japaneseparti
le, to, 
omes after the subordinate 
lausetabemono wo taberu. This is literally �food OBJeat�, i.e. �(you) eat food�; note that the Japanese-format interlingua suppresses the personal pro-noun �you�, again following normal Japanese us-age.In the next se
tion, we explain how we use theinterlingua, and in parti
ular the interlingua glossforms, to 
reate a bootstrapped SMT frameworkmu
h more powerful than the one from (Rayner etal., 2009). We �rst review their 
onstru
tion, andthen explain what we have added to it.4 Experimental frameworkWe start with a well-known te
hnique for boot-strapping a statisti
al language model (SLM) froma grammar-based language model (GLM). Thegrammar whi
h forms the basis of the GLM issampled randomly in order to 
reate an arbitrar-ily large 
orpus of examples; these examples arethen used as a training 
orpus to build the SLM1AFF representations and glosses have been slightly simpli-�ed for presentational reasons.



English does the pain usually last for more than one dayEng-Interlingua YN-QUESTION pain last PRESENT usually duration more-than one dayFren
h la douleur dure-t-elle habituellement plus d'un jourJap-Interlingua more-than one day duration pain usually last PRESENT YN-QUESTIONJapanese daitai i
hini
hi sukunakutomo itami wa tsuzuki masu kaEnglish does it ever appear when you eatEng-Interlingua YN-QUESTION you have PRESENT ever pain s
-when you eat PRESENTFren
h avez-vous déj�a eu mal quand vous mangezJap-Interlingua eat PRESENT s
-when ever pain have PRESENT YN-QUESTIONJapanese koremadeni tabemono wo taberu to itami mashita kaEnglish is the pain on one sideEng-Interlingua YN-QUESTION you have PRESENT pain in-lo
 head one side-partFren
h avez-vous mal sur l'un des 
�otés de la t�eteJap-Interlingua head one side-part in-lo
 pain have PRESENT YN-QUESTIONJapanese atama no katagawa wa itami masu kaTable 2: English MedSLT examples: English sour
e senten
e, English-format interlingua gloss, RBMTtranslation into Fren
h, Japanese-format interlingua gloss and RBMT translation into Japanese(Jurafsky et al., 1995; Jonson, 2005). We adaptthis pro
ess in a straightforward way to 
onstru
tan SMT model for a given language pair, us-ing the sour
e language grammar, the sour
e-to-interlingua translation rules, the interlingua-to-target-language rules, and the target language gen-eration grammar.We use the sour
e language grammar to builda randomly generated sour
e language 
orpus; asshown in (Ho
key et al., 2008), it is important tohave a probabilisti
 grammar. We then use the
omposition of the other 
omponents to attemptto translate ea
h sour
e language senten
e into atarget language equivalent, dis
arding the exam-ples for whi
h no translation is produ
ed. The re-sult is an aligned 
orpus of arbitrary size, whi
h
an be used to train an SMT model. In (Rayner etal., 2009), the 
orpus was a bilingual one, 
onsist-ing of hSour
e, Targeti pairs. In the present paper,our 
orpora also 
ontain the intermediate interlin-gua steps, and thus 
onsist of hSour
e, Interlingua-Gloss, Targeti triples.We used this method to generate aligned 
or-pora for English ! Interlingua ! Fren
h and En-glish ! Interlingua ! Japanese. Ea
h aligned
orpus started with one million randomly gener-ated English senten
es. After dis
arding senten
eswhi
h re
eived no translation, we were left withabout 310K triples. We randomly held out 2.5% ofea
h of these sets as development data, and 2.5%as test data. Using Giza++, Moses and SRILM(O
h and Ney, 2000; Koehn et al., 2007; Stol-


ke, 2002), we trained SMT models for the fol-lowing six pairs: English ! English-Interlingua;English ! Fren
h; English ! Japanese; English-Interlingua ! Fren
h; Japanese-Interlingua !Japanese; English-Interlingua ! Japanese. Themodels were tuned in the standard way usingMERT. As reported in (Rayner et al., 2009), thequantity of training data available appears easilysuf�
ient to ensure that translation performan
etops out.The resulting models were 
ombined in theways des
ribed in Se
tion 5 to translate the testportion of the English 
orpus. Again following(Rayner et al., 2009), our primary evaluation met-ri
 quanti�es agreement between the translationsprodu
ed by the SMT and those produ
ed by theRBMT. We use the most straightforward measure:we take those senten
es in the test set whi
h do notalso o

ur in the training material (sin
e both setsare independently randomly generated, overlap isinevitable), and 
ount the proportion for whi
h theSMT translation is the same as the RBMT transla-tion. As demonstrated in the earlier paper, evalua-tion by human judges indi
ates that differen
es fre-quently favour the RBMT and hardly ever favourthe SMT. This shows that the metri
 has intuitivesigni�
an
e, and that s
ores of less than 100% rep-resent real de�
ien
ies in the SMT's performan
e.Finally, we tested the best 
on�gurations on theout-of-
overage MedSLT dataset from (Rayner etal., 2009), using human judges to evaluate the re-sults.



5 ExperimentsWe 
ombined the resour
es des
ribed in the previ-ous se
tions to 
ompare the performan
e of severaldifferent translation pipelines, for both English !Fren
h and English ! Japanese:5.1 Plain RBMTTranslation using the baseline RBMT system.5.2 Plain SMTTranslation using a Sour
e ! Target SMT model.5.3 SMT + SMTTranslation using a Sour
e ! English-interlinguaSMTmodel 
omposed with an English-interlingua! Target SMT model.5.4 SMT + interlingua-reformulation + SMTFor translation to Japanese, the Japanese-interlingua ! Japanese SMT model is mu
hbetter than the English-interlingua ! JapaneseSMT model, sin
e the word-orders are 
loser.It thus makes sense to perform the sequen
eSour
e ! English-Interlingua, using SMT;English-Interlingua ! Japanese-Interlingua, usingrule-based reformulation of the interlingua gloss;and �nally Japanese-Interlingua ! Japanese,using SMT.5.5 SMT + res
oring + SMTAnother possible re�nement is to use the inter-lingua grammar to res
ore Sour
e ! InterlinguaSMT results. Just as in the 
ase of spee
h re
ogni-tion (
f. Se
tion 2), we 
an set the SMT de
od-ing engine to produ
e a list of N-best hypothe-ses; we res
ore this list by sele
ting the high-est hypothesis that is well-formed a

ording tothe interlingua grammar, or the �rst hypothesis ifno well-formed hypothesis exists. The result isthen passed through the Interlingua-gloss ! Tar-get SMT model.5.6 SMT + res
oring +interlingua-reformulation + SMTA 
ombination of 5.5 and 5.4; in the 
ase oftranslation to Japanese, we 
an perform SMT andres
oring as in 5.5 to get English-Interlingua, thenreformulate to Japanese-Interlingua and performJapanese-Interlingua ! Japanese SMT as in 5.4.

5.7 SMT + RBMTWe use SMT to perform Sour
e ! English-Interlingua translation, then do English-Interlingua! Target using RBMT if the interlingua is well-formed. Ill-formed interlingua representations failto produ
e a translation.5.8 SMT + res
oring + RBMTAs in 5.7, but setting the Sour
e ! English-Interlingua to 
reate N-best output, and res
oringit using the interlingua grammar before performingRBMT.6 ResultsTable 3 presents the results of running the different
on�gurations des
ribed in the previous se
tion onrandomly generated in-
overage data, evaluated bymeasuring the proportion of not-in-training sen-ten
es for whi
h translation mat
hes the RBMTgold standard. As previously reported in (Rayneret al., 2009), English! Fren
h s
ores mu
h betterthan English ! Japanese with plain SMT (65.8%versus 26.8%).We had expe
ted that performan
e on English! Japanese would improve when we split up SMTtranslation into two pie
es, with an interlingua-reformulation phase in between. SMT's prob-lems with English ! Japanese stem from the verydifferent word-orders in the two languages, andinterlingua-reformulation levels the playing-�eld,ensuring that SMT translation always takes pla
ebetween languages with similar word-orders. Wehad not anti
ipated, however, that the improve-ment would be so large that fa
tored English !Japanese would outs
ore plain English ! Fren
h(74.1% versus 65.8%), and we were also surprisedto �nd that fa
tored English! Fren
h was 
onsid-erably better than plain English ! Fren
h (76.6%versus 65.8%). It is evident that fa
toring onlyhelps if the interlingua formats are appropriately
hosen; fa
tored English ! Japanese without in-terlingua reformulation is in fa
t mu
h worse thanplain English ! Japanese (10.5% versus 26.8%).Res
oring helps to improve performan
e on fa
-tored SMT; English ! Fren
h in
reases from76.6% to 78.5%, and English ! Japanese from74.1% to 78.5%. Finally, we look at the hybridsystem, whi
h 
ombines SMT translation fromsour
e to interlingua with RBMT translation frominterlingua to target. This is noti
eably better thanfa
tored SMT: 83.5% versus 76.6% for English



Con�guration Eng! Fre Eng! JapPlain RBMT (100%) (100%)Plain SMT 65.8% 26.8%SMT + SMT 76.6% 10.5%SMT + interlingua-reformulation + SMT � 74.1%SMT + res
oring + SMT 78.5% 10.8%SMT + res
oring + interlingua-reformulation + SMT � 78.5%SMT + RBMT 83.5% 81.9%SMT + res
oring + RBMT 87.0% 87.1%Table 3: Translation performan
e of different versions of the translation pipeline on randomly generatedin-
overage test senten
es not in training data. The �gures show the proportion of translations whi
hagree with the RBMT translation.! Fren
h, and 81.9% versus 74.1% for English! Japanese. Res
oring also 
ombines well withthe hybrid SMT + RBMT 
on�gurations, sin
ethe RBMT-based interlingua ! target phase re-quires that the interlingua is well-formed. Thehybrid 
on�gurations in
luding res
oring have al-most identi
al performan
e, at around 87%.In order to investigate whether the new ar
hite
-ture was potentially 
apable of adding robustnessto the spee
h translation system, we ran three 
on-�gurations of the pipeline whi
h involved use ofthe interlingua on the 358 out-of-
overage Englishsenten
es from (Rayner et al., 2009); these aretrans
riptions of spoken utteran
es from a real data
olle
tion exer
ise. The intention was to simulatenormal use of the system, where the user would begiven a ba
ktranslation of the sour
e, and allowedto abort senten
es whi
h had been unsu

essfullyrendered into Interlingua.To this end, we used SMT to translate theEnglish sour
e senten
es into interlingua in N-best mode, and res
ored using the interlinguagrammar to pi
k the highest in-
overage transla-tion. The SMT de
oder was set to dis
ard out-of-vo
abulary words, after some preliminary experi-ments showed that this was the most effe
tive strat-egy. Then, using the Interlingua! English RBMT
omponent, we translated all the well-formed in-terlingua utteran
es produ
ed by this pro
ess ba
kinto English, and asked an English native speakerto judge the resulting English ! English transla-tions for 
orre
tness. Finally, using both RBMTand SMT, we translated into Fren
h and Japanesethe well-formed interlingua translations marked ashaving 
orre
t ba
ktranslations. For SMT trans-lation into Japanese, the original English-formatinterlingua was �rst reformulated into Japanese-

format interlingua. The results are summarisedin Table 4; Table 5 gives some examples of ro-bust translations produ
ed using the 
ombinationof SMT up to interlingua and RBMT from inter-lingua to target.Of the 358 senten
es, 81 (23%) produ
ed anEnglish ba
ktranslation that was judged to be 
or-re
t, and would thus not have led to the user abort-ing translation. When RBMT was used to trans-late these 81 senten
es into the target language,6 (7%) failed to produ
e a Fren
h translation,with no in
orre
t translations; for Japanese, therewere no failed translations, and 4 (5%) translationsjudged in
orre
t. Three of the four English sen-ten
es whi
h produ
ed in
orre
t Japanese trans-lations were o

urren
es of �does the pain last along time�, ba
ktranslated as �does the pain last�and judged as a

eptable; �a long time� is a vagueexpression whi
h does not 
learly add anythingto �last�. The Fren
h translation, �vos maux det�ete durent-ils� is a

eptable for similar reasons;however, the Japanese translation, zutsu wa tsuzukimasu ka (�pain TOPIC last PRESENT Q�) is in-
orre
t, sin
e tsuzuki masu with no temporal mod-i�er has the meaning �
ontinue (sin
e the last timewe talked)� rather than �last�. We �nd this an in-teresting example illustrating how dif�
ult it is toprovide very high quality translation, even in a lim-ited domain.When SMT was used for the interlingua ! tar-get phase, a translation was always produ
ed, butthere were more mistakes; 5 senten
es (6%) werejudged in
orre
t for Fren
h, and 10 (12%) forJapanese. Given the importan
e of pre
ision to theappli
ation, it seems 
lear that one would in pra
-ti
e prefer the hybrid (SMT + RBMT) 
on�gura-tion, but fa
tored SMT is not enormously worse.



Original senten
es 358Well-formed interlingua translation produ
ed 245English RBMT ba
ktranslation produ
ed 213Ba
ktranslation judged 
orre
t 81Fren
h RBMT translation produ
ed 75Fren
h RBMT translation judged 
orre
t 75Fren
h SMT translation produ
ed 81Fren
h SMT translation judged 
orre
t 76Japanese RBMT translation produ
ed 81Japanese RBMT translation judged 
orre
t 77Japanese SMT translation produ
ed 81Japanese SMT translation judged 
orre
tTable 4: Results of simulating the spee
h translation system on out-of-
overage data. Senten
es are trans-lated into interlingua using SMT and res
oring, ba
ktranslated into English using RBMT, and judged.Senten
es with 
orre
t ba
ktranslations are translated into the target language using both RBMT andSMT.7 Summary and 
on
lusionsWe have de�ned a simple and general 
onstru
tionwhi
h 
an be used to bootstrap SMT models froman interlingua-based RBMT system, and evaluatedit 
on
retely in the 
ontext of English ! Fren
hand English ! Japanese versions of the MedSLTmedi
al spee
h translator. The 
entral idea is tode�ne grammars that asso
iate interlingua repre-sentations with surfa
e forms, whi
h we 
all �in-terlingua glosses�. This makes it possible to gen-erate aligned 
orpora of sour
e/interlingua-glossor interlingua-gloss/target pairs, and indu
e a fa
-tored SMT system, with separate SMT modulesfor sour
e ! interlingua and interlingua ! targettranslation.By de�ning two versions of the interlingua glossform, tailored to the word-orders of the sour
e andtarget languages, we 
an address the problems thatarise when using SMT between languages withvery different word-orders. In MedSLT, we haveshown how this allowed us to improve SMT per-forman
e in the dif�
ult pair English ! Japaneseto the point where it was approximately as good asin the easy pair English ! Fren
h. We have alsoshown how the interlingua grammar 
an be used asa knowledge sour
e to res
ore N-best SMT trans-lation hypotheses, signi�
antly improving transla-tion quality.Finally, we des
ribed a hybrid ar
hite
turewhi
h 
ombines SMT and RBMT modules. Thisuses SMT to translate from sour
e to interlingua,while RBMT is used both to translate from in-

terlingua to target, and also to produ
e a �ba
k-translation� into the sour
e language. In a safety-
riti
al appli
ation like MedSLT, this adds usefulrobustness without seriously 
ompromising pre
i-sion. The ba
ktranslation allows the user to abortunsu
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