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We introduce a novel translation rule that cap- who do you think she invited ?
tures discontinuous, partial constituent, and ER
non-projective phrases from source language. (you+TOPIC)
Using the traversal order sequences of the de- SIEFTT
pendency tree, our proposed method 1) ex- (she+SUBJ)
tracts the synchronous rules in linear time FR+E
and 2) combines them efficiently using the twha+OBj)
CYK chart parsing algorithm. We analytically _ EHMCH )
. . A (invited+COMP)
show the effectiveness of this translation rule MZFEPLEE?
in translating relatively free order sentences, ~ (think+?)

and empirically investigate the coverage of our

proposed method.
Figure 1: A word-aligned sentence pair with a non-

projective dependency from “invited” to “who”. A source
phrase “who ... invited” is discontinuous and partial con-
stituent phrase, where its corresponding target phrase is
Statistical machine translation (SMT) has been thg°ntinuous.

dominant research area of machine translation. SMT

frameworks usually extract translation rules, i.e. n the source and/or the target side. Using place-
pair of the source and target unit, automatically fronpo|ders (variables) for other translation units, trans-
a parallel corpus. At the extraction stage, phraseation rules in syntax-based SMT frameworks em-
based SMT frameworks regard a pair of continuougeq hierarchical properties. In other words, they are
word sequences, i.e. phrases, in the source and gyaple of translating discontinuous phrases, while
target sentence as a translation rule. One of the mggnventional phrase-based SMT systems are unable
jor drawbacks of phrase-based frameworks is that re- A discontinuous source phrase could be translated
ordering of phrases to generate a grammatical (tafyto a (continuous) target phrase, and vice versa. For
get) sentence is difficult without syntactic informa—examp|e, “who ...she” is translated into a continu-
tion. ous target phrase in Figure 1.

Most of the recent work has developed a SMT A major challenge of syntax-based SMT frame-
model that integrated syntactic information suchygrks is to broaden the coverage of translation

as a ftree structure based on context free gramMgjies. purely syntactic translation rules allow only
(CFG) or dependency grammar (DG), refered to as

syntax-based SMT frameworks. They define transla- 1gajiey and Manning (2010) proposed a phrase-based SMT
tion rules that encode global reordering informatiorystem which supports discontinuous phrases

1 Introduction



constituent phrases as translation units (Galley ¢Beoul+to)”, and “<1 A (when)”. In order to broaden
a., 2004). This restriction is too severe to capturéghe coverage of translation rules, handling the
frequent patterns that are smaller than constituerglatively free order of the source sentence would
(partial constituent) phrases. For example, an Eipe useful in this case.
glish phrase like “something CC” can be trans- We introduce a novel translation rule to mani-
lated into a Japanese phrase “(something) (CCpluate discontinuous, partial constituent, and non-
where the parentheses mean their translated couysrojective phrases using the dependency tree of
terparts. Modifiers in a noun phrase are also a paghe source language. Our proposed method also al-
tial constituent phrase as a translation unit. In Figlows that the source sentence has relatively free
ure 1, “who ...she” is a partial constituent phrasegrder. The key idea is to traverse the dependency
Many researchers have integrated partial constituemte and regard the sequences of the traversal order
phrases into translation units. as phrases (Section 3). We define a bilingual syn-
Since a tree structure would require a nonehronous grammar, which can simultaneously gen-
projective relation, supporting non-projective deerate the sequence in the source language and the
pendency helps broaden the coverage of translatiterget sentence (Section 4). The rule extraction algo-
rules. For example, a dependency relation from “inkthm runs in linear time by restricting the sequences
vited” from “who” is non-projective in Figure 1. (Section 5). The extracted rules are combined effi-
Formally, a non-projective dependency is a relagiently using a CYK chart parsing algorithm (Sec-
tion from a headw; to a dependenty; such that tion 6). We analytically show the effectiveness (Sec-
Jhead(wy) ¢ [min(i,j), maz(i, j)] wherek € tion 7), and empirically investigate the coverage of
[min(i, j), maz(i, )] (i, j, andk are indices). DG our proposed method (Section 8).
handles non-projective relations much more easily
than CFG, and is also known to be more suitable Related Work
at handling divergences between two languages than
the other formalisms (Fox, 2002). It is presumably intractable to extract discontin-
Last but not least, a source sentence would havel@us phrases exhaustively. Rather we need a re-
relatively free order. Languages with relatively freestricted method that leverages the coverage and the
order such as Korean and Japanese allow variog@mputational efficiency of the extraction. Since
types of ordering of dependents for a given headvords in head-modifier relations are more colsely
Especially for the main predicate of a source serielated than the others in a sentence, many syntax-
tence, the modifiers such as the subjects and the diased SMT systems use DG based on dependency
jects can be located any position before the maitieelets, which are connected subgraphes. A depen-
predicate. For example, the following six Korearflency treelet would be discontinuous and therefore
sentences have different word orders but identicaiseful to extract discontinuous phrases. For exam-
meaning “when does the train leave to Seoul?” iRle, “who ...she invited” in Figure 1 is a depen-

English. dency treelet and discontinuous in the source sen-
tence. Some approaches using dependency treelets

Modifiers in flexible word order Head assumed the isomorphism of the dependency struc-
7127 AE+E2 AA| ture of the source and the target sentence (Lin, 2004;
Ae+E 7] xH+7F AA Quirk et al., 2005), which is unrealistic in the real
A A A -%+§ 7] ZH+ 7} Zurgh b2 situation.
A A 7| A7 A+ 2 =" Although other approaches using dependency
AEg+Z AA 7)1 2+ 7t treelets addressed the non-isomorphism (Eisner,
7127 QA AE+E 2003; Ding and Palmer, 2005; Xiong et al., 2007),

dependency treelets cannot capture partial con-

where the main predicate “&%3HY stituent phrases such as sequences of dependents. It
7H+?(leave+?)” shared for each sentence hagould cause the low coverage of translation rules
three modifiers “7] xH+7}(train+SUBJ)”, “4&+2 since modifiers under a common head are often



Table 1: ThePSs of the example when we restrict the
maximum length ofPS to 2. An underline means that

Fr Ja fs Su T the PS conflicts.
e sequence type aspan cspan
€ PSt=(1) treelet [2,2] [2,2]
e, PS2 = (3) treelet [3,3] [2,3]
e, PS3 = (4) treelet [5,5] [5,5]
e; PS} = (5) treelet [5,5] [5,5]
)

(
(

(
PS2=(2 treelet [1,4] [1,5]
(

(
(
(

Figure 2: An example of a pair of the source sentence PS;=(1,3) treelet [23] [2,3]
with the dependency tref = 30222 and the target sen- PS3 = (3,4) treeseq [35] [2,5]
tence. The postorder B = 15234 and the breadth first PS$ = (4,5) treeseq [555] [5,5]
order isB = 51234. Therefore PS? = (1,3,4,5,2) and pgi =(5,2) treelet [1,5] [1,5]

BS} = (2,3,4,5,1) by definition.

. stance, would be discontinuous;(f..f3) or par-
translated as patterns. Shen et al. (2008) introducgd| constituent (£f5) under common head {)f Let

tree sequences, i.e. sequences of treelets, as welljas_ p1 -+ pp denote the visiting sequence by the
treelets in a dependency tree. They reduce the Sea%‘storder traversal off, andB = by - - - b,, denote
space for decoding by restricting the extracted trangs e analogy of the breadth first ord&rand B is de-
lation units of the dependency structure on the targghed even if the dependency tree has non-projective
language. Nevertheless, they were not able to hancﬂ%pendencies. Note thaj = j if the source lan-
non-projective dependencies. guage is a head final language such as Korean or
Carreras and Collins (2009) attempted to allow aljapanese. Figure 2 shows an examplé'qfH, P

bitrary reordering of the source language using tregng B in a dependency tree with a non-projective
adjoining grammar. None of the previous work usingjependency (b= 3).

DG, however, incorporated the relatively free order | et psi = (j,,,--- ;) be a dependency se-

in the source language as our proposed method. quence in the postorder in the dependency tree,
wherep,; < --- < p;,. We first define a depen-

3 Dependency Sequence dentPSi? of PS! as fojlllows:

Our key observation is that a graph traversal obefinition 1. A PSS} is adependenof PS!, if 3j; €
a dependency tree leads to the discovery of us#Sg, hj, € PS! andq < m.

ful patterns. The patterns in the form of treelets There are two types dPSs: treelets and treesegs.
and tree sequences would be discontinuous and PHafinition 2. A treelet PS! is a connected sub-

. . . m

tial constituent phrases. For example, by the IOO%J'raph of the dependency tree. The root of the treelet

torder traversal we visit English words in Figure ]15 at the end, i.e¥jy, S.t.p; < p;, h; € PSL or
v Pk Jir Ik m

in the following order: “do, you, who, she, invited, h; =
?, think”. Among the sequence of words by the pos-"* 7" .
efinition 3. A treeseqPS,, is an ordered set of

torder traversal, a subsequence would be a discoR I hich are d q ¢ q
tinuous treelet (“think ... ?") or a tree sequence of gee ets which are dependents of a common hga

; , . o I T
patial constituent (“who . . . she”). The subsequencd®: Yk S-L.Pjn < Pj < Pji» hjy € PSSy, OF iy =
would have non-projective dependency as well. W& Pir < Pi)-

refer the subsequences by a graph traversal as théOn the other hand, 1eBS), = (jim, - ,ji) be a

depedenecy sequences. dependency sequence in the breadth first order in the
Let us define the dependency segeunce formalljependency tree, whebg, < --- < bj,. There are

For a source sentencE = f;---f,, let H = @lsotwo types oBSs.

hi---h, be the dependency tree & where the Definition 4. A treelet BS! is a connected sub-
head of f; is f5,. Dependency sequences, for ingraph of the dependency tree. The root of the treelet



Is atthe b.eglnnlng, L&k S bj < bjis hjy € BS rapie 2: Al possible extracted production rules for the
Or foj, = jm example. An underline means that the rule is not minimal.
Definition 5. A treesegBS!, is an ordered set of Rule: ( «a, )
treelets which are dependents of the common head 10 (PS}, es )
fjh’ Ierk S.t. bjm < bjk < bjl' hjk S BS,ln or Y2- <P522 ) PSll es3 >
R, = Jn (bj, <bj,,)- 8- (PS} , ezes )
Figure 2 shows thaPS? = (1, 3) is a discontinu- v (PS5, e )
ous and non-projective phrase aRd; = (4,5)is a vs: (PS3 ., e1 PSYeq PS5 )
partial constituent phrase. Therefore? & (we omit v60 (PSS, e1 PSteq PSy )

the indexm, [ for brevity) could be a discontinuous

and partial constituent translation unit in the sourcgq \we retain its non-isomorphic construction capa-

language. Note that they also allow non-projectivityjji, we capture discontinuous, partial constituent,
because &5 is defined regardless of projectivity. non_nrojective phrases in the source sentence. Intu-

Table 1 shows théS's of Figure 2 where the type jiely a PS is a surrogate of non-terminals in CFG,

is either a treelet or a treeseq as defined above. TRgch, is replaced with other non-terminals or termi-

BSs are omitted for brevity. nal symbols. We give a formal and general definition
The number of possible”Ss or BSs for the ¢ 5 synchronous grammar usiiits as follows:

source sentence consisting ofwords is’ﬂ% a o ] )
most. In order to identifyPSs and BSs more ef- Definition 8. A SCFG using PS (SCFG-PS) is a 5-
tupleG = (3g, X7, A, T, ©), where:

ficiently, we introduce alignment information foS

(or BS), defined as follows: e X5 andX; are finite sets of terminals (words,

Definition 6. An aligned spanof PS, denoted by POSs, etc.) of the source and target languages,
aspan(PS), is the word sequence in a target sen-  respectively.

tence ranging from the lower bound to the upper

bound according to the set of word alignments. e Alis afinite set ofSs in the source language.

Lin (2004) and Xiong et al. (2007) used similar o T s a finite set of production rules where a pro-
notation to the aligned span, calling it “head span”  duction ruley : X — (a, 8 ), which is a re-
and “word span”, respectively. They also defined the  |ationship fromA to {A U X7} . The asterisk
union of the aligned span rooted at the given node  represents the Kleenstar operation.
as a “phrase span” and a “node span”, respectively.

Conceptually, the same definition is used for each ® © is the start symbol used to represent the
PS which is a sequence of nodes. whole sentence, i.ep: © — (X, X)

Definition 7. A covered sparof PS, denoted by 1he definition forBS is omitted because it is iden-
cspan(PS), is the word sequence in a target senyjcg| to the PS case.
tence that ranges from the lower bound to the upper ngie that thes of a production rule containB S
bound of_the aligned set for all nodes in Sl_Jbtrees th%gardless of its position in the dependency tree of
have their rootin thePS as well as thePS'itself.  he source sentence. In other words, we can handle
Note that apan(PS) C cspan(PS) and the relative free order in the source language during
cspan(PS) is identified in linear time according to the synchronous derivation. We will explain this in
the postorder. Section 7.

4 Synchronous Context Free Grammar 5 Rule Extraction

(SCFG) using Dependency Sequence In this section, we illustrate the extraction algo-

We propose a novel grammar approach uskg rithm for SCFG-PS. Because we reg@tds as non-
(or BS) in the SCFG framework. This incorporatesterminals, it is thex of a production ruley. If PS
the merits of bothPS and SCFG. At the same time appers ing, it means that the”S is replaced with



Ys /s Algorithm 1 Extract
' 1: Input: the sequence of the source sentence
(j1-..jn) Wherep;, < pj;, . Vk € [1,n —1]

e i g *l"‘ 5 2: for each minimalPs!, do
X:fi e | e 3. [ — target words ircspan(PS.)
Y1 f, 4:  for each minimal dependetS; do
. 5: 3 « substitute target words in
- cspan(PS}) for PS} from 3
6: end for

Figure 3: A visual representation of the minimal rules in . yield a production ruley : PSt 3 )
. . m

Table 2 8: end for

g of PSif ( PS, /) € T. This substitution is
called the derivation. At the end of the derivation, Although we only extract non-conflictings, the
3 is a sequence of the target words. Therefore, wehumeration takes @(n?) time. It can be reduced,
extract production rules which make the derivatiofowever, if we extract only theinimal PS's defined
possible. as follows:

Let PS{.? be a dependent oPsﬁn. We extract a Definition 11. APSﬁ,L is separabléf it satisfies the
production rule wherePan € « and PSg € B. following conditions:
Becauserspan(PSg) C cspan(PSL,), 3 includes
the target words iaspan(PSL ), but excludes them ~ ® ™ </, and
in cspan(PSE). We gllow the extraction pnly ifthe | 5. ¢ im + 1,1, both PS** and S do not
covered span of S} is a subset of the aligned span Jm Tk
of the PS!,, or a disjoint span. In other words, we
do not extract useless production rules, which cann@tefinition 12. A PS is minimal if it satisfies the
derive the target sentence. In Figure 2, the dependeébtlowing conditions:
PS? = (1,3) of PS2 = (2) is allowed, but the

conflict

dependenPS% — (3,4) is not. e The PS does not conflict, and
Formally, we extract non-confligtSs defined as The PS is not separable
follows.
Definition 9. A P!, is consistentwith PS{ if it ~ The definitions forB3S are analogous.
. z rules~ for each minimalPS!, (line 2). We also in-
e cspan(PSp) C aspan(PS;,) troduce the restriction t@ that the substituted se-
q - . ,
o cspan(PSY) N aspan(PSL,) = 0 quenceP S, are minimal (line 4). Therefore?Ss in

0 are also minimal iny. Table 2 shows thai; and
Definition 10. A PSS, conflictsif it satisfies one of ~4 are not minimal rules becauges? = (1,3) is
the following conditions: seperable intdS} = (1) andPS3 = (3). The com-
I plexity become®)(n) because we have a disjoint set
* aspan(PSy,) =0 of PS,i.e.VPSlk € A, -3PS!, st.my <m <1
e VPSy, PS!, is notconsistenwith PSg, where orm <l <I.

PS} is a dependent aPS!, L
6 Rule Combinination

e VPS$, PS?is notconsistenwith PS!, , where

Pan is a dependent aP.S? The extracted rules afe of SCFG-PS as defined in

Section 4. The combinaions of rules can be regarded

e JPS} s.t. as a series of synchronous derivation steps from the
cspan(PS{) Nespan(PSL,) # 0, wherevk € start symboB. For instance, thé”S} and the target
[t,u],k & [p,q] andk & [m,l] andk & [r, s]. sentence in Figure 2 is generated as follows:



Algorithm 2 Combine
1. Input: the extracted rulds, and
the sequence of the source sentefjge. . ji,) Ty e Fs Fa Ia
2: initialize chartC with T’
3: for eachm = 1ton do

Figure 4: A sentence with the same words and depen-

4 for eachl =m + 1ton do dency relations but different orderings, wheRs? =
5: for eachk = mtol do (4,5,1,3,2)
6: for each(PS!, , B) € I'do
7: if PSk €3
and PS}_, € Sthen
8: storePS!, toC o f2 s fa s
9: end if e,
10: end for e,
11: end for €,
12:  end for e,
13: end for es

14: if PST € C then

15: enerate the target strin
g 9 g Figure 5: A degenerate case for the proposed method us-

16: endif ing PS? = (1,3,4,5,2). Note thatBS; = (2,3,4,5,1)
works as a complementarity.
(X, X)
. 5 2 4 b D= PS? |, e PS%2 ¢, PSH
Eﬂi - §j§§% . o . fef?’]; oyt — Epsf% e [ PS) 463]6?;>ps§>
by - PSS oy [ PSI byyi: = (PS3, e1[[ea]es]]es PSE)
yrer = (PS3, er[PSes]eales]) by s Pob
byy: = (PS}, ei[[ex]es]eales)) Yy = (PS7, eif[ea]eslefes])

where the bracket is used to represent each step of OF €xample, the subject can preceed the object
production, for convenience. of the main predicate, or vice versa in Korean. In

. this case, a translation rule specifying the order of
paI;anorgg gﬁt:r]r? r\:’\/ﬁ;"ﬁgﬁg? tr: gp?é ?]har{he subject and the object fails to capture the rela-
of the chart asPSén. A PS. combines two s7ub— tively free order. However, our method is applicable

: to both structure without any special treatment.
sequence® Sk andPS)_, values which are stored ysp

in the chart as shown in Algorithm 2. 7.2 Complementarity: PS and BS
_ There is a weakness in the proposed method using
7 Analysis PS because it cannot deal with non-projective tar-
get phrases. Figure 5 shows a degenerate case. If we
7.1 Arelatively free order assume that the dependencies in the target sentence

_ _ are obtained by projecting the source dependencies,
The proposed method makes it possible to tranghe target sentence in Figure 5 has a non-projective
late relatively free order sentences in the source lagependency = 3 whereh¢ = i denotes that; is
guage. Figure 4 shows another example. The eye head of;.
ample has different orders of traversab?, while  pg is an alternative for this reason because
words and dependency relations are identical to the gefines a different order fron?S. The mini-
source sentence in Figure 2. Nevertheless, the targgg sequenceBS? in Figure 5 captures the non-
sentence can be generated because we do notrestiidjective target phrase using the production rule
the relative order of the dependents: v : ( BS2, e BS? es BSY). Therefore, we ex-

(X, X) pectPS andBS to be complementary.



7.3 Non-projective dependency

Trees with non-projective dependencies appear qui
often in some languages such as Czech and Dani
(Nivre, 2006). Recent work on dependency parsin
has suggested various methods for non-projecti
dependencies. The proposed method easily dei
with non-projective source phrases because the ¢
qguencePS is always defined in the dependency
tree. Table 2 shows an extracted rglewhere the

2 _ _
PSz_— (3) has the dep.endentésl. —'(1) and the  figyre 6: Ellapsed time for the extraction algorithm for
relation between them is non-projective. each sentence

sec/sent,

slimit
9

8 Emperical Result and Discussion 20

8.1 Experiment and environment

To investigate the coverage of the extracted transl,
tion rules, we extracted the rules from the training
corpus and re-produced the sentences in the corp!
Galley et al. (2004) performed a similar process b
increasing the maximum number of the derivation  '*1 2 3 4 s & 7 & ohmit
We combine the extracted rules by chart parsing b

cause it is closer to the actual translation process.

Using GIZA++, we regarded the intersection of theFigure 7: The number of extracted rules for eatimnit
bi-directional word alignment as an accurate exam-

ple, which is the first step to extracting the rules. F06 022 — 0.03 with R? = 0.99 for PS, and f(z) =

each grammar type using5 and BS, we vary the . 5o with 2 = 0.99 for BS where f(z)

maximum length of a sequence (slimit) from 1 ta ) . 2 .
: : . . IS the regression function an@- is the correlation

9 to investigate the extraction algorithm. We alsore- . . . .
. . .~ . coefficient. Therefore, the extraction algorithm runs
strict the maximum length of a word sequence in the

target language (tlimit) to 20 by default In linear time as we expected.
9 guag e . y ' We also reported the size of the set of rules, which
We used Japanese-English parallel corpora pro-

vided by the NTCIR-8 PATMT Translation Task Cleases linearly with respect &imit in Figure
7. There is a sudden drop when the number is at

(Fuijii et al., 2010). The corpora consist of tralnlng,slz.mit — 2 and then the number increases. This

development and evaluation corpora. We used the .. .
. o . _Indicates that the coverage of the re-production also
first two as the training corpus for the word align-

ment, and inspected the development corpus (2,008 €3¢
sentences) using proposed method. CabddBa 83 Rule combination
used to obtain the Japanese dependency tree. 'f:?

) ér;ure 8 shows the coverage of the extracted rule
each Japanese sentence with the dependency struc-
. using P.S and B.S. Unfortunately, the coverages are
ture, we extracted the rules and tried to generate E

) - = 10% % forPS, % % fo3S, wh
glish sentence by combining the rules. We restricte 0% 10 50% forS, and 5% to 35% for3S, when

. .~ _We limit the size to somewhat lower than what we
the maximum number of stored sequences in the .

expected. There are several reasons for this:
chart span to 200 by default.

# of rules / sent.

e Even a single alignment error would cause the
failure of the extraction. The example from the
corpus below shows that single word align-
ment error (§ andejg) prevents extraction of

2http://www.chasen.org/ taku/software/cabocha/ a production rule, unless we enlargémit to

8.2 Rule extraction

Figure 6 shows the running time of Algorithm 1 for
each case using.S andBS. We have graplf(x) =



4. If we remove the incorrect alignment, then 60%

slimit = 1 is enough to extract a production e
rule. g 4%

5 30%

e — §20%

— .
A e N B A i
Jo Jao s Ja Fs fe Fa Fs Jo S fui 0%+

Figure 8: The coverage of the extracted rule

e e, e; €, &5 e, €; g &; €, &, €, €,
e We regarded the sequences as non-terminals
in CFG conceptually. If we use the lexical in-
formation directly, however, a data sparseness
e English has much more divergence with problem arises as sequences get longer. There-
Japanese then French. Galley et al. (2004) re- fore we need to generalize the sequence in or-
ported almost 100% coverage between English  der for it to be suitable for learning sufficient
and French. However, we believe that the lan-  statistics.
guage pair we used would have lower coverage

than 100% when their method is applied. e We utilized only the single best dependency

tree, which would not be able to resolve the
structural ambiguity. As forest-based rule ex-
traction has been suggested (Mi et al., 2008) in
the phrase structure, we will incorporate mul-
tiple structures as a compressed one such as a
packed-forest.

e We regard the empirical upper bound of the
proposed method as that obtained by unlimited
slimit. In that case we have coverage of about
60% for bothPS and BS. Therefore, we may
need other traversal methods such as informed

search to broaden the coverage. e There is an another derivation using which
produces the same target sentence with differ-

. ent rulesys and~;:
9 Conclusion and Future work (X, X)

The proposed method in this paper addressed a wide by ye: = ({ PS§ r €1 PSi ea PS;)

range of issues: discontinuous, partial constituent, Y %4* = ( PS% cerPSjesfes])

and non-projective phrases in the source language. byys: = ((PSY ., erlezeslesles])

We proposed a novel synchronous grammar using N this case, we reduce one step of the deriva-
the sequences of the traversal order of the depen- tion using the production of the non-projective
dency tree in the source language. The extraction treeletP.S7. This indicates that the combina-
of phrases takes linear time, and combination takes tion of the minimal rule before decoding, which
O(n®|G|) using a CYK chart parsing algorithm, is commoly used, leads to faster decoding.
where|G| is the size of the extracted grammar Acknowledgments
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