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Abstract

TER-Plus (TERp) is an extended TER

evaluation metric incorporating mor-
phology, synonymy and paraphrases.
There are three new edit operations
in TERp: Stem Matches, Synonym
Matches and Phrase Substitutions (Para-
phrases). In this paper, we propose
a TERp-based augmented system com-
bination in terms of the backbone se-
lection and consensus decoding net-
work. Combining the new properties
of the TERp, we also propose a two-
pass decoding strategy for the lattice-
based phrase-level confusion network
(CN) to generate the final result.The ex-
periments conducted on the NIST2008
Chinese-to-English test set show that our
TERp-based augmented system combi-
nation framework achieves significant
improvements in terms of BLEU and
TERp scores compared to the state-of-
the-art word-level system combination
framework and a TER-based combina-
tion strategy.

1 Introduction

In the past several years, multiple system com-
bination has been shown to be helpful in im-
proving translation quality. Recently, confusion
network-based networks have become the state-
of-the-art methodology to implement the combi-
nation strategy (Bangalore et al., 2001; Matusov

et al., 2006; Sim et al., 2007; Rosti et al., 2007a;
Rosti et al., 2007b; He et al., 2008). A CN is
built by aligning a set of translation hypotheses
against a reference or “backbone” which is usu-
ally generated by a minimum Bayes-risk decoder
(MBR) (Kumar and Byrne, 2004). Generally, as
with translation decoding, the CN decoding pro-
cess also uses a log-linear model, which com-
bines a set of different features, to search for the
best path or an N -best list by dynamic program-
ming algorithms. Typically, the dominant CN in
system combination for SMT is constructed on
the word level constrained by the inherent prop-
erty of the CN. Basically, there are two critical
parts to build a word-level CN, namely hypothe-
sis alignment and the structure of the CN.

Hypothesis alignment involves aligning a set
of hypotheses against the “backbone” under a
specific alignment metric, such as TER (Snover
et al., 2006), HMM (Matusov et al., 2006),
IHMM (He et al., 2008), TERp (Snover et al.,
2009) etc. Synonym matching is the most chal-
lenging issue for the hypothesis alignment met-
ric because it has an important impact on align-
ment accuracy and the final consensus decod-
ing. As a consequence, many hypothesis align-
ment metrics integrate rich linguistic features to
increase the capability of synonym matching.
IHMM uses a similarity function to perform syn-
onym matching and it significantly outperforms
the TER method. Ayan et al. (2008) modified
TER to consider substitutions of synonyms us-
ing WordNet (Fellbaum, 1980). Snover et al.
(2009) extended TER to TERp in a similar idea



that incorporates the stems and synonym match-
ing (Banerjee and Lavie, 2005) and paraphrase
matching (Kauchak and Barzilay, 2006; Zhou et
al., 2006) to increase the alignment accuracy.

Regarding the TERp metric, Rosti et al.
(2009) firstly used it to increase the hypothesis
alignment in the WMT2009 system combination
shared task and achieved the best performance
in their experiments. Barrault (2010) developed
an open source MT system combination using
TERp which is still based on a word-level CN. In
this paper, we make good use of the synonyms
and paraphrases recognised by the TERp metric
to upgrade our word-level combination frame-
work to the phrase level. Additionally, we de-
velop a weighted MBR using TERp as the loss
function to train system weights for our proposed
framework.

As to the structure of the CN, the state-of-
the-art form is a word-level network. A CN is
essentially a directed acyclic graph which in-
cludes weighted arcs and nodes. Each arc be-
tween two nodes in the CN denotes a word or
token, possibly a null item, with an associated
posterior probability. Feng et al. (2009) pro-
posed a lattice-based network which allows sev-
eral words to connect with other several words,
i.e., many-to-many mappings. Phrase pair align-
ment can reduce the risk of producing ungram-
matical phrases because of the coherence be-
tween the words in a phrase.

In this paper, we propose a TERp-based aug-
mented system combination network in which
firstly, TERp is used as a loss function in a
weighted MBR (wMBR) to select a backbone;
secondly, TERp is employed as the hypothesis
alignment to carry out the word alignment be-
tween the backbone and the set of hypotheses;
and then to build a lattice-based phrase-level net-
work by extending the TERp-based alignment
points. During the network decoding process, we
present a two-pass decoding strategy to leverage
the selection preference to obtain better results.

The remainder of this paper is organised as
follows. In section 2, we introduce the mech-
anisms of TER and TERp metrics as well as the
word-level CN and phrase-level CN. In section 3,

we describe a weighted MBR using TERp as the
loss function to select the backbone. Section 4
proposes our TERp-based augmented combina-
tion framework which is built on the phrase level.
Furthermore, we present a two-pass decoding
strategy to generate the final consensus. The
experiments conducted on the NIST Chinese-to-
English test set are reported in Sections 5 and 6.
Section 7 concludes and gives avenues for future
work.

2 Background

2.1 TER-Plus

TERp is closely related to TER, so in order to
fully understand TERp, we first introduce TER.

The TER (translation edit rate) metric mea-
sures the ratio of the number of edit operations
between the hypothesis E′ and the reference Eb

to the total number of words in the Eb. Here the
backbone Eb is assumed as the reference. The
allowable edits include insertions (Ins), dele-
tions (Del), substitutions (Sub) and phrase shifts
(Shft). The TER of E′ compared to Eb is com-
puted as in (1):

TER(E′, Eb) =
Ins+Del + Sub+ Shft

Nb
× 100%

(1)

where Nb is the total number of words in Eb. The
difference between TER and classical Edit Dis-
tance (or WER) is the sequence shift operation,
which allows phrasal shifts in the output to be
captured.

The Shft edit is carried out by a greedy algo-
rithm and restricted by three constraints: 1) the
shifted words must exactly match the reference
words in the destination position; 2) the word se-
quence of the hypothesis in the original position
and the corresponding reference words must not
match exactly; 3) the word sequence of the refer-
ence that corresponds to the destination position
must be misaligned before the shift (Snover et
al., 2006).

TER-Plus (TERp) is an extension of TER that
aligns words in the hypothesis and reference not
only when they are exact matches but also when
the words share a stem or are synonyms. In ad-
dition, it uses probabilistic phrasal substitutions



to align phrases in the hypothesis and reference.
These phrases are generated by considering pos-
sible paraphrases of the reference words. Differ-
ent from the constant edit cost for all operations
such as shifts, insertion, deleting or substituting
in TER, all edit costs in TERp are optimized to
maximize correlation with human judgments.

TERp uses all the edit operations of TER

as well as three new edit operations: Stem
Matches, Synonym Matches and Phrase Sub-
stitutions. TERp employs the Porter stemming
algorithm (Porter, 1980) and WordNet (Fell-
baum, 1980) to perform the “stem match” and
“synonym match” respectively. Sequences of
words in the reference are considered to be para-
phrases of a sequence of words in the hypothesis
if that phrase pair occurs in the TERp phrase ta-
ble (Snover et al., 2009).

2.2 Lattice-based CN
A lattice-based CN is an extension of the word-
level CN. The word-level CN limits the word
alignment between the backbone and the hypoth-
esis to 1-to-1, 1-to-null and null-to-1, while
the lattice-based network allows many-to-many
mappings. Therefore, each arc in the word-level
CN indicates “one” word or null. However, in
the lattice-based network, the arc might repre-
sent a phrase which includes several words. As a
result, we define the lattice-based network as the
phrase-level CN. Figure 1 is a simple example
which respectively uses TER and TERp to carry
out the alignment and the CN construction to il-
lustrate the differences between the word-level
and the phrase-level CN.

Figure 1 (a) shows the backbone and a trans-
lation hypothesis. Figure 1 (b) and Figure 1 (c)
are the TER-based word alignment and the TER-
based word-level CN respectively. “@” repre-
sents the null arc. Figure 1 (d) and Figure 1 (e)
indicate the TERp-based word alignment and the
TERp-based phrase-level CN.

It can be found in Figure 1 that the TERp
aligns “early next week” against “at the begin-
ning of next week” as paraphrases, as well as
the paraphrases “take place ” and “start”. In this
case, if the phrase pairs are kept as a whole as
shown in Figure 1 (e) rather than broken them

into individual words as shown in Figure 1 (c),
then the ungrammatical risk during the decod-
ing process would be decreased. This example
also shows the obvious advantage of TERp: us-
ing WordNet and paraphrases to recognise and
align the synonymous words and phrases to in-
crease the alignment accuracy.

3 TERp-based Weighted Minimum
Bayes-Risk Decoding

In state-of-the-art MT system combination,
MBR decoding plays an important role to select
the backbone for the CN. The backbone decides
the word orders of the CN and the consensus out-
put. In our framework, we employ TERp as the
Loss Function in MBR to select the backbone as
in (2):

Eb = argmin
E∈Ei

Ns∑
j=1

TERp(Ej , Ei) (2)

where Ns is the number of systems.
Equation (2) indicates an MBR decoder with

uniform posterior probabilities. In fact, the uni-
form posterior distribution only performs ro-
bustly when the individual systems have a sim-
ilar quality and are less correlated (Macherey
and Och, 2007). Generally, there are two
ways to leverage the robustness of the MBR de-
coder. One way is the empirical way that fil-
ters out the worse or closely relevant individ-
ual systems based on some specific metric scores
and keeps the better systems with similar qual-
ity (Macherey and Och, 2007); the other way is
the discriminative way that trains system weights
through the discriminative training algorithm.
Sim et al. (2007) and Rosti et al. (2007) em-
ployed a TER-based weighted MBR to achieve
better results than the uniform distributed MBR.
In our TERp-based method, we also use the sec-
ond way – system weights estimation – to op-
timise system weights on the development set
(devset) and then apply them to the test set.The
weighted MBR is written as in (3):

Eb = argmin
E∈Ei

Ns∑
j=1

ωj · TERp(Ej , Ei) (3)



Ref:  the vote will take place at the beginning of next week .

Hyp: the vote will start early next week .

(b) TER-based alignment

(d) TERp-based alignment

(a) the Reference and the Hypothesis

the   vote   will   take   place    at    the   beginning     of      next   week    . 

the   vote   will        start                    early   next   week                            .

the   vote   will   take   place   at    the   beginning     of      next   week    . 

the   vote   will   start     @      @   @           @         early   next   week   .

(c) TER-based word-level CN

the     vote    will    take   place    at       the     beginning      of      next   week      . 

start @ @ @ @ early

the     vote    will    take   place    at  the beginning  of  next week        . 

start early next week

(e) TERp-based lattice-level network

Figure 1: Comparison between a word-level CN and a lattice-based CN

Different from the use of wMBR in (Sim et
al., 2007) and (Rosti et al., 2007a), who only use
the weights at the stage of the MBR decoding,
we use the weights trained by the MBR as the
system confidence for each individual system in
the lattice-based CN construction and decoding.

4 TERp-based Phrase-level
Combination Framework

In this section, we propose a TERp-based phrase-
level combination framework and a two-pass
decoding strategy. Specifically, we extend
the word-level “Stem”, “Synonyms” and “Para-
phrases” to a phrasal alignment under some re-
stricted conditions. Furthermore, we design a
two-pass decoding strategy to leverage the arc
confidence to search for the best path.

4.1 Motivation
Typically, in MT system combination, the CN is
restricted only to 1-to-1, null-to-1 and 1-to-null
alignments. The advantage of this method is that
if the word alignment performs very well (i.e.,
the synonyms are accurately aligned), then the
candidates on each arc in the CN are not only di-
verse but also context-correlated, which can re-
duce the number of ungrammatical errors. How-
ever, the potential disadvantage of this method is
that if the hypothesis alignment performs badly,
the word-level CN maybe increase the risk of
producing ungrammatical phrases or fragments.
Therefore, the combination quality is heavily re-
liant on the performance of the hypothesis align-
ment metric. Feng et al. (2009) proposed a

lattice-based CN which not only allows 1-to-
1 mappings but also many-to-many mappings,
which allows a phrase or several words to be an
arc. The advantage of this method is that it can
keep the coherence and consistency of a phrase
and its context. They used the IHMM method to
carry out the bidirectional word alignment and
extract the phrasal alignment. IHMM has a lim-
ited capability of synonym matching by using a
similarity function.

Motivated by the fact that TERp integrates
WordNet, Porter Stemming and a big Para-
phrase Table to increase the capability of syn-
onym matching, we propose using TERp to build
a lattice-based phrase-level combination frame-
work. Consequently, we design a two-pass de-
coding strategy to search the best path.

4.2 Lattice-based Phrase-level Confusion
Network

In TERp, the “stem match”, “synonym match”
and the paraphrases are respectively notated as
“T”, “Y” and “P”. Additionally, the “exact
match”, “substitution”, “insertion” and “dele-
tion” are defined as “E”, “S”, “I” and “D” re-
spectively. Since the alignment of synonyms has
a significant influence on the consensus quality,
we are considering in terms of the consensus de-
coding that

• the substitution match is more like noise to
break the consecutive phrase into words;

• the best path should prefer the candidates
between the synonymous words;



• the synonyms, stems and paraphrases
should have a higher confidence.

Based on the considerations above, we come
up with an idea that extends word-level syn-
onyms or paraphrases to phrasal synonymous
alignments if and only if the following condi-
tions are satisfied:

• the word alignment link is marked as “T”,
“Y” or “P”;

• the words in front of or behind the synonym
word are marked as “E”, “T”, “Y” or “P”;

• these words can be connected into a consec-
utive sequence of words;

• the maximum length of the consecutive se-
quence of words are limited to 7 words.

Accordingly, we define an extra operation as “arc
combination” to adjust the arcs and the arc con-
fidence, which will be discussed later. The de-
tailed realisation is shown in Figure 2 and Fig-
ure 3.1

Eb : e1 e2 e3 e4 [e5 e6 e7 ]

E’ : e’1 e
’
2 e’3 *     [e

’
4 e

’
5 ]

A  : E      T     S     D          P

(a) alignment between Eb and E
’ produced by TERp

Eb : e1 e2 e3 e4 e5 e6 e7
E”: e”3 e”2 e”1    e”5 e

”
6 e

”
7  

A : E      S      E       D     E      Y     S     

(b) alignment between Eb and E
” produced by TERp

Figure 2: Examples of TERp alignment

In Figure 2, Eb is the backbone selected by
the TERp-based wMBR decoder. E′ and E′′ are
two hypotheses aligned against Eb. We can see
that in Figure 2 (a), e1, e′1 are the “exact match”,
e2 and e′2 are the “stem match”, e3 and e′3 are
the “substitution match”, e4 is aligned to null
which is a “deletion match”, e5e6e7 and e′4e

′
5 are

paraphrases which comprise the phrasal align-
ment. In Figure 2 (b), e6 and e′′6 are the “syn-
onym match” as well.

1In order to easily explain our method and contain
as many synonym matching phenomena, here we use se-
quences of pseudo words ei.

Figure 3 shows an example of the detailed
construction process of a lattice-based phrase-
level CN using TERp-based alignment links. As
mentioned before, one important operation we
defined in the network construction is the “arc
combination” which combines the synonym and
stem matching arcs into one arc. In Figure 3 (a),
the base lattice is firstly constructed by the align-
ment links between Eb and E′. Secondly, since
the words e2 and e′2 are marked as the “stem
match”, then we combine them as one arc us-
ing the “arc combination” operation. The deleted
arc during the combination operation is shown
by the dashed lines. Meanwhile, the data infor-
mation and the position of the deleted arc are
stored in the combination node which will be
used when tracing back during our two-pass de-
coding. Similarly, the arcs of e5e6e7 and e′4e

′
5

are combined into one arc as well, as shown in
Figure 3 (b). After the “arc combination” oper-
ation, we then add the second alignment pair of
Eb and E′′ into the base lattice network which
is shown in Figure 3 (c). Finally, we carry out
the “arc combination” operation again to extend
the stem/synonym match to the phrasal align-
ment and combine the “same” arcs and store the
deleted arcs. Figure 3 (d) shows the final lattice-
based phrase-level CN.

4.3 Two-pass Decoding Algorithm
In CN decoding, a log-linear model with sev-
eral features, such as the word posterior, the lan-
gauge model etc., is employed to search for a
best path by traversing all the nodes from left-
to-right. Similarly, in the lattice-based CN, the
searching algorithm also needs to travel all the
nodes to calculate the best path. The log-linear
model and features we used is similar to that
in (Feng et al., 2009).

Since we combined the “synonym” phrasal
arcs and paraphrase arcs during the lattice con-
struction and kept the “deleted” arcs in the corre-
sponding nodes, we need to restore and evaluate
these arcs during the decoding process. There-
fore, a two-pass decoding strategy is proposed
for our TERp-augmented lattice-based CN.

Typically, each arc is assigned a confidence
score based on the different system confidence
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Figure 3: TERp-based Phrase-level CN using paraphrases and extended stems, synonyms

score. In our framework, we employ a weighted
MBR to train the system weights. Directly, the
system weights are used as the system confi-
dence in our lattice-based phrase-level network.
When two synonym arcs or paraphrase arcs
are combined, then the confidence of the com-
bined arc is the sum of the confidence scores
of these two arcs weighted by the two sys-
tem weights. This step ensure that the synony-
mous/paraphrasal arcs have a higher confidence
for the purpose of selecting a more consistent
phrase. The two-pass decoding algorithm is de-
scribed as:

• First pass: traverse all the nodes in the lat-
tice and find a path with the maximum prob-
ability as the candidate path;

• Second pass: trace back along the candi-
date path and check whether it has any com-
bined arcs. If so, then restore all the com-
bined arcs to a new lattice and decode all the
nodes again to generate the final consensus.
This step is similar to the N -best generation
process in SMT decoding (Koehn, 2004).

The purpose of the first pass is to provide a selec-
tion preference of synonymous phrases or para-
phrases for the decoder which can guarantee the
coherence and consistency of the phrases and the
context, while the second pass carries out a fair
competition between the different synonyms and
paraphrases which can guarantee a best fluency
of the translation.

5 Experimental Settings

The experiments are conducted and reported on
the NIST 2008 test data. The NIST 2006 test
set includes 1,664 sentences and is used as the
devset, while the NIST 2008 is used as the test
set which contains 1,357 sentences. Each source
sentence has 4 references in the two sets. The
training data includes 2.5 million pairs of Chi-
nese and English parallel sentences.

There are three SMT systems used in our ex-
periments, namely, 1) baseline: Moses (Koehn et
al., 2007); 2) R-HPB: our own re-implemented
hierarchical phrase-based (R-HPB) system (Chi-
ang, 2005); 3) Moses-chart: a re-implemented
HPB in Moses.

In order to increase the diversity of MT sys-
tems, we also reorder the Chinese sentences us-
ing the DE classifier (Chang et al., 2009). There-
fore, in our experiments, there are 6 individ-
ual systems in all which are trained on the non-
reordered and reordered data. The alignment is
carried out by GIZA++ (Och and Ney, 2003) and
then we symmetrize the word alignment using
the grow-diag-final heuristic. Parameter tuning
is performed using Minimum Error Rate Train-
ing (MERT) (Och, 2003). The results of the 6
SMT systems on the NIST 2008 test set are re-
ported in terms of BLEU (Papineni et al., 2002)
and TERp scores and shown in Table 1.

In Table 1, “Baseline”, “R-HPB” and “Moses-
chart” indicate that the systems are trained and
tested on non-reordered training data and test set.
“+DE” indicates the SMT systems are built and
run on a DE-reordered data set. We can see that



SYS BLEU TERp
Baseline 22.42 63.10

Baseline+DE 23.47 62.89
R-HPB 20.53 64.39

R-HPB+DE 22.36 63.15
Moses-chart 24.36 62.58

Moses-chart+DE 24.75 62.19

Table 1: Individual system results on the re-
ordered and non-reordered data.

the “Moses-chart+DE” is the best individual sys-
tem.

6 Experimental Results and Analysis

In this section, in order to compare the perfor-
mance between 1) the weighted MBR and the
uniform distributed MBR; 2) TER and TERp; 3)
the word-level CN and the phrase-level CN, we
perform a series of comparison experiments, as
shown in Table 2.

system TERp BLEU
Worst Single 64.39 20.55
Best Single 62.19 24.75

TER-MBR-U 63.01 24.14
TER-MBR-W 62.55 24.98
TERp-MBR-U 62.87 24.33
TERp-MBR-W 61.46 25.36

TER Word-level CN 61.22 25.88
TERp Word-level CN 60.71 26.71
TERp-Two-pass CN 60.24 27.15

Table 2: Comparison on word-level and the
phrase-level combination frameworks

In Table 2, the “TER-MBR-U” and “TER-
MBR-W” indicate the TER-based MBR de-
coding with a uniform distribution and with a
weighted distribution respectively, while “TERp-
MBR-U” and “TERp-MBR-W” represent the
TERp-based MBR decoder with the uniform
weights and the trained system weights respec-
tively. The “TER Word-level CN” represents
the weighted word-level CN built on the TER-
based alignment, and “TERp Word-level CN” is
the weighted word-level CN built on the TERp
alignment. In addition, the “TERp-Two-pass
CN” stands for our proposed TERp-augmented
phrase-level framework.

We can see that the “TER-MBR-U” and the
“TERp-MBR-U” are 0.42 and 0.61 absolute
BLEU points (1.7 and 2.46 relative percent)
lower than the best individual system. We ar-
gue that this is caused by the distinctly dif-
ferent quality of the individual systems. That
is, the “R-HPB” is far lower than the “Moses-
chart+DE” system. However, the “TER-MBR-
W” and “TERp-MBR-W” achieved 0.23 and
0.61 absolute BLEU points (0.93 and 2.46 rela-
tive percent) improvements compared to the best
individual system. From these results, we anal-
yse that if the performance between the individ-
ual systems is quite different, the discriminative
MBR performs more robustly and can achieve
better results than the uniform distributed MBR.

Regarding the “TER Word-level CN” and the
“TERp Word-level CN”, we can see that the
latter obtains 0.83 absolute BLEU points (3.21
relative percent) improvement than the former.
The comparison shows that the TERp metric per-
forms better in the hypothesis alignment which
attributes to the powerful capacity of synonym
matching.

From Table 2, we can also find that the “TERp-
Two-pass CN” outperformed any of the “Word-
level CN” in terms of the BLEU and TERp
scores. Our proposed framework obtained an
absolute improvement by 2.4 BLEU points (9.7
relative percent) over the best single system and
0.44 absolute BLEU points (1.65 relative per-
cent) over the “TERp Word-level CN”. The re-
sults indicate that the phrase-level network can
perform better than the word-level CN because
it can keep the consistency of the paraphrases,
and so reduce the ungrammatical errors.

7 Conclusions and Future Work

In this paper, we proposed a lattice-based phrase-
level system combination framework using the
TERp alignment metric. The properties of
“stem match”, “synonym match” and “para-
phrase match” of TERp are fully used to build
a phrase-level lattice-based CN. We also pro-
posed a two-pass consensus decoding process to
generate the final output. We performed a se-
ries of experiments to compare the uniform dis-



tributed MBR and a weighted MBR, TER and
TERp, the word-level CN and the phrase-level
CN. The experimental results conducted on the
NIST 2008 set show that our proposed method
significantly outperformed the word-level com-
bination framework, and using TERp can signif-
icantly improve the combination performance.

As for future work, we need to carry out more
experiments and deep analysis on the experimen-
tal results to fully explore the advantages of the
TERp metric. In addition, we need to investigate
one of the potential problems in lattice-based
CN, which is the normalisation of arc confidence
scores.
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