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Abstract

System combination exploits differences be-
tween machine translation systems to form a
combined translation from several system out-
puts. Core to this process are features that
reward n-gram matches between a candidate
combination and each system output. Systems
differ in performance at the n-gram level de-
spite similar overall scores. We therefore ad-
vocate a new feature formulation: for each
system and each small n, a feature counts
n-gram matches between the system and can-
didate. We show post-evaluation improvement
of 6.67 BLEU over the best system on NIST
MTO09 Arabic-English test data. Compared to
a baseline system combination scheme from
WMT 2009, we show improvement in the
range of 1 BLEU point.

1 Introduction

System combination merges the output of several
machine translation systems to form an improved
translation. While individual systems perform sim-
ilarly overall, human evaluators report different er-
ror distributions for each system (Peterson et al.,
2009b). For example, some systems are weak at
word order while others have more trouble with
nouns and verbs. Existing system combination tech-
niques (Rosti et al.,, 2008; Karakos et al., 2008;
Leusch et al., 2009a) ignore these distinctions by
learning a single weight for each system. This
weight is used in word-level decisions and therefore
captures only lexical choice. We see two problems:
system behavior differs in more ways than captured

by a single weight and further current features only
guide decisions at the word level. To remedy this
situation, we propose new features that account for
multiword behavior, each with a separate set of sys-
tem weights.

2 Features

Most combination schemes generate many hypothe-
sis combinations, score them using a battery of fea-
tures, and search for a hypothesis with highest score
to output. Formally, the system generates hypoth-
esis h, evaluates feature function f, and multiplies
linear weight vector \ by feature vector f(h) to ob-
tain score AT f(h). The score is used to rank fi-
nal hypotheses and to prune partial hypotheses dur-
ing beam search. The beams contain hypotheses of
equal length. With the aim of improving score and
therefore translation quality, this paper focuses on
the structure of features f and their corresponding
weights .

The feature function f consists of the following
feature categories:

Length Length of the hypothesis, as in Koehn et al.
(2007). This compensates, to first order, for the
impact of length on other features.

LM Log probability from an SRI (Stolcke, 2002)
language model. When the language model
scores a word, it finds the longest n-gram in the
model with the same word and context. We use
the length n as a second feature. The purpose
of this second feature is to provide the scor-
ing model with limited control over language
model backoff penalties.



System 1: Supported Proposal of France
System 2: Support for the Proposal of France

Candidate: Support for Proposal of France

‘ Unigram Bigram Trigram
System 1 4 2 1
System 2 5 3 1

Figure 1: Example match feature values with two sys-
tems and matches up to length [ = 3. Here, “Supported”
counts because it aligns with “Support”.

Match The main focus of this paper, this feature
category captures how well the hypothesis cor-
responds to the system outputs. It consists of
several features of the form c,;, which count
n-grams in the hypothesis that match the sen-
tence output by system s. We use several in-
stantiations of feature c; ,,, one for each system
s and for length n ranging from 1 to some max-
imum length [. The hyper parameter [ is con-
sidered in Section 6.1. Figure 1 shows example
values with two systems and [ = 3. The num-
ber of match features is [ times the number of
systems being combined.

The match features consider only the specific
sentences being combined, all of which are
translations from a single source sentence. By
contrast, Leusch et al. (2009a) count matches
to the entire translated corpus. While our ap-
proach considers the most specific data avail-
able, theirs has the advantage of gathering
more data with which to compare, including
document-level matches. As discussed in Sec-
tion 3, we also differ significantly from Leusch
et al. (2009a) in that our features have tunable
system and n-gram weights while theirs are hy-
per parameters.

Together, these define the feature function f. We
focus primarily on the new match features that cap-
ture lexical and multiword agreement with each sys-
tem. The weight on match count ¢, corresponds
to confidence in n-grams from system s. However,
this weight also accounts for correlation between
features, which is quite high within the same sys-

tem and across related systems. Viewed as language
modeling, each ¢, is a miniature language model
trained on the translated sentence output by system
s and jointly interpolated with a traditional language
model and with peer models.

As described further in Section 4, we jointly tune
the weights A using modified minimum error rate
training (Och, 2003). In doing so, we simultane-
ously learn several weights for each system, one for
each length n-gram output by that system. The un-
igram weight captures confidence in lexical choice
while weights on longer n-gram features capture
confidence in word order and phrasal choices. These
features are most effective with a variety of hypothe-
ses from which to choose, so in Section 5 we de-
scribe a search space with more flexible word order.
Combined, these comprise a combination scheme
that differs from others in three key ways: the search
space is more flexible, the features consider matches
longer than unigrams, and system weights differ by
task.

3 Related Work

System combination takes a variety of forms that
pair a space of hypothesis combinations with fea-
tures to score these hypotheses. Here, we are pri-
marily interested in three aspects of each combina-
tion scheme: the space of hypotheses, features that
reward n-gram matches with system outputs, and the
system weights used for those features.

3.1 Search Spaces

Hypothesis selection (Hildebrand and Vogel, 2009)
and minimum Bayes risk (Kumar and Byrne, 2004)
select from k-best lists output by each system. In
the limit case for large k, DeNero et al. (2010) adopt
the search spaces of the translation systems being
combined.

Confusion networks preserve the word order of
one k-best list entry called the backbone. The back-
bone is chosen by hypothesis selection (Karakos et
al., 2008; Sim et al., 2007) or jointly with decod-
ing (Leusch et al., 2009a; Rosti et al., 2008). Other
k-best entries are aligned to the backbone. The
search space consists of choosing each word from
among the alternatives aligned with it, keeping these
in backbone order. With this search space, the im-



pact of our match features is limited to selection at
the word level, multiword lexical choice, and possi-
bly selection of the backbone.

Flexible ordering schemes use a reordering model
(He and Toutanova, 2009) or dynamically switch
backbones (Heafield et al., 2009) to create word or-
ders not seen in any single translation. For example,
these translations appear in NIST MTO09 (Peterson
et al., 2009a): “We have not the interest of control
on the Palestinians life,” and “We do not have a de-
sire to control the lives of the Palestinians.” Flexible
ordering schemes consider “have not” versus “do
not have” separately from “Palestinians life” ver-
sus “lives of the Palestinians.” Our match features
have the most impact here because word order is less
constrained. This is the type of search space we use
in our experiments.

3.2 N-gram Match Features

Agreement is central to system combination and
most schemes have some form of n-gram match fea-
tures. Of these, the simplest consider only unigram
matches (Ayan et al., 2008; Heafield et al., 2009;
Rosti et al., 2008; Zhao and Jiang, 2009).

Some schemes go beyond unigrams but with fixed
weight. Karakos (2009) uses n-gram matches to se-
lect the backbone but only unigrams for decoding.
Kumar and Byrne (2004) use arbitrary evaluation
metric to measure similarity. BLEU (Papineni et al.,
2002) is commonly used for this purpose and quite
similar to our match features, although we have tun-
able linear n-gram and length weights instead of
fixed geometric weights.

Several schemes expose a separate feature for
each n-gram length (Hildebrand and Vogel, 2009;
Leusch et al., 2009a; Zens and Ney, 2006; Zhao
and He, 2009). Some of these are conceptualized as
a language model that, up to edge effects, exposes
the log ratio of (n + 1)-gram matches to n-gram
matches. An equivalent linear combination of these
features exposes the log n-gram match counts di-
rectly. These separate features enable tuning n-gram
weights.

3.3 System Weighting

Different and correlated system strengths make it
important to weight systems when combining their
votes on n-grams. The simplest method treats these

system weights as a hyper parameter (Heafield et
al., 2009; Hildebrand and Vogel, 2009). The hy-
per parameter might be set to an increasing function
of each system’s overall performance (Rosti et al.,
2009; Zhao and Jiang, 2009); this does not account
for correlation.

Some combination schemes (Karakos et al., 2008;
Leusch et al., 2009a; Rosti et al., 2008; Zens and
Ney, 2006) tune system weights, but only as they
apply to votes on unigrams. In particular, Leusch
et al. (2009a) note that their system weights impact
neither their trigram language model based on sys-
tem outputs nor selection of a backbone. We answer
these issues by introducing separate system weights
for each n-gram length in the system output lan-
guage model and by not restricting search to the or-
der of a single backbone.

Our experiments use only 1-best outputs, so
system-level weights suffice here. For methods that
use k-best lists, system weight may be moderated
by some decreasing function of rank in the k-best
list (Ayan et al., 2008; Zhao and He, 2009). Mini-
mum Bayes risk (Kumar and Byrne, 2004) takes the
technique a step further by using the overall system
scores that determined the ranking.

4 Parameter Tuning

Key to our model is jointly tuning the feature
weights A. In our experiments, weight vector A is
tuned using minimum error rate training (MERT)
(Och, 2003) towards BLEU (Papineni et al., 2002).
We also tried tuning towards TER minus BLEU
(Rosti et al., 2007) and METEOR (Lavie and
Denkowski, 2010), finding at best minor improve-
ment in the targeted metric with longer tuning time.
This may be due to underlying systems tuning pri-
marily towards BLEU.

In ordinary MERT, the decoder produces hy-
potheses given weights A and the optimizer selects
A to rank the best hypotheses at the top. These steps
alternate until \ converges or enough iterations hap-
pen. As the feature weights converge, the k-best lists
output also converge. In our experiments, we use
k = 300. For long sentences, this is a small fraction
of the hypotheses that our flexible ordering scheme
can generate using 1-best outputs from each system.
The problem here is that the decoder sees mostly the



same A each time and the optimizer sees mostly the
same output each time, missing potentially better but
different weights. Random restarts inside the opti-
mizer do not solve this problem because this tech-
nique only finds better weights subject to decoded
hypotheses. As the number of features increases
(in some experiments to 39), the problem becomes
more severe because the space of feature weights is
much larger than the explored space.

We propose a simulated annealing method to ad-
dress problems with MERT, leaving other tuning
methods such as MIRA (Chiang et al., 2008) and
lattice MERT to future work. Specifically, when the
decoder is given weights A to use for decoding in
iteration 0 < j < 10, it instead uses weights p sam-
pled according to

v (- )
where U is the uniform distribution and subscript
1 denotes the ¢th feature. This sampling is done
on a per-sentence basis, so the first sentence is de-
coded with different weights than the second sen-
tence. The amount of random perturbation decreases
linearly each iteration until the 10th and subsequent
iterations where weights are used in the normal, un-
perturbed, fashion. The process therefore converges
to normal minimum error rate training. In practice,
this technique increases the number of iterations and
decreases the difference in tuning scores following
MERT. The specific formulation may not be opti-
mal, but suffices for our goal of tuning 39 feature
weights.

5 Combination Scheme

We use our decoder (Heafield et al., 2009) with some
modifications. The process starts by aligning single
best translations in pairs using METEOR (Lavie and
Denkowski, 2010). In decreasing order of priority,
words are aligned exactly, by shared stem (Porter,
2001), by shared WordNet (Fellbaum, 1998) synset,
or according to unigram paraphrases from the TERp
(Snover et al., 2008) database.

Search proceeds inductively using the aligned
translations. The initial hypothesis consists of the
beginning of sentence tag. A hypothesis branches
into several hypotheses by appending the first un-
used word from any system. This word, and those

aligned with it, are marked as used in the hypothe-
sis. Essentially, the hypothesis strings together non-
overlapping fragments from each system. Choos-
ing one fragment e.g.  “Palestinians life” over
another “lives of the Palestinians” leaves the un-
aligned words behind. A heuristic, described fully
in Heafield et al. (2009), detects when a system falls
too far behind as a result and skips such words to
maintain synchronization.

Alignments also define the tolerance of match
features; we experiment with alignment types ac-
cepted by the match features in Section 6.3. Specifi-
cally, a system’s unigram match count includes both
words taken from or aligned with the system. Bi-
gram matches consist of two consecutive unigram
matches with the same word order; higher order n-
grams matches are similar.

5.1 Baseline System

Our cmu-combo submission to the 2009 Workshop
on Machine Translation (Heafield et al., 2009) has
the same search space but simpler features, so it
serves as a controlled baseline. Nonetheless, this
baseline was judged best, or insignificantly different
from best, in official human judgments performed as
part of the evaluation (Callison-Burch et al., 2009)
for every scenario considered in this paper.

The baseline scheme has a single unigram match
feature using hyper parameter system weights. This
means that only the language model and search
space control word order. To compensate for this
deficiency, the scheme uses a phrase constraint that
limits switching between hypotheses. This con-
straint is included in the baseline system. With the
match features, we drop this hard constraint on word
order, finding better results.

6 Experiments

We use translations from the recent NIST Open
MT 2009 (MTO09) (Peterson et al., 2009a) and
Fourth Workshop on Statistical Machine Translation
(WMT) (Callison-Burch et al., 2009) evaluations.
Results are reported for translations into English
from Arabic and Urdu for MT09 and from Czech,
German, Spanish, and French for WMT. Despite
showing improvement of 1 BLEU point in trans-
lations from Hungarian, we elected to exclude this



language pair because automatic metrics perform
poorly on this data. For example, the worst system
according to BLEU by a significant margin was the
best system according to human judges (Callison-
Burch et al., 2009). The organizers of the following
WMT also dropped Hungarian.

Official tuning and evaluation sets are used, ex-
cept for MT09 Arabic-English where only unse-
questered portions are used for evaluation. Lan-
guage model training data for WMT is constrained
to the provided English from monolingual and
French-English corpora. There was no constrained
informal system combination track for MT09 so we
use a model trained on the Gigaword (Graff, 2003)
corpus. Scores are reported using uncased BLEU
(Papineni et al.,, 2002) from mteval-13a.pl,
uncased TER (Snover et al., 2006) 0.7.25, and
METEOR (Lavie and Denkowski, 2010) 1.0 with
Adequacy-Fluency parameters.

For each source language, we selected a few
subsets of systems to combine and picked the set
that combined best on tuning data. Performance is
surprisingly good on Arabic and competitive with
top MT09 combinations. On French and Spanish,
Google scored much higher than did other systems.
Like Leusch et al. (2009b), we show no gain over
Google on these source languages.

Most system combination schemes showed larger
gains in MT09 than in WMT. In addition to differ-
ent language pairs, one possible explanation is that
MTO09 has four references while WMT has one refer-
ence. Gains remained when scoring against one ref-
erence. Tuning towards multiple references conceiv-
ably increases individual system diversity, thereby
increasing system combination’s effectiveness. This
is difficult to measure given only system outputs.

6.1 Maximum Match Length

The match features count only matches up to length
l. Here, we ask what value of [ is appropriate. Table
1 shows results for each source language for values
of [ ranging from 1 to 4.

In each scenario, using both unigram and bigram
match (I = 2) features significantly outperforms us-
ing only unigram matches (! = 1), in one case by
6.7 BLEU points. This shows the significant role of
match features in determining word order, without
which the combination would be dependent on the

language model and minimal guarantees from the
search space. In particular, the search space permits
hypotheses to switch systems at any point; the bi-
gram features favor continuity across switches.

The effect of trigram and quadgram matches is
mixed. On Arabic, improvement is significant and
consistent where nine systems are combined. It de-
creases on Urdu with seven systems and vanishes for
WMT with three to six systems combined. Fewer
systems leave less opportunity for discrimination be-
yond unigrams and bigrams.

In|/ BLE TER MET | [In|/ BLE TER MET
1|51.2 41.5 734 1{31.4 57.2 60.1
21579 37.3 76.9 2134.7 554 623

ar 3(58.0 37.2 76.8 | mur(3|34.5 54.7 61.7
4158.6 37.0 76.9 4134.7 55.5 61.8
i|51.9 40.5 74.0 i132.9 56.2 60.5
1121.2 61.1 559 1|21.4 60.3 57.3
2|21.7 60.6 55.9 2|23.8 58.7 58.7

z 3121.8 60.5 56.0 de 3123.7 58.6 58.5
4121.8 60.9 55.9 4123.5 59.0 58.3
b|21.7 60.8 54.8 b|22.3 59.1 55.8
i21.2 59.6 55.2 i|21.3 60.8 57.0
1127.7 547 61.8 1129.5 52.6 62.4
2128.9 53.6 62.2 21314 52.0 63.3

es 3128.7 53.6 62.2 fr 3131.6 52.7 63.3
4(28.8 53.6 62.1 4|31.5 52.7 63.3
b|28.3 53.6 60.4 b|30.0 53.3 60.9
i128.7 53.4 62.0 i|31.1 51.4 62.8

Table 1: Performance on test data by maximum match
length [. For comparison, the baseline (b) cmu-combo
from WMT 2009 is shown as well as the best individ-
ual system (i). Only exact alignments are counted as
matches.

6.2 Importance of System Weights

Here, we compare tuned system weights with uni-
form system weights (Hildebrand and Vogel, 2009;
Leusch et al., 2009a). We introduce hyper parameter
t, tune system-level n-gram weights for n < ¢, and
use uniform weights for n > ¢. Uniform weight is
accomplished by replacing per-system n-gram count
features with their sum.

Table 2 shows results on unigram and bigram fea-
tures (I = 2). Tuning unigram weights improves
performance in each scenario. With tuned bigram



In|¢{ BLE TER MET | [In|¢t BLE TER MET
0]56.4 38.2 75.7 0[33.2 56.3 61.6
arl 57.0 379 759 url 33.4 56.2 61.7
21579 37.3 76.9 2134.7 55.4 62.3
i151.9 40.5 74.0 i132.9 56.2 60.5
0/21.3 60.9 55.2 0(23.4 59.0 58.0
1|21.5 60.7 55.9 1|23.7 58.7 58.6
cz2|121.7 60.6 55.9 | de[2|23.8 58.7 58.7
b|21.7 60.8 54.8 b|22.3 59.1 55.8
i121.2 59.6 55.2 i|21.3 60.8 57.0
0127.5 54.6 60.8 0(29.3 53.7 62.2
1128.7 53.7 62.1 1{31.2 52.0 63.1
es2(28.9 53.6 62.2 | |fr2|31.4 52.0 63.3
b|28.3 53.6 60.4 b|30.0 53.3 60.9
i28.7 53.4 62.0 i|31.1 51.4 62.8

Table 2: Impact of tuning system weights. Unigram and
bigram matches are considered (I = 2); ¢t = 0 has uni-
form weights, ¢ = 1 tunes unigram weights, and ¢ = 2
tunes bigram weights as well. For comparison, the base-
line (b) cmu-combo from WMT 2009 is shown as well
as the best individual system by BLEU (i). Only exact
alignments are counted as matches.

weights, Arabic and Urdu show significant improve-
ment; the others are within tolerance of retuning
and length effects. Improvement from tuning uni-
gram and bigram weights shows that systems differ
in quality of lexical choice and word order, respec-
tively.

6.3 Match Tolerance

As mentioned in Section 5, there are four types of
alignments in decreasing order of priority: exact,
stems, synonyms, and unigram paraphrases. We ask
which alignments to use for the match features; the
search space uses all alignments for its purposes.
Since alignments are prioritized, we considered the
four options ranging from using only exact align-
ments to using all alignments. In practice, perfor-
mance meaningfully changes only after paraphrases
are added. Therefore, we consider using exact align-
ments or using all alignments, shown in Table 3.
For French and German, higher BLEU scores
result from counting exact alignments. French is
characterized by Google scoring 4.2 BLEU higher
than the second place system, with correspondingly
high match feature weight. Counting all alignments

awards this high weight to aligned word substitu-
tions from weaker systems; counting exact align-
ments does not. Since BLEU cares about exact
matches to the reference, it shows these differences
the most.

When all alignments are counted, additional votes
are collected on word inclusion and order. How-
ever, any gain in automatic metrics is minimal. ME-
TEOR is mostly apathetic to substitutions within its
own alignments, so these scores are not expected to
change much. For BLEU and TER, we wonder if
gains from additional votes are offset by losses from
lexical choice.

Given arguments for counting exact or all align-
ments, we now try both sets of features simul-
taneously. Since match feature weights are non-
negative, this amounts to giving exact matches a
tunable bonus. In experiments matching unigrams
and bigrams (I = 2), performance usually mirrored
that of the better performing set in isolation. How-
ever Arabic performance with simultaneous features
is 58.55 BLEU, 36.86 TER, and 76.91 METEOR,
which improves over results in Table 3. This is our
best result with improvements of 6.67 BLEU, -3.68
TER, and 2.96 METEOR over the top individual
system. Direct comparison to specific NIST systems
is discouraged; results are in Peterson et al. (2009a).

In|a BLE TER MET | |In|ac BLE TER MET
E|57.9 37.3 76.9 E|34.7 55.4 62.3
ar A |57.9 37.3 77.0 | ur|A|34.5 55.3 62.3
i151.9 40.5 74.0 i132.9 56.2 60.5
E|[21.7 60.6 559 E |23.8 58.7 58.7
czA 21.8 60.5 56.1 deA 23.2 59.0 58.7
b|21.7 60.8 54.8 b|22.3 59.1 55.8
i|21.2 59.6 55.2 i121.3 60.8 57.0
E|28.9 53.6 62.2 E|(31.4 52.0 63.3
esA 28.7 53.7 62.2 frA 30.6 52.8 63.2
b|28.3 53.6 60.4 b|30.0 53.3 60.9
i28.7 53.4 62.0 i|31.1 51.4 62.8

Table 3: Combination performance with only exact (E)
or all (A) alignments counted. For comparison, the base-
line (b) cmu-combo from WMT 2009 is shown as well
as the best individual system (i). The best result for each
language and metric is bold.



6.4 Tuned Weights

In the previous experiments, we examined the tuned
feature weights only by their impact on evaluation
scores. It is also instructive to look at the weights
themselves. Table 4 shows the weights for our best
result, which combines nine Arabic systems. There
are two copies of the match features: one that counts
exact matches and another that counts any match
identified by METEOR. Each copy considers both
unigram and bigram matches (! = 2). Each of
the nine systems therefore has four weights corre-
sponding to four features: exact unigrams, exact bi-
grams, approximate unigrams, and approximate bi-
grams. Within each system, the features are highly
correlated and the relative weight of highly corre-
lated features is mostly arbitrary. Nonetheless, some
broader trends appear.

The system weights are not a monotone func-
tion of BLEU. While the top system has gener-
ally high weight and the bottom system has gener-
ally low weight, system 16 in the middle has lower
weights in each category than do those below it.
We attribute this to system correlations; it is pos-
sible that system 16 and another system used the
same decoder. Weighting systems by BLEU (Zhao
and Jiang, 2009), a secondary method in Rosti et al.
(2009), fails to account for correlations between sys-
tems so two strong but very similar systems would
receive too much weight.

The ratio between unigram and bigram weights
is not consistent. For system 14, unigram weights
sum to 0.282 while bigram weights sum to 1.448,
for a ratio of 0.195. System 7 has an analogous
ratio of 1.752 while for system 8 it is 2.230. In
conjunction with our previous experiment that found
system-level bigram weights matter for Arabic, this
suggests that separate system weights for unigrams
and bigrams are more appropriate.

7 Conclusion

Our features address three core system combination
problems: lexical choice, word order, and system
weighting. We accomplish this by jointly tuning
weights on the cross product of n-grams and sys-
tems, resulting in significant improvement on sev-
eral combination tasks. This improvement comes
from bigram matches, system-level weights, and in

Exact Matches All Matches
# BLE | Unigram Bigram | Unigram Bigram
17 51.7 1.222  1.188 1.334  6.252
8 51.5 0.050  1.098 0.754  1.238
14 50.3 0.244  1.056 0.038 0.392
6 494 1.032  0.539 1.073  1.363
16 49.4 0.032  0.698 0.658 0.246
2 493 1.186  0.863 1.084  0.878
7 49.2 1.190  0.297 1.315  1.133
3479 1.054 0.617 0.557 2.616
1474 0.098 0.316 0.747  0.063

Table 4: Systems used in the top performing Arabic-
English combination. Each system lists the anonymous
system number assigned by NIST, uncased BLEU on the
tuning set, and weights on that system’s match features.
There are two copies of the match features, one for ex-
act alignments and another for all alignments. Scale of
feature weights is arbitrary. While the top system has
generally high weights and the bottom has generally low
weights, there is no consistent pattern as a function of
score. We draw particular attention to system 16 in bold,
which has low weights across the board despite its po-
sition in the middle by BLEU score. The weights were
tuned toward BLEU.

some cases flexible matching. These aspects are all
variations on the fact that systems make different er-
rors, which is system combination’s raison d’&tre.
Some or all of the aspects are missing in features
used by other combination schemes. Our features
are portable to these schemes, where we advocate
their use.
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