
Cross-framework parser stacking for
data-driven dependency parsing

Lilja Øvrelid, Jonas Kuhn and Kathrin Spreyer

Department of Linguistics, University of Potsdam
Karl-Liebknecht-Str 24/25, 14476 Potsdam
{ovrelid,kuhn,spreyer}@uni-potsdam.de

ABSTRACT. In this article, we present and evaluate an approach to the combination of a grammar-
driven and a data-driven parser which exploits machine learning for the acquisition of syntactic
analyses guided by both parsers. We show how conversion of LFG output to dependency repre-
sentation allows for a technique of parser stacking, whereby the output of the grammar-driven
parser supplies features for a data-driven dependency parser. We evaluate on English and Ger-
man and show significant improvements in overall parse results stemming from the proposed
dependency structure as well as other linguistic features derived from the grammars. Finally,
we perform an application-oriented evaluation and explore the use of the stacked parsers as the
basis for the projection of dependency annotation to a new language.
RÉSUMÉ. Dans cet article, nous présentons et évaluons une approche permettant de combiner
un analyseur fondé sur une grammaire et un analyseur fondé sur des données, en utilisant des
méthodes d’apprentissage automatique pour produire des analyses syntaxiques guidées par les
deux analyseurs. Nous montrons comment la conversion de la sortie d’un analyseur LFG en
une représentation en dépendances permet d’utiliser une technique d’empilement d’analyseurs
("parser stacking"), dans laquelle la sortie de l’analyseur fondé sur une grammaire fournit
des caractéristiques utilisables par un analyseur fondé sur les données. Nous évaluons notre
approche sur l’anglais et l’allemand, et montrons des améliorations significatives pour les ré-
sultats d’analyses syntaxiques complètes qui découlent de l’analyse en dépendances ainsi que
des caractéristiques provenant de grammaires. Enfin, nous procédons à une évaluation dédiée
à une application, et explorons l’utilisation de cet empilement d’analyseurs comme point de
départ pour l’annotation en dépendances d’une nouvelle langue.
KEYWORDS: data-driven dependency parsing, Lexical Functional Grammar (LFG), parser com-
bination, stacking, deep linguistic features
MOTS-CLÉS : analyse syntaxique en dépendances fondé sur des données, Grammaires Lexicales
Fonctionnelles (LFG), combinaison d’analyseurs, caractéristiques linguistiques profondes
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1. Introduction

The divide between grammar-driven and data-driven approaches to parsing has
become less pronounced in recent years due to extensive work on robustness and
efficiency for the grammar-driven approaches (Riezler et al., 2002; Hockenmaier
and Steedman, 2002; Miyao and Tsujii, 2005; Clark and Curran, 2007; Zhang
et al., 2007; Cahill et al., 2008a; Cahill et al., 2008b). Hybrid techniques which
combine hand-crafted linguistic knowledge with statistical models for parse disam-
biguation characterize most large-scale grammar-driven parsing systems. The linguis-
tic generalizations captured in such knowledge-based resources are thus increasingly
available for use in practical applications.

The NLP community has in recent years witnessed a surge of interest in
dependency-based approaches to syntactic parsing, spurred by the CoNLL shared
tasks of dependency parsing (Buchholz and Marsi, 2006; Nivre et al., 2007). Nivre
and McDonald (2008) show how two different approaches to data-driven dependency
parsing, the graph-based and transition-based approaches, may be combined and sub-
sequently learn to complement each other to achieve improved parsing results for a
range of different languages.

Although there has been some work towards incorporating more linguistic knowl-
edge in data-driven parsing by means of feature design or representational choices
(Klein and Manning, 2003; Bod, 1998; Øvrelid and Nivre, 2007), few studies inves-
tigate a setting where a data-driven parser may learn directly from a grammar-driven
one.1 In this paper, we show how a data-driven dependency parser may straight-
forwardly be modified to learn from a grammar-driven parser, hence combining the
strengths of the two approaches to syntactic parsing. We investigate an approach
which relies only on a general mapping from grammar output to dependency graphs.
We evaluate on English and German and show significant improvements for both lan-
guages in terms of overall parsing results, stemming both from a dependency structure
representation proposed by the grammar-driven parser and a set of additional features
extracted from the respective grammars. A detailed feature and error analysis provides
further insight into the precise effect of the linguistic, grammar-derived information
in parsing and the differences between the two languages. We furthermore investigate
the importance of parser quality in the parser stacking setting. Experiments with auto-
matically assigned part-of-speech tags set the scene for an application-realistic setting
and we show how very similar and significant improvements may be obtained in the
application of the parser combination to raw text. Finally, we go on to explore a real-
istic example of the use of the stacked parser in a more complex application scenario,
which among other things involves out-of-domain application of the components: we
apply the parsers as the basis for the projection of dependency annotation to a new lan-
guage and show significant improvements of results for this task compared to baseline
parsers.

1. See Zhang and Wang (2009), however, for a similar study which exploits an English HPSG
grammar during parsing and applies the resulting system to an out-of-domain parsing task.
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Figure 1. Treebank enrichment with LFG output for German example sentence Ich
halte das damalige Verhalten für richtig ‘I consider the past behavior (to be) correct’

The paper is structured as follows. Section 2 briefly introduces grammar-driven
LFG-parsing, and Section 3 describes the conversion to dependency structures and
the feature extraction. In Section 4 we introduce MaltParser, the data-driven depen-
dency parser employed in the experiments, and Section 5 goes on to describe the parser
stacking experiments in more detail. Section 6 presents the results from the experi-
ments, and Section 7 provides an in-depth error analysis of these results. The effect of
using automatically assigned part-of-speech tags is examined in a set of experiments
detailed in Section 8. In Section 9 we present experiments with the stacked parsers
in the task of annotation projection. Finally, Section 10 concludes and discusses the
generality of the approach and some ideas for future work.

2. Grammar-driven LFG-parsing

The ParGram project (Butt et al., 2002) has resulted in wide coverage grammars
for a number of languages. These grammars have been written collaboratively within
the linguistic framework of Lexical Functional Grammar (LFG) and employ a com-
mon set of grammatical features. In the work described in this paper, we use the
English and German grammars from the ParGram project. The XLE system (Crouch
et al., 2007) performs unification-based parsing using these hand-crafted grammars,
assigning a LFG analysis. It processes raw text and assigns to it both a phrase-
structural (‘c-structure’) and a feature-structural, functional (‘f-structure’) represen-
tation which encodes predicate-argument structure. The set of grammatically possible
parsing analyses for the input string is represented in a packed format and then un-
dergoes a statistical disambiguation step: a log-linear model that has been trained
on a standard treebank (Riezler et al., 2002) is used to single out the most probable
analysis.



112 TAL. Volume 50 – n◦ 3/2009

In a dependency-based evaluation2 on a subset of Penn treebank sentences, the En-
glish grammar was earlier reported to achieve a 77.6% F-score (Kaplan et al., 2004),
whereas the German grammar achieves a 72.59% F-score (Forst et al., 2004) on the
Tiger treebank. In order to increase the coverage of the grammars, we employ the
robustness techniques of fragment parsing and ‘skimming’ available in XLE (Riezler
et al., 2002).

3. Dependency conversion and feature extraction

In extracting information from the output of the deep grammars, we wish to cap-
ture as much of the precise, linguistic generalizations embodied in the grammars as
possible, while keeping to the requirements of the dependency parser. This means
that the deep analysis must be reduced to a token-based representation. The process
is illustrated in Figure 1 and details of the conversion process are provided in Section
3.2 below.

3.1. Data

We make use of standard data sets for the two languages. The English data set con-
sists of the Wall Street Journal sections 2-24 of the Penn treebank for English (Marcus
et al., 1993), converted to dependency format (Johansson and Nugues, 2007). The
treebank data used for German is the Tiger treebank for German (Brants et al., 2004),
where we employ the version released with the CoNLL-X shared task on dependency
parsing (Buchholz and Marsi, 2006).

3.2. LFG to dependency structure

The parser stacking relies on a conversion of LFG output to dependency graphs,
so we start out by extracting a dependency representation from the XLE output. The
extraction is performed by a set of rewrite rules which are executed by XLE’s built-in
extraction engine. The mapping between input tokens and f-structures is readily avail-
able in the LFG analysis via the φ-projection. In Figure 1, the dashed lines illustrate
the mapping for the object NP das damalige Verhalten in example (3) below. The
head of the NP (Verhalten) maps to the f-structure f2, which has f3 (identified with
das) as its specifier (SPEC) and f4 (damalige) as an adjunct (ADJCT). These depen-
dencies are straightforwardly adopted in the extracted dependency representation as
shown. In Figure 1, the gold standard treebank analysis is shown below the sentence

2. F-structures are reduced to dependency-triples and evaluation is performed using the standard
measures of precision and recall. A subset of the triples, i.e. the dependencies ending in a
‘pred’-value, provides the basis for the evaluation scores presented here.
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[...] 251.2 million shares were traded .

Figure 2. Example of generic PHI-arc between co-heads of the verbal complex were
traded

(‘gold’) and the resulting converted dependency analysis (‘converted’) is shown above
the sentence.

The mapping between input tokens and f-structures represented via the φ-
projection is not necessarily injective. This means that two tokens may be mapped
to the same f-structure, e.g., the auxiliary and the main verb in the English present
perfect construction. While this lack of isomorphy allows for highly modular rep-
resentations that clearly distinguish between surface-oriented properties (c-structure)
and abstract syntactic and semantic dimensions (f-structure) including the additional
linguistic features described in Section 3.3 below, it is not directly compatible with the
word-based representations assumed in dependency grammar. We reconcile this dis-
crepancy by postulating generic arcs (labeled PHI) between such co-heads, such that
the token that introduces the predicate to the f-structure is the head of all its co-heads
in the dependency structure. This is illustrated in Figure 2, where the passive auxil-
iary were becomes the PHI-dependent of traded in the derived dependency structure,
because they are mapped to the same f-structure in the XLE output.

Most dependency parsers require that sentences be represented as trees where each
token is a node and dependents have exactly one head. LFG parsers, on the other
hand, compute structures which are directed acyclic graphs, where a dependent may
have more than one head. Within LFG, so-called ‘structure sharing’ is employed to
account for phenomena such as raising and control. In the conversion process, we
attach dependents with multiple heads to their closest head and supply them with
the corresponding label. In an alternative version, we also represent the additional
attachment as a set of complex dependency labels listing the functional paths. For
instance, in the English example in (1), a so-called ‘tough’ construction (Rosenbaum,
1967; Postal and Ross, 1971) where the subject of the matrix verb is also an object
of the infinitival clause, or in the subject-to-object raising construction in (2), the
boldfaced argument receives the complex label SUBJ-OBJ. In German, we find similar
analyses of object predicative constructions, for instance, as in (3). The converted
dependency analysis in Figure 1 shows the f-structure and the corresponding converted
dependency output of example (3), where Verhalten receives the complex SUBJ-OBJ
label.
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(1) the anthers in these plants are difficult to clip

(2) allowed the company to begin marketing a new lens

(3) Ich
I

halte
hold

das
the

damalige
past

Verhalten
behavior

für
for

richtig
right

‘I consider the past behavior (to be) correct’

Since the LFG grammars and the treebank annotation make somewhat different as-
sumptions with respect to tokenization, a stage of post-processing of the extracted
data is necessary in order to make the annotations truly parallel. In particular, the treat-
ment of multiword units, hyphenated expressions, and sentence-internal punctuation,
such as initials and genitive ’s in English, is mapped to match the treebank annotation
in a subsequent post-processing stage. This stage improves on the level of token-wise
parallelism between the two versions of the treebank – the gold standard and the XLE-
parsed, converted version – and has a quite dramatic effect, illustrating the importance
of this stage. The level of mismatch between the two versions, i.e. the number of
tokens that are not mapped to a grammar-derived analysis, is reduced following post-
processing by 85.8% for English and 66.8% for German. The dramatic effect of this
process is mostly due to propagation of mismatch within a sentence. For instance, the
XLE grammar for English and German treats multiword units like New York as one
word form, whereas the treebank annotations split these into two forms. On the other
hand, the grammar treats hyphenated expressions in English, such as needle-like, as
one form, whereas the treebank does not. In terms of the effect of post-processing on
the dependency analysis of the grammar, we adopt the following strategy: we dupli-
cate the analysis of composite forms which are split, like New York, and, we assign to
concatenated forms the analysis of its last element, as in the hyphenated needle-like.

3.3. Additional linguistic features

The LFG grammars contain linguistic generalizations which may not be reduced
to a dependency structure. For instance, the grammars contain information on mor-
phosyntactic properties such as case, gender and tense, as well as more semantic
properties detailing various types of adverbials, distinguishing count and mass nouns,
specifying semantic conceptual categories such as human, time and location, etc.

Table 1 presents the features extracted for use during parsing from the German and
English XLE-parses, organized by the part-of-speech of the dependent. The final two
rows of Table 1 provide features which are language-specific for the two languages
(English and German), whereas the rest are shared features of both grammars. We
also provide the possible values for the features, most of which are atomic or binary-
valued. A few features (GOVPREP, COORDFORM) take the word form (Form) of
another token in the syntactic context as feature value. Due to the fact that LFG
is a unification-based formalism, some of the features will not be strictly local to a
specific token, but stem from a head or dependent (or mother/sister, to be precise).
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For instance, the German definiteness feature (DEF) of a common noun comes from
the determiner. The features also bear witness to the fact that XLE makes use of a
phrase-structural representation for parsing (c-structure). For instance, it provides a
COORD-LEVEL feature which takes as values phrase categories such as NP and VP,
detailing the phrasal level of coordination.

Quite a few of the features detailed in Table 1 are available in the original tree-
bank annotation. Clearly, treebanks differ quite a lot in the amount of information
expressed by the annotation. The Penn Treebank contains only information on part-
of-speech and syntactic structure, whereas the Tiger treebank in addition distinguishes
the morphosyntactic categories case, number, gender, person, tense and mood. The
level of linguistic analysis expressed by the features varies ranging from morphosyn-
tactic information, which is fairly straightforward to obtain, to deeper features de-
tailing structural aspects (GOVPREP, COORDFORM), subcategorization information
(VTYPE, SUBCAT) or various semantic properties which reflect more fine-grained
linguistic analyses of phenomena such as nominal semantics (COMMON, PROPER-
TYPE etc.), referentiality (NTYPE, DEIXIS, GENDSEM), adverbial semantics (AD-
JUNCTTYPE, ADVTYPE), nominalization (DEVERBAL), etc. Whether these distinc-
tions prove to be helpful in the task of syntactic parsing and which of them contribute
the most is an empirical question which we will investigate experimentally below.

3.4. Coverage

Hand-crafted grammars are often accused of low coverage on running texts. How-
ever, a lot of effort has in recent years been put into increasing their robustness. As
mentioned earlier, we employ the robustness techniques available with XLE, allow-
ing for fragmented parses as well as using the technique of ‘skimming’, which sets a
bounded amount of work performed per subtree and skims the remaining constituents
when too much time has passed (Riezler et al., 2002).

Following the XLE-parsing of the treebanks and the ensuing dependency conver-
sion, we have sentence coverage of 95.4% for the English grammar and 97.3% for the
German grammar. In order to align the two versions of the treebank we then perform
tokenization fixes for the respective languages, as described in Section 3.2 above. Fol-
lowing this stage of post-processing, we find that 92.3% of the English tokens and
95.2% of the German tokens may be mapped to the corresponding token in the tree-
bank. In terms of sentence coverage, we end up with a grammar-based analysis for
95.2% of the English sentences, 45238 sentences altogether, and 96.5% of the German
sentences, 38189 sentences altogether.



116 TAL. Volume 50 – n◦ 3/2009

POS Possible values of features

Verb

CLAUSETYPE ����������	�������

�����������

���
�	������������
������
�	�������������	����
������
�	������
MOOD ���
������
�	����������������
��
�	������������
�����
����	������
TENSE  ��	
�������!��
���	"��������������	
VTYPE �����
���

��!��
����#�$������

���$������������
�	��������!��
��
�������
PASSIVE(+/− % , PERF(+/− % , GOVPREP( & ����� )

Noun/Pro

CASE �����'��	������(�!����������
�	�����������������)����
*
��
�	��������$
��
�����

�	������
COMMON �����
��	"���������
���(�+���

����������!��
���	���	������
LOCATIONTYPE �
��	�,"�-��������	
��,
NUM ��������

����������������
��
NTYPE �����
�����#�!������������*
���������.����/����(�  ���
�(������	"���
����
�	��������!�����
���!�������0��������0��)���
���	"�$�����
���#�����  �������
�
PERS 1 ��	#��2����"��3����
PROPERTYPE �����
��
���,(��������
�	��
���#�!��
�������������
�����4�
�	������.�!	���	��
�
GOVPREP( & ����� )

Preposition PSEM ����������	������.���
����
�	������#�$��
��
�����
PTYPE �����
���#�-�
���

Coordination COORDLEVEL 5�6�7
8 � 5�8 ��9 8 ��: 8 ��9���
��"� 8
8 � 7
8 ����	��(;
COORD(+/− % , COORDFORM( & ����� %

Adverbs ADJUNCTTYPE 
  
 ��/(�-����������	��
����

���$���������
�(���

��������!������
�	������.�+��
�������	�<#�$�����
ADVTYPE  �����'�0�-��

���"�$����
�����*������"���
�����$��
��������"�$	����
�#�!�����������

Adjectives ATYPE 
�	
	
�����
��	��������!�����
���
��
�	������

English

DEIXIS ���
��	�

���!������/�����
��
DEVERBAL ��
��
���������!�������������
�
�����
SUBCAT 7�=�>�?�@�A � 7�=�>�?�@�A�=�B�@�A � 7'=�>�?�@�A�= 9 B�C
8 	�<�
�	"�!��	��";
GENDSEM  ����
��
���!��
��
���$�����
<
�
��
��
TIME ���
����D = 	�����������
�	��������

������#����
�,(�!������	�<#��,��

��
PROG(+/−), HUMAN(+/− %

German

AUXSELECT <�
������#�-�������
GEND  ���'���������(�!��
��
�����������(�!������	����
PARTICIPLE �����  ����	"�!������������	
AUXFLIP(+/− % , COHERENT(+/− % , COUNT(+/− % , DEF(+/− % , FUT(+/− % ,
GENITIVE(+/− %

Table 1. Features from the XLE output with possible values, common for both lan-
guages and language-specific (English and German)

4. Data-driven dependency parsing

MaltParser (Nivre et al., 2006b; Nivre et al., 2006a) is a language-independent
system for data-driven dependency parsing which is freely available.3 It is based on
a deterministic parsing strategy in combination with treebank-induced classifiers for
predicting parsing actions. MaltParser employs a rich feature representation of the
parse history in order to guide parsing, and may easily be extended to take into account
new features of the parse history.

MaltParser constructs parsing as a set of transitions between parse configurations.
A parse configuration is a triple 〈S, I, G〉, where S represents the parse stack – a list of

3. http://maltparser.org
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FORM POS DEP XFEATS XDEP
S:top + + + + +
I:next + + + +
I:next−1 +
G:head of top +
G:leftmost dependent of top +
InputArc(XHEAD)

Table 2. Example feature model; S: stack, I: input, G: graph; ±n = n positions to the
left(−) or right (+)

tokens which are candidates for dependency arcs – I is the queue of remaining input
tokens, and G represents the dependency graph under construction. The parse guide
predicts the next parse action (transition), based on the current parse configuration.
The guide is trained employing discriminative machine learning, which recasts the
learning problem as a classification problem: given a parse configuration, predict the
next transition.

The feature model in MaltParser defines the relevant attributes of tokens in a parse
configuration. Parse configurations are represented by a set of features, which focus
on attributes of the top of the stack, the next input token and neighboring tokens in
the stack, input queue and dependency graph under construction. Table 2 shows an
example of a feature model which employs the word form (FORM), part of speech
(POS), and dependency relation (DEP) of a given token.4 The feature model is depicted
as a matrix where rows denote tokens in the parser configuration, defined relative to the
stack (S), input queue (I) and dependency graph (G), and columns denote attributes.
Each cell containing a + corresponds to a feature of the model. Examples of the
features include part-of-speech for the top of the stack, lexical form for the next and
previous (next-1) input tokens and the dependency relation of the rightmost sibling of
the leftmost dependent of top.

5. Parser stacking

The procedure for enabling the data-driven parser to learn from the grammar-
driven parser is quite simple. We parse a treebank employed for training the data-
driven baseline parser with the XLE platform. We then convert the LFG output to
dependency structures, so that we have two parallel versions of the treebank – one
gold standard and one with LFG-annotation. We extend the gold standard treebank
with additional information from the corresponding LFG analysis and train the data-
driven dependency parser on the enhanced data set.

4. Note that the feature model in Table 2 is an example feature model and not the actual model
employed in the parsing experiments. The details or references for the English and German
models are provided below.
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Table 3. Enhanced treebank version of the English example sentence At the end of the
day, 251.2 million shares were traded

Table 3 shows the enhanced treebank version of the English sentence in example
(4). For each token, the treebank contains information on word form, in column 2
( prqSsut ), part-of-speech tag, in column 3 ( vrq\w ), as well as the head and dependency
relation in rows 5-6 ( xuyuzu{-|}{uyuvusuyu~ ) in Table 3. The added XLE information resides
in the puyuzu��w -column, column 4, and in the additional columns 7-8 ( �uxuyuz�{�|}�u{uyuv ) in
Table 3.5

(4) At the end of the day, 251.2 million shares were traded.

It is clear already from this example that there are some interesting differences
between the two annotations. The treebank annotation makes the finite verb were (row
11 in Table 3) the head of the whole dependency tree by attachment to the artificial
root node 0 with dependency label ROOT, whereas the LFG analysis makes the lexical
verb traded the root. It follows that arguments, such as the subject node shares in (4),
are attached to different nodes in the two annotation schemes.

There is furthermore the fact that the treebank annotation has been manually
checked, whereas the LFG output has not. The latter is thus bound to contain er-
rors, which will certainly add noise to the training data provided for the data-driven
parser. That being said, we may also expect that the errors made by the two parsers are
qualitatively different due to the fundamental differences in the parser – the grammar-
driven parser will typically suffer from missing rules or lexical entries, whereas the
data-driven parser will be constrained by the types of structures found in the training
data.

5. The CoNLL-format also contains columns for information about lemma and a more fine-
grained part-of-speech tag. These columns are, however, empty in our data sets and were there-
fore omitted from Table 3.
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Given the differences between the two annotations, it will be interesting to see
whether these differences will turn out to complement each other and whether the data-
driven parser will actually learn to generalize from the linguistic insights expressed in
the grammar-driven system. The next sections are devoted to various aspects of this
topic.

5.1. Parser modifications

In order for the data-driven parser to make use of the grammar-driven analyses
both during learning and parsing, we make some modifications to the baseline feature
models described in Section 4. We extend the feature model of the baseline parsers
using the technique employed in Nivre and McDonald (2008). This allows us to add
the predictions of another parser, or several other parsers, as features for the current
parser. In this case we want to add the dependency substructure proposed by the
grammar-driven parser as a feature for our data-driven parser. We thus need to be
able to refer to the head (XHEAD) and dependency relation (XDEP) proposed by the
grammar-driven system, for each token in a parse configuration. The example feature
model in Table 2 shows how we add the proposed dependency relation (XDEP) for the
token on top of the stack (top) and for the next input token (next) as features for the
parser. We also add a feature which looks at whether there is an arc between these two
tokens in the dependency structure (InputArc(XHEAD)), with three possible values:
Left, Right, None.

In order to incorporate further information supplied by the LFG grammars, we ex-
tend the feature models with an additional, static attribute, XFEATS. This is employed
for the range of additional linguistic features, detailed in Section 3.3 above.

5.2. Experimental setup

For the training of baseline parsers we employ feature models which make use of
the FORM, POS and DEP features exemplified in Table 2. For the baseline parsers and
all subsequent parsers we employ the arc-eager algorithm (Nivre, 2003) in combina-
tion with SVM learners, using LIBSVM (Chang and Lin, 2001) with a polynomial
kernel.6 We employ the following language-specific settings:

English: Learner and parser settings, as well as a feature model from the English
pretrained MaltParser-model.7

6. For both languages, we employ so-called “relaxed” root handling, which allows for root de-
pendents to remain unattached during parsing and hence for the reduction of unattached tokens.
This was found to improve results for the baseline parsers for both languages.
7. Available from http://maltparser.org
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German: Learner and parser settings from the German parser employed in the
CoNLL-X shared task (Nivre et al., 2006b). We also employ the technique
of pseudo-projective parsing described in Nilsson and Nivre (2005).

All parsing experiments are performed using ten-fold cross-validation for training and
testing. This gives us as large as possible a sample of each language and more ex-
amples of less frequent constructions, e.g., control and raising constructions. Overall
parsing accuracy will be reported using the standard metrics of labeled attachment
score (LAS) and unlabeled attachment score (UAS). These report the percentage of
tokens that are assigned the correct head with (labeled) or without (unlabeled) the
correct dependency label.

Following the evaluation setup from the CoNLL shared tasks on dependency pars-
ing, statistical significance is checked using Dan Bikel’s randomized parsing evalu-
ation comparator, and we report the average p-value over the ten cross-validations
along with standard deviation (σ).8 The experiments are performed using gold stan-
dard part-of-speech tags; however, there is nothing that prevents the same technique
to be directly applied to raw text. As mentioned earlier, XLE comes with its own
tokenizer and part-of-speech tagger. We will return to this point in Section 8.

6. Results

We perform a set of experiments investigating parser stacking for English and Ger-
man, employing converted output from the grammar-driven system assigning a LFG
analysis. We experiment with the addition of two types of features: i) the dependency
structure proposed by XLE for a given sentence, and ii) other morphosyntactic, struc-
tural or lexical semantic features provided by the XLE grammar, as detailed in Table
1.9

6.1. Dependency structure

As detailed in Section 3, we extract labeled dependency representations from the
XLE output. The labels are taken directly from the f-structure paths. We employ two

8. Available from http://www.cis.upenn.edu/∼dbikel/software.html.
The main idea in randomized parsing evaluation is that given a null hypothesis of no differ-
ence between two sets of results, shuffling the results from one system with those of the other
should produce a difference in overall results equal to or greater than the original difference,
since the individual scores then should be equally likely. If the performance of two sets differs
significantly, on the other hand, the shuffling of the predictions will very infrequently lead to a
larger performance difference. The shuffling is iterated 10,000 times and the total number of
differences in results equal to or larger than the original is recorded. The relative frequency of
the number of differences is then interpreted as significance of the difference.
9. A short version of these results is presented in Øvrelid et al. (2009).
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English German
UAS LAS UAS LAS

Baseline 92.48 89.64 88.68 85.97
Single 92.61 89.79 89.72 87.42
Complex 92.58 89.74 89.76 87.46
Feats 92.55 89.77 89.63 87.30

Morph 92.53 89.74 89.45 87.11
Struc 92.51 89.72 89.10 86.50
Sem 92.53 89.74 89.21 86.63

Single+Feats 92.52 89.69 90.01 87.77
Complex+Feats 92.53 89.70 90.02 87.78

Table 4. Overall results in ten-fold cross-validation experiments using gold standard
part-of-speech tags, expressed as unlabeled and labeled attachment scores (UAS/LAS)

strategies for the extraction of dependency structures from output containing multiple
heads. We attach the dependent to the closest head and i) label the dependency with
the corresponding label (Single), and ii) label the dependency with the complex label
corresponding to the concatenation of the labels from the multiple head attachments
(Complex). In this way we preserve a part of the analysis, while outputting well-
formed dependency trees.

The results for English are presented in Table 4. The addition of the proposed
dependency structure from the grammar-driven parser (Single) causes a small but sig-
nificant improvement of results (p<.02; σ=.05). In terms of labeled accuracy the
results improve by 0.15 percentage points, from 89.64 to 89.79, constituting a 1.4%
reduction of error rate. The introduction of complex dependency labels to account for
multiple heads in the LFG output (Complex) causes a smaller improvement of results
than the single labeling scheme.

The corresponding results for German are also presented in Table 4. We find that
the addition of grammar-derived dependency structures with single labels (Single) im-
proves the parse results significantly (p<.0001; σ=0), both in terms of unlabeled and
labeled accuracy. For labeled accuracy we observe an improvement of 1.45 percent-
age points, from 85.97 to 87.42, constituting a 10.3% reduction of error rate. For
the German data, we find that the addition of the dependency structure with complex
labels (Complex) gives a further small, but non-significant, improvement over the ex-
periment with single labels (Single).

6.2. Additional grammar-derived features

The additional linguistic features extracted from the grammar output and presented
in Table 1 were added in a set of experiments for English and German. We experi-
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Level Features
Morph CASE, DEF, DEVERBAL, FUT, GEND, GENITIVE, MOOD, NUM, PASSIVE, PERF, PERS, TENSE
Struc AUXFLIP, AUXSELECT, CLAUSETYPE, COHERENT, COORDLEVEL, COORD, COORDFORM, GOVPREP, SUB-

CAT
Sem ADJUNCTTYPE, ADVTYPE, ATYPE, COMMON, COUNT, DEIXIS, GENDSEM, HUMAN, LOCATIONTYPE,

NTYPE, PROPERTYPE, PSEM, PTYPE, TIME, VTYPE

Table 5. Features from XLE output, ordered by level of linguistic analysis – (mor-
phosyntactic (Morph), structural (Struc) and semantic (Sem)

mented with several feature models for the inclusion of the additional information;
however, we found no significant differences when performing a forward feature se-
lection.10 The addition to the feature model simply adds the XFEATS of the top and
next tokens of the parse configuration.

The English parse results with the addition of the grammar-extracted features in
Table 1 (Feats) are presented in Table 4. We find that the results improve significantly
compared to the baseline (p<.04; σ=.08) by 0.13 percentage points. For German, we
find that the addition of all the features presented in Table 1 (Feats) causes a significant
improvement over the baseline (p<.0001; σ=0), albeit slightly lower than the effect
obtained with the addition of the dependency structure proposed by the grammar-
driven parser.

As Table 1 illustrated, there are a large number of features extracted from the
XLE output, and these pertain to various linguistic levels – morphosyntax, syntactic
structure and semantics. A clearer understanding of the contribution of the individual
features is therefore important. We performed an additional set of experiments em-
ploying the feature subsets presented in Table 5 – morphosyntactic features, such as
CASE, GENDER and NUMBER, structural features, such as COORDLEVEL, SUBCAT
and CLAUSETYPE, and semantic features, such as ADVTYPE, LOCATIONTYPE and
TIME.

The results using feature subsets are presented in Table 4. German has a richer
morphological system than English, with agreement based on morphosyntactic cate-
gories such as case and gender. For German, it is not surprising that the morphosyn-
tactic features (Morph) give the most performance boost. It is clear, however, that
the improvement observed with the full feature set does not entirely stem from mor-
phosyntax. The inclusion of both the structural (Struc) and semantic (Sem) features

10. The feature selection experiments were performed starting from a minimal set of features
for the linguistic information: S:top, I:next, and adding new features expressing more of the
linguistic context (preceding and following tokens in the input and stack, information about the
head, etc.) in a one-by-one fashion. We finally ran an experiment with a maximal feature model
including all the tested features. No further significant improvements were observed, hence we
settled for the minimal feature model.
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give significant improvements over the baseline. And, finally, their combination gives
the best result. For English, we find that the three feature subsets all cause slight, but
not significant, improvements over the baseline and that the combination of these out-
perform the individual features and give significant improvements in overall results.

6.3. Combination

The experiments testing the addition of proposed dependency structures and ad-
ditional linguistic features from the grammars showed that these individually cause
significant improvements in terms of parse accuracy for both English and German. It
might very well be, however, that the features contribute information which serves the
same purpose and hence will not lead to an accumulative effect when combined. The
results for experiments combining both sources of information – dependency struc-
tures and additional features – are presented in the final lines of Table 4.

We find that for the English parser, the combination of the features does not cause
a further improvement of results, compared to the individual experiments. Rather,
the results are lower than in the individual experiments. In the German experiments,
on the other hand, the effect of combining the features is positive. The combined
experiments (Single+Feats, Complex+Feats) differ significantly from the baseline ex-
periment (p<.0001; σ=0), as well as the individual experiments – Complex (p<.01;
σ=.08) and Feats (p<.0002; σ=.001) – reported in Sections 6.1-6.2. By combining
the grammar-derived features we improve on the baseline by 1.81 percentage points,
from labeled accuracy of 85.97 to 87.78, constituting a 12.9% reduction of error rate.

7. Error analysis

The experiments presented in the previous section show that parser combinations
with large-scale LFG grammars can improve data-driven dependency parsing for both
English and German, even though the level of improvement differs between the two
languages. However, overall parse improvements say very little about the precise
effect of the added linguistic knowledge during parsing. An in-depth error analysis
was therefore performed.

We seek to compare the effects observed in the two languages; however, the an-
notation schemes for the two treebanks are not isomorphic. Figures 3-4 compare the
F-scores for a common set of the most frequent dependency relations in the experi-
ments adding dependency structure only (Single) and additional features only (Feats)
for English and German. We examine subjects, objects, adverbials, nominal modifiers
and coordinations. The treebanks differ in particular in the treatment of various ad-
verbials. For English we included two types – ADV and TMP, whereas in the German
annotation these are subsumed under the MO label.

Differences in the linguistic expression of syntactic structure in different languages
clearly influence the parse performance. It is well known that certain properties of
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Figure 3. English: F-scores for subjects
(SBJ), objects (OBJ), adverbials (ADV),
temporal adverbials (TMP), nominal mod-
ifiers (NMOD), root (ROOT) and coordina-
tions (COORD) in the Baseline, Single and
Feats experiments
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Figure 4. German: F-scores for subjects
(SB), objects (OA), modifiers (MO), noun
kernel modifiers (NK), root (ROOT) and co-
ordinations (CD) in the Baseline, Single
and Feats experiments

German, such as variable argument placement and case syncretism, pose additional
challenges in parsing (Kübler et al., 2006).11 We may note first of all, that the per-
formance for argument relations, such as subjects, objects and predicatives, is notably
higher for English than for German. For instance, the baseline parser for English ob-
tains an F-score of 94.85 for the subject relation (SBJ), whereas the corresponding
German parser gets 87.12 (SB). In this respect there is clearly also more room for
improvement in the German analyses.

We may furthermore note that the English parser has a lower performance for ad-
verbial relations (ADV,TMP) than the German parser (MO). The dependency relations
employed in the English treebank distinguish a more fine-grained set of adverbial re-
lations, including temporal (TMP), directional (DIR) and locative (LOC) adverbials,
where the German treebank groups these together under one dependency relation
(MO). This is clearly an example of the granularity of the tag set making parsing
of adverbials in English a harder task. The addition of grammar-derived structures
does not improve on the analysis of adverbials to any large extent.

Generally, we can say that the effects observed with the addition of structure and
features from the XLE grammars to the treebanks depend on the “division of labor”
between the two. In particular, the effect depends on where the grammars may con-

11. Case syncretism denotes the situation where one inflected form corresponds to several cases.
For instance, German does not have separate forms for nominatives and accusatives in the fem-
inine gender.
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Freq Base Best
SBJ subject 0.09 94.85 95.31
ROOT root 0.05 87.30 88.13
P punc 0.01 69.23 72.59
OBJ object 0.06 91.53 91.90
PRD predicative 0.02 86.50 87.28
COORD coordination 0.03 78.90 79.19
AMOD adjectival mod. 0.02 76.93 77.41
SUB subord 0.01 90.33 90.95
PMOD prep. mod. 0.11 95.97 96.03
APPO apposition 0.02 75.26 75.53

Table 6. Top 10 improved dependency re-
lations in the English Single experiment,
ranked by their weighted difference of bal-
anced F-scores

Freq Base Best
MO modifier 0.14 76.00 77.99
OA acc. obj. 0.04 78.04 84.31
SB subject 0.08 87.12 90.01
AG genitive attr. 0.03 82.93 90.78
NK nom. mod. 0.35 96.37 96.85
DA dative 0.01 52.85 73.26
OC clausal obj. 0.05 88.85 90.39
CJ conjunct 0.04 72.32 74.20
ROOT root 0.06 90.18 91.22
MNR postnom. mod. 0.03 67.86 69.63

Table 7. Top 10 improved dependency re-
lations in the German Complex+Feats,
ranked by their weighted difference of bal-
anced F-scores

tribute with generalizations which are not made explicitly in the treebank data set.
Tables 6-7 show ranked lists of the dependency relations for which the parser perfor-
mance improves the most in the best performing systems for English and German,
respectively.12 If we compare the effects in the two languages, we may note several
points of difference.

Whereas we observe a general improvement for argument relations, such as sub-
jects and objects, in both systems, we find that the analysis of adverbials improves to
a larger extent for German. The modifier relation MO which is employed largely for
prepositional phrases at the sentence level is one of the relations for which parser per-
formance improves the most in the German experiments. This may in part be traced
back to the difference in the annotation schemes and grammars for the two languages.
The MO relation in the Tiger treebank is employed for all types of modifiers at the
sentence level, as well as nominal adverbs at the phrase level. The German XLE
grammar, however, makes some finer distinctions and distinguishes general adjuncts
(ADJUNCT) from various oblique arguments (OBL-DIR, OBL-LOC). For instance, the
German example in (5) is a sentence where the baseline parser erroneously attaches
the prepositional phrase auf den Glastüren ‘from the glass doors’ to the preposition
als ‘as/like’ and assigns it the MNR-relation. The XLE analysis, however, attaches
it correctly to the verb erscheinen ‘seem’ and analyzes it as an oblique argument
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expressing direction (OBL-DIR), whereby the stacked parser subsequently performs
correct attachment and labeling.

(5) . . . nicht
. . . not

als
as

Spiegelbilder
reflections

auf
from

den
the

Glastüren
glass-doors

des
the

Einkaufspalastes
shopping-centres.GEN

erscheinen
seem
‘. . . do not seem like reflections coming from the glass doors of the shopping malls’

As mentioned earlier, the English treebank annotation makes a range of adverbial dis-
tinctions, whereby these are largely annotated as ADJUNCT by the XLE-grammar. The
use of the total set of additional XLE features for English benefits argument relations,
(subjects, objects, predicatives), but also the temporal adverbial relation (TMP). The
features TIME for nouns, as well as the distinctions made by the ADVTYPE feature
(sentence adverbial or vp-adverbial) contribute to this improvement.

Where the annotations in the grammar and treebank do not differ, the added pre-
dictions serve to supply extra evidence in the parsing of “hard cases”. For instance, we
find that subjects are one of the top most improved dependency relations for the En-
glish parser: see Table 6. The improved instances are largely analyzed as subjects by
the XLE grammar as well, such as the subject of the subordinate clause with missing
complementizer in (6):

(6) Mr. Sulzberger said the scheduled opening of . . .

A final point in the comparison of the ranked lists in Tables 6-7 is that the analysis of
punctuation is improved in the English experiments, but not in the German. This is
once again explained by differences in the grammars, where the English grammar is
better at handling sentence-final punctuation.13

We noted earlier that the dependency analyses proposed by the grammar and the
treebanks are not always identical, and we have not done any modifications in order to
make them more similar. A question is whether systematic differences in the analyses
actually contribute to the observed improvements. For instance, we have seen that
the LFG analysis systematically analyzes the lexical verb as the root of the sentence,

12. In order to summarize improvement with respect to dependency relation assignment when
comparing two parsers, we rank the relations by their frequency-weighted difference of F-
scores. For each dependency relation, the difference in F-scores is weighted by the relative
frequency of the dependency relation, Deprel

P

i
Depreli

, in the treebank.
13. The CoNLL evaluation script does not take into account punctuation during overall scoring,
hence the overall results expressed as unlabeled and labeled attachment scores are calculated
disregarding punctuation. The improvement in overall results for English when scoring for
punctuation is slightly higher: 0.18 percentage points, as compared to 0.15 without punctua-
tion. In calculating performance per dependency relation, however, we may look specifically at
punctuation.



Cross-framework parser stacking 127

whereas the treebanks make the finite verb the root. If we look at the relations for
which we observe improvements in the two languages, we find that these exhibit a
relatively large degree of mismatch in terms of head assignment. For instance, the
grammar-driven analysis of subjects does not match the treebank analysis in terms of
head assignment for 54% and 45% of the instances in the English and German data
sets, respectively. The same holds for many other improved relations, such as OBJ
(57% mismatch) and ROOT (27% mismatch) for English, and MO (47% mismatch)
and OA (28% mismatch) for German. Another point of mismatch is found in label-
ing, where one treebank label may often correspond to several different labels in the
grammar analysis. Whereas there is usually one label in the majority, we find that the
German MO-relation discussed above, for instance, corresponds to the grammar-based
ADJCT-relation in 72% of the training instances and to other labels such as OBL-LOC,
OBL-DIR, OBJ in the rest. This indicates that the improvement observed does not rely
on identical analyses from the resources employed.

7.1. Parser quality

The output from the grammar-driven parser is necessarily noisy and the coverage
is not one hundred percent. Even so, the parsing experiments show that the data-
driven parser may generalize over the input and actually acquire improved linguistic
analyses. As mentioned in Section 2, we run the parser in so-called fragmented mode,
where sentences which do not receive a full analysis by the parser are simply bundled
together under a special root node denoted ‘FRAGMENTS’. Such fragmented nodes
typically consist of lower-level substructures such as noun phrases and prepositional
phrases which are usually connected in a sentential analysis. One might ask how im-
portant the quality of the output from the grammar-driven parser is. In our original
setup we chose to prioritize coverage. However, it might be that the additional frag-
mented information is simply of such poor quality as to cause more damage than good
during parsing.

In a series of experiments we investigate the influence of the parse quality further
by training a baseline and a stacked parser exclusively on sentences that receive a full
analysis from the grammar-driven parser. For English, this results in a loss of 15.8%
of the sentences. The German parser apparently outputs more fragmented parses,
and 30% of the total sentences are excluded in these experiments. For the stacked
parsers, we employ the settings for the best systems in the earlier experiments, i.e.
the Single system for English and the Complex+Feats system for German, the only
difference being the amount and quality of the training data, which is restricted to
non-fragmented sentences.

The first two rows of Table 8 present the results obtained in the experiments with
non-fragmented parse features. Compared to the new baseline consisting of non-
fragmented sentences parsed with the baseline parser (BaselineNonFrag), we observe
a comparatively somewhat larger improvement for both languages: 0.24 percentage
points for English or 2.4% reduction of error rate, compared to the earlier 0.15 or
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English German
UAS LAS UAS LAS

BaselineNonFrag 92.48 89.63 89.55 86.89
BestNonFrag 92.71 89.87 91.09 89.04
Baseline 92.48 89.64 88.68 85.97
BestFragSpec 92.61 89.79 90.02 87.78
BestFragUnSpec 92.55 89.70 89.81 87.54

Table 8. Overall results in ten-fold cross-validation experiments with non-fragmented
sentences only (NonFrag) and with specified (FragSpec) vs. unspecified frag-
mented input (FragUnSpec), expressed as unlabeled and labeled attachment scores
(UAS/LAS)

1.4% error rate reduction, and 2.15 percentage points or 15.3% reduction in error rate
for German, compared to the earlier 1.81 or 12.9% error rate reduction. This is not
surprising, as these experiments provide us with a test of the performance possible un-
der near-perfect conditions, without having to resort to the gold standard of the LFG
analyses. In an error analysis, we note that the main trends of improvement in terms
of dependency relations are the same for both languages, only somewhat stronger.

The experiments with non-fragmented data do not represent a realistic setting, as
we are training on a subset of the training data, hence possibly overlooking phenomena
that are problematic for both parsers. An alternative strategy would be to include
additional features only for non-fragmented analyses, while still training on the whole
data set. This would involve leaving a subset of the training data unspecified for its
grammar-driven analysis. We ran this experiment and the results are presented in
the last row of Table 8, where we have included the baseline (Baseline), as well as the
best results obtained in the earlier experiments using fragmented input (BestFragSpec),
as discussed in Section 6 above. We find that the parsers trained with unspecified
fragmented analyses perform worse than the fully specified parsers. The results show
that coverage is important in a realistic setting and that the data-driven parser may
generalize successfully over fragmented analyses.

8. Automatically assigned PoS-tags

The recent CoNLL shared tasks (Buchholz and Marsi, 2006; Nivre et al., 2007)
have provided benchmarks within the area of data-driven dependency parsing. The
general experimental methodology employed in these tasks has involved training and
testing on gold standard parts of speech. Although this allows one to focus solely
on the task of syntactic parsing without interference from tagging errors, it is also a
somewhat unrealistic setting for further application and the results may give an over-
optimistic view of the accuracy that can be expected when parsing new text. It is there-
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English German
UAS LAS UAS LAS

BaselineAUTO 91.67 88.56 87.13 84.14
XPos 91.46 88.26 86.72 83.61
DepStruc (Single/Complex) 91.88 88.77 87.36 84.69
Feats 91.84 88.77 87.15 84.41
DepStruc+Feats 91.88 88.76 87.86 85.31
DepStruc+Feats+XPos 91.63 88.44 88.27 85.72

Table 9. Overall results in ten-fold cross-validation experiments using automatically
assigned part-of-speech tags, expressed as unlabeled and labeled attachment scores
(UAS/LAS)

fore important to show how the effects resulting from the use of the grammar-derived
dependency structures and other features are affected by the use of automatically as-
signed part-of-speech tags.

In order to test the parser stacking approach with automatically assigned part-of-
speech tags, we tag the treebanks using the TreeTagger (Schmid, 1994), which has
models for both English and German.14 We simply replace the gold standard part-of-
speech tags in the treebanks with the automatically assigned tags, and subsequently
retrain and retest the parsers. The experimental setup is otherwise identical to the
previous experiments described in Section 6 above. As is to be expected, the base-
line results are lower with the automatically assigned tags: see the results for the
BaselineAUTO parsers in Table 9. We may furthermore note that the deterioration
in parse results compared to the baseline employing gold standard tags is larger for
German (1.83 percentage points LAS) than English (1.08 percentage points LAS).
As mentioned earlier, XLE comes with its own tokenizer and part-of-speech tagger,
hence may be applied directly to raw text. It employs a somewhat different part-of-
speech tag set than the one employed by TreeTagger, so one interesting question is
clearly whether the XLE output may benefit the parser also in this case. An exper-
iment where the XLE PoS-tags were added as features for the parser is reported in
the second line of Table 9 (XPos).15 We find that the use of a second set of part-of-
speech tags actually causes a deterioration in results for both languages. It is clear that
the PoS-tag sets do not complement each other in a way that is useful in the parser
combination setting.

We also perform experiments equivalent to the ones reported in Section 6, where
we were using gold standard PoS-tags in the parse models. As before, we find that the

14. TreeTagger is available from http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
15. The XLE part-of-speech tags were included for the same tokens of the parse configuration
as the TreeTagger, and previously, the gold standard, part-of-speech tags: see Section 5.2 above.
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use of both the grammar-derived dependency structures (DepStruc16) and the other
linguistic features (Feats) during parsing causes significant improvements for both
languages. For English we find that the added information has a slightly more pro-
nounced effect than in the gold standard experiments, and both the addition of de-
pendency structure (DepStruc) and additional features (Feats) causes significant im-
provements (p<.01;σ=.06/03). The German results show that the addition of both de-
pendency structure (p<.002;σ=.01) and additional features (p<.05;σ=.01) improves
parse results and we also observe additional improvements from their combined effect
(p<.0001;σ=0). The effects are somewhat less pronounced than in the gold standard
experiments, as is to be expected.

The effects observed in the experiments using automatically assigned part-of-
speech tags largely corroborate those noted in Section 6 above. For English, we find
that it is the addition of dependency structure that has the largest effect on results (0.21
percentage points labeled improvement or 1.8% reduction of error rate). It is also clear,
however, that the linguistic features (Feats) are contributing more in a setting where
the part-of-speech tags are less reliable.17 When performing an error analysis for these
results, we find that the results are very similar to those reported in the previous sec-
tion, and also in terms of specific improvement at the level of dependency relations.
For English, we observe improvements for argument relations such as subjects (SBJ)
and objects (OBJ), as well as functional categories such as dependency root (ROOT)
and punctuation (P). As before, the analysis of various adverbial modifiers does not
improve compared to the baseline.

In the case of the German experiments, we also find a very similar pattern of re-
sults. The combination experiments achieve the highest results, where it seems very
much to be the case that the more features, the better. The combination of depen-
dency structures with additional features (DepStruc+Feats) provides an improvement
of 1.17 percentage points in overall results. The further addition of the XLE part-of-
speech tags, which did not provide any benefit on their own (XPos), cause a further
improvement of 1.58 percentage points or 10% reduction of error rate, compared to
the baseline. A more detailed error analysis shows that the effects obtained with auto-
matically assigned tags are somewhat shifted. The added information has the largest
effect on the assignment of argument relations – objects (OA), genitive attributes (AG)
and subjects (SB) – whereas the aforementioned effect on the adverbial relation (MO)
is somewhat less pronounced.18

16. Building on the experiments using gold standard tags reported in Section 6, we use single
labels for English and complex labels expressing multiple head assignments for German.
17. Unlike the results obtained using gold standard tags, however, we find that the combina-
tion of dependency structure and additional features does not cause a deterioration of results,
compared to the addition of grammar-derived dependency structures only.
18. The performance gain observed for the MO-relation in the German experiment with auto-
matic PoS-tags is 1.19 percentage points improvement in F-score, compared to 1.99 in the gold
standard experiment: see Table 7.
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Figure 5. English: F-scores for subjects
(SB), objects (OA), modifiers (MO), noun
kernel modifiers (NK), root (ROOT) and co-
ordinations (CD) in the gold standard base-
line (GoldBaseline) and best (GoldBest)
experiments, compared with automatic tag
assignment baseline (AutoBaseline) and
best (AutoBest)
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Figure 6. German: F-scores for sub-
jects (SB), objects (OA), genitive attr.
(AG), modifiers (MO), noun kernel mod-
ifiers (NK), root (ROOT) and coordina-
tions (CD) in the gold standard baseline
(GoldBaseline) and best (GoldBest) exper-
iments, compared with automatic tag as-
signment baseline (AutoBaseline) and best
(AutoBest)

As in the earlier experiments, we found that the effects of our features were more
pronounced for German. In fact, the error analysis shows that for some dependency
relations the performance with automatic tags actually reaches baseline gold stan-
dard performance or even better. However, it goes for both languages that the use of
grammar-derived features during data-driven parsing, at least partially, circumvents
the deterioration of results when moving to applications to raw text. Figures 5-6 show
comparisons of the performance (F-score) obtained for the most frequent set of de-
pendency relations in the gold standard baseline and best experiments, as well as the
automatic baseline and best experiments.19 In general we find that the parser stacking
setup is an effective means for augmenting the simple part-of-speech-tagging/parsing
pipeline with the syntactically informed category decisions of the full grammar-driven
parser.

19. The best results in the gold standard and automatic experiments for English were the Sin-
gle and DepStruc experiments, respectively, and for German, the Complex+Feats and Dep-
Struc+Feats+XPos, respectively.
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German (L1): Debatten, die wir geführt haben

Dutch (L2): debatten die wij hebben gevoerd

Figure 7. Dependency tree projection from German to Dutch

9. Parser stacking in crosslingual projection

In order to assess the usefulness of the combined parsers, we also provide an
application-oriented evaluation. In particular, we compare the baseline parsers and
the combined parsers in terms of the performance that is achieved when the respective
parsers are used as source parsers in a framework for the crosslingual projection of
syntactic annotations (Hwa et al., 2005; Spreyer and Kuhn, 2009).

Crosslingual annotation projection (Yarowsky et al., 2001) induces linguistic an-
notations for a target language by exploiting word-aligned parallel corpora in com-
bination with existing resources for another language (the source language). It thus
avoids the expensive annotation process of manual treebank creation for the target lan-
guage. To be more concrete, in the context of dependency parsing we take advantage
of the fact that state-of-the-art parsers exist for a handful of languages, and parallel
text is available (e.g., Koehn (2005)) for which word alignments can be established
automatically (Och and Ney, 2003). Thus, given a parallel corpus with dependency
annotations in the source language, the dependencies can be projected along the word
alignment to the target language. This is illustrated in Figure 7, with German as the
source language and Dutch as the target language. For example, the edge (haben,
geführt) in the German source parse is projected to (hebben, gevoerd) in Dutch, via
the word alignments haben↔hebben and geführt↔gevoerd. Note that the notion of
parallelism that is exploited here is independent of word order, given the word align-
ment. This can be seen in the verbal complex in Figure 7, where the main verb pre-
cedes the auxiliary in the German relative clause, while the opposite is true for Dutch.
However, this difference is contained in the word alignment, and the projected depen-
dency relations form an appropriate (non-projective) dependency tree for the Dutch
sentence. Note that in many cases, the result of projecting a dependency tree based on
an automatic word alignment is not a fully connected dependency graph. However,
we also explore the usability of the resulting dependency parse fragments.20

20. It is important to note that the dependency parse fragments in the present section are distinct
from the fragmented XLE parses discussed above.



Cross-framework parser stacking 133

Using the baseline parser and the best combined German system from Section 6
as alternative source parsers, we parsed the German portions of 100,000 parallel sen-
tences from the Europarl corpus (Koehn, 2005). We subsequently projected the trees
to the Dutch translations as explained above. Discarding those Dutch parses that do
not form trees (i.e., fragmented parses), this yielded data sets of 15,300 (baseline) and
15,600 (combined) words when projecting from German. We then used the projected
trees as training data for MaltParser.

When fragmented projected parses are discarded, the distribution of the remaining
data is highly skewed and most non-trivial examples are lost. This is because the direct
correspondence assumption (Hwa et al., 2005) does not hold in general: Although
languages do tend to exhibit astonishing degrees of parallelism, translations are rarely
completely isomorphic. Hence, only sentence pairs with a one-to-one correspondence
between the words in the source and target language will receive a connected parse
through projection. We thus employ a slightly modified version of MaltParser which
is capable of successfully learning from fragmented input (Spreyer and Kuhn, 2009),
and can therefore make use of the full set of projected dependencies.

Table 10 shows the UAS of the projected parsers, evaluated on the CoNLL06 test
set (Buchholz and Marsi, 2006) of 386 sentences from the Alpino treebank (van der
Beek et al., 2002). We see that the combined parser significantly21 outperforms the
baseline in both training regimens (on trees as well as on fragments).

We use the crosslingual projection set-up in order to assess whether the increase in
parsing performance observed in the standard, in-domain gold standard treebank eval-
uation will have a favorable effect on out-of-domain parser application under realistic
application conditions: the German stacked parsers are used outside their training do-
main, namely on Europarl data. The Europarl-trained (projected) Dutch parser is then
evaluated on the Dutch Alpino treebank gold standard. Note the relatively high num-
ber of potential noise sources in this set-up: the German (baseline) data-driven parser
is applied on raw out-of-domain text; the grammar-driven parser (in parser stacking)
is run fully automatically, with its own robustness techniques (skimming and frag-
ment parsing); the word alignment is automatic; data-driven training of the Dutch
target parser is on fragmented crosslingual data from the Europarl domain, but the
final evaluation is on Dutch gold standard data from a different domain. The fact that
the parser stacking improvements observed under laboratory conditions carry over to
this set-up indicates that it is a robust effect.

21. A cross-validation scheme is not applicable with a monolingual test set. Further complica-
tion arises from the fact that the underlying source language parsers not only differ in terms of
accuracy, but indirectly lead to projected training sets that do not necessarily contain the same
sentences. This is because different parse trees may be fragmented differently when projected
to the target language, and fragmentation is the criterion for the training data selection. We
therefore perform significance testing using the t-test (p << 0.01) over the results of training on
ten random permutations of the respective training data. In Table 10 we report the means and
standard deviations of these results.
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Trees Fragments
Projection from baseline 63.94 (0.70) 67.67 (0.39)
Projection from stacked 65.38 (0.29) 68.60 (0.40)

Table 10. Mean unlabeled accuracy (UAS) and standard deviations for Dutch parsers
projected from German

10. Discussion and conclusion

The idea of combining several parsers is certainly not new. Work on parser en-
sembles usually makes use of a voting strategy of some kind in order to derive a
single prediction for an output (Sagae and Tsuji, 2007; Zhang et al., 2008). As Nivre
and McDonald (2008) point out, the parser stacking differs from these in the inte-
gration of the parsers during learning of the parse models. The work described here
uses the technique employed in Nivre and McDonald (2008) for integrating graph-
based and transition-based dependency parsers and extends it by employing features
taken from a grammar-driven parser. Like Nivre and McDonald (2008), we supply a
data-driven dependency parser with features from a different parser. The additional
parser employed in this work is not, however, a data-driven parser trained on the same
data set, but a grammar-driven parser outputting a deep LFG analysis. We also show
how a range of other features – morphological, structural and semantic – from the
grammar-driven analysis may easily be employed during data-driven parsing and lead
to significant improvements in parse results.22 The previous work which most resem-
bles this is the use of grammar-derived features from HPSG grammars in data-driven
dependency parsing (Zhang and Wang, 2009). They show that parser combination is
beneficial for domain-adaptation in English and argue that the grammar-driven parser
provides domain-independence.

The approach detailed here should be easily applicable to grammars written within
different theoretical frameworks. This opens a range of interesting possibilities, both
in terms of combining parsers from other theoretical frameworks and of generalization
of the method to other languages. It is clearly common for many languages to have
grammars hand-written in different theoretical frameworks and with varying coverage
and quality. The approach to parser stacking presented in this paper creates the pos-
sibility of combining these in a way that makes use of the generalizations expressed
by the hand-written grammar within a framework which has furthered the state of the
art for a range of languages. The requirements for application to a new language are

22. English was not among the languages investigated in Nivre and McDonald (2008). Our best
results for German, combining dependency structures and additional features, are slightly higher
than those reported for MaltParser (0.11 percentage points). These results are not, however,
directly comparable as they were obtained on different test sets.
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the existence of a syntactic treebank on which to train a parser, one or more grammars
for the language and a mapping from the grammar annotation to dependency repre-
sentations. There are clear extensions to the work presented here that constitute future
plans for work. Some main themes in this research would look at improved data-
driven modeling through richer features to take into account the full potential of the
deep resources/grammars, the effect of different theoretical frameworks and their rep-
resentations of phenomena such as long-distance dependencies, raising/control, etc.,
and the effect of other types of information, such as semantic and discourse-related
analyses provided by the deep grammars. The work presented here provides an im-
portant contribution to this.

This paper has presented systematic experiments in the combination of a grammar-
driven LFG-parser and a data-driven dependency parser. We have shown how the use
of converted dependency structures in the training of a data-driven dependency parser,
MaltParser, causes significant improvements in overall parse results for English and
German. We have also presented a set of additional, linguistic features which may
straightforwardly be extracted from the grammar-based output and cause individual
improvements for both languages and a combined effect for German. In order to
address the question of whether the effect is merely due to the combination of two
independently developed parses or whether we indeed see a substantial effect of the
two complementary parsing approaches, we have performed detailed analyses and
further experiments.

A feature analysis through feature subset experiments indicates that information
from several linguistic levels – morphosyntactic, structural and semantic – contributes
to the observed effect and does so in a way which reflects properties of the languages
under analysis. An in-depth error analysis has shown how the effects of the added
features rely on the combined distinctions expressed in the treebank and the grammars,
as well as systematic mismatches between the two.

Experiments assessing the importance of parser quality have indicated that a slight
performance gain would be possible with a better parser. More importantly, how-
ever, the experiments have also shown that coverage is important and that the data-
driven parser is capable of generalizing over quite noisy input. In application to
raw text, the effect of automatically assigned part-of-speech tags is an important
factor. Here, we have shown that the use of grammar-derived information in data-
driven dependency parsing helps reduce the deterioration of results which accompa-
nies application-realistic settings and thus provides a means for augmenting the stan-
dard part-of-speech-tagging/parsing pipeline with the syntactically informed category
decisions of the full grammar-driven parser. We have furthermore provided results
from application to the task of crosslingual annotation projection. We found that in a
setting with a great deal of noise, where the parsers are applied to out-of-domain data,
the effect of parser stacking remains and provides significant improvement of results.
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