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Itis nowadays easy to set-up an SMT system from
existing tools and parallel data. Moreover, improve-
ments in the average quality of such systems have

Abstract

We investigate the problem of estimating the

quality of the output of machine translation
systems at the sentence level when reference
translations are not available. The focus is on
automatically identifying a threshold to map
a continuous predicted score into “good” /
“bad” categories for filtering out bad-quality
cases in a translation post-edition task. We use
the theory of Inductive Confidence Machines
(ICM) to identify this threshold according to a
confidence level that is expected for a given
task. Experiments show that this approach
gives improved estimates when compared to
those based on classification or regression al-

been observed in the last years (Callison-Burch et
al., 2008). However, there is no guarantee that a
given translated segment will be good enough for
post-edition. Human translators need to read the
segment many times to find out that it is better to
delete it and start from scratch. The time spent to
read a translation and attempt to post-edit it before
dropping it out may be even longer than the time to
translate the source sentence from scratch. The lack
of information about the quality of an SMT system’s
output is certainly one of the reasons hampering the

use of these systems. The research area addressing
this problem is referred to as Confidence Estimation
(Blatz et al., 2003).

Our target scenario is that of professional trans-
Computer-aided translation (CAT) tools like translalators post-editing MT segments. In that scenario,
tion memories and electronic dictionaries have lonthe simplest and possibly most effective form of a
been used to improve productivity of professionabegment-level quality estimate is a binary “good” or
translators. On the other hand, machine translatidivad” score, where translations judged as “bad” are
(MT) systems, and particularly statistical machinanot suggested for post-edition. We propose a score
translation (SMT), only recently have started to atthat is estimated using a machine learning technique
tract language-service providers’ and translators’ afrom a collection of information sources and trans-
tention. As any other CAT tool, MT is seen as arlations annotated according to 1-4 quality scores. A
instrument to save translators’ time. As with transregression algorithm produces a continuous score,
lation memories, the usual workflow is to apply arwhich is then thresholded into the two classes to fil-
MT system and then manually post-edit the translaer out “bad” translations. Differently from previous
tion to correct mistakes. work, we define this threshold dynamically by estab-

gorithms without ICM.

1 Introduction



lishing a confidence level that is expected from théor CE on features extracted for translations tagged
models. This is done using the theory of Inductiveaccording to MT metrics like NIST (Doddington,
Confidence Machines (Papadopoulos et al., 2002) 8002). NIST scores are thresholded to label the 5th
introduce an extra layer of confidence verificatioror 30th percentile of the examples as “good”. How-
in the models. This verification allows tuning theever, there is no reason to believe that exactly the top
threshold according to the translators’ needs. Fd&% or 30% of translations are good.
example, for very experienced and fast translators, Quirk (2004) uses classifiers and a pre-defined
usually only very good-quality translations are bettethreshold for “bad” / “good” translations consid-
than translating from scratch, while medium-qualityering a small set of translations manually labelled
translations could already be helpful for other transfor quality (350 sentences). Models trained on this
lators. We show that this yields better results thadataset outperform those trained on a larger set of
thresholding the continuous scores according to theutomatically labelled data.
true quality score or using binary or multi-class clas- Gamon et al. (2005) train a classifier using lin-
sifiers to directly estimate discrete “bad” / “good” orguistic features extracted from machine and human
1-4 scores. translations to distinguish between these two types
In the remainder of this paper we first discus®f translations. The predictions obtained have very
the previous work on CE for MT (Section 2), thenlow correlation with human judgements, which is
describe our experimental setting (Section 3), than indication, as discussed by (Albrecht and Hwa,
method used to estimate the CE scores (Section 2D07a), that high human-likeness does not necessar-
and the method threshold them based on an expectgdimply good MT quality.
confidence level (Section 5). We finally present and Our work differs from previous approaches in

discuss the results obtained (Sections 6). several respects, including the addition of new fea-
tures that were found to be very relevant, the ex-
2 Related Work ploitation of multiple datasets of translations from

different MT systems, through the use of resource-
The task of Confidence Estimation (CE) for MT isjngependent features and the definition of system-
concerned with predicting the quality (e.g., fluencyndependent features, and the use of a feature se-
or adequacy, post-editing requirements, etc.) of @ction procedure that enables identifying relevant
system’s output for a given input, without any infor-faatures in a systematic way. More importantly, the
mation about the expected output. We distinguishyajn contribution of this paper is the use of Induc-
therefore, the task of CE from that of automatic MTijye Confidence Machines to dynamically define the
evaluation by the need, in the latter, of referencgreshold to filter out bad translations under a certain

translations. expected level of confidence.
Although not directly comparable, some of the

metrics proposed for sentence-level MT evaluatioB Experimental Setting

also exploit learning algorithms and sometimes sim-

ilar features to those used in CE. Kulesza ang-l Features

Shieber (2004) use a classifier withgram preci- A number of features have been used in previous

sion and other reference-based features to predict ifrk for CE (see (Blatz et al., 2003) for a list). In

sentence is produced by a human translator (presumhis paper we focus on features that do not depend on

ably good) or by an MT system (presumably bad)any aspect of the translation process, that is, which

Albrecht and Hwa (2007a; 2007b) rely on regressiopan be extracted from any MT system, given only

algorithms and (pseudo-)reference-based featuresth® input (source) and translation (target) sentences,

measure the quality of sentenc@seudo-references and possibly monolingual or parallel corpora. We

are produced by alternative MT systems, instead @fll these “black-box” features.

humans, but this scenario with multiple MT systems The decision to use only black-box features aims

is different from that of CE envisaged in our work. to allow performing the task of CE across different
Blatz et al. (2004) train regressors and classifiem8IT systems, which may use different frameworks,



to which we may not have access. It was also moti- | _Metric | Matrax | Portage| Sinuhe|

vated by our observation, in previous work, that for Human | 2.5081| 2.8345| 2.5581
the language pair addressed in this paper, more elab- BLEU | 0.3241)| 0.3880 | 0.3521
orated (and computationally more costly) features NIST | 8.4041 | 8.8586 | 8.3985
do not yield significant gains in performance (Specia TER 49.543| 47.090 | 49.624

METEOR | 0.2397| 0.2824 | 0.2528

et al., 2009).
We extract all linguistic resource- and MT Taple 1: Average sentence-level human score and corpus-

system- independent features that have been pteased MT evaluation metrics for all datasets

posed in previous work, and also some new fea-

tures. In what follows, we desc‘ri’b_e our 77 f‘?atwesénglish-Spanish parallel corpus provided by WMT-

grouped for space reasons. A ™ is used to indicatgg (callison-Burch et al., 2008) and used to trans-

new features with respect to previous work on CE. |5te 4K Europarl sentences from the development

. and test sets also provided by WMT-08.

* source & target sentence lengths and their ra- For each systerl?w transla%/ons are manually an-
i ! . )
tios 2 3 | notated by professional translators with 1-4 quality

e source target sentence 3-gram anguag?cores, which are commonly used by them to indi-

model probability & perplexity . cate the quality of translations with respect to the
e source & target sentence type/token ratio need for post-edition:

e source sentence 1to 3-gram frequency statistics
in a given frequency quartile of a monolingual 1. requires complete retranslation
corpus 2. post editing quicker than retranslation
e alignment score for source and target and per- 3. little post editing needed
centage of different types of word alignment, as 4. fit for purpose
given by GIZA++, )
« percentages and mismatches of many superfi-TabIe 1 shows the overall quality of the transla-

cial constructions between the source and targhPn's In such datasets, as given by the average human

sentences (brackets, quotes and other puncuﬂjnotation (i.e., scores 1-4) and common evaluation
tion symbols, numbers, etc.) MT metrics: BLEU (Papineni et al., 2002), NIST

. . Doddington, 2002), TER (Snover et al., 2006) and
e *average number of translations per sourc

: . .. METEOR (using the lemmas of the words) (Lavie
word in the sentence (as given by probablllsand Agarwal, 2007).

E:ﬁgécrgg)n ?rr;ez)e,:]J:w;@tj:éevt\jﬂ;)rrdvgelghted by the The feature vector for each dataset is randomly
g y subsampled five times in training0%), validation

N . e
e *Levenshtein edit distance between the sourc&o%) and test 20%) using a uniform distribution.

sentence and sentences in the corpus used e also performed experiments in which the qual-
train the SMT system

ity score used to annotate sentences was the time

e *source & farget percentages of numbersgnent by a profession translator post-editing a sen-
content-words and non-content words tence. However, we found a very large variability in

e *POS-tag target language model, based on thfie post-edition time for sentences with similar sizes
target side of the corpus used to train the SMnd quality, even by the same translator. Therefore,
system. this type of annotation did not yield reliable results.

3.2 Data 3.3 Partial Least Squares Regression

We use translation data produced by three phraskt order to predict the sentence-level 1-4 scores, we
based SMT systems: Matrax (Simard et al., 2005)se Partial Least Squares (PLS) (Wold et al., 1984).
Portage (Johnson et al., 2006) and Sinuhe (Kaaf®LS projects the original data onto a different space
ainen, 2009). The systems are trained on approxf{ latent variables (or “components”). It can be de-
imately 1 million sentence pairs from the Europarfined as an ordinary multiple regression problem,



ie.,Y = XB, + F, whereX is a matrix of in- This is repeated five times for each of the subsam-

put variablesY is a vector of response variablB,, ples of the original dataset, and the average error is

is the regression matri; is the residual matrix, but computed.

B,, is computed directly using an optimal number of As we have shown in previous work (Specia et al.,

components. WheX is standardized, an element 0f2009), the use of PLS with feature selection to esti-

B,, with large absolute value indicates an importaninate a continuous score allows considerable gain in

X-variable. performance as compared to PLS or other regression
To evaluate the performance of the approach, w@ethods without this step.

compute the average error in the estimation of the

human scores by means of the Root Mean Squaréd Controlling the Acceptance Threshold

Prediction Error (RMSPE) metric: via Conformal Prediction
1 %(y, )2 The user scenario investigated in this paper requires
N ot b distinguishing between only two classes of transla-

: . _ tions: “good” and “bad”. The main problem ad-
where/V is the number of test cas@gis the predic- dressed here is thus how to choose a threshold to

tion obtained by the regressor apdb the true SCoreé a4 qrize the regression predictions in such classes.
of the test case. RMSPE quantifies the amount By, is particular scenario, one might want to prior-

which the estimator differs from the true score. ¢ precision or recall, depending on whether it is

4 Predicting the CE Score prgferable to select' a small set of good quality trans-
lations for post-edition or a larger set of doubtful
We use the technique of PLS, as described in Segans|ations. We define a mechanism to control the
tion 3.3, to estimate the CE score in [1,4]. We takghreshold for the two classes which is based on the
advantage of a property of PLS, which is the orderexpected confidence level of the predictions. This
ing of the features of{ in B,, according to their results in a mechanism to control the precision of
relevance, to select subsets of discriminative feahe CE models, and different choices yield a natural
tures. The method to perform regression supporteghde-off between precision and recall.
by an embedded feature selection procedure consiststhe theory of conformal prediction (Vovk et al.,
of the following steps: 2005), whose models are also referred tacasfi-

1. Given each possible number of componentdence machiness adopted to deal with this prob-
(from 1 to the maximum number of features)lem. We are especially interested in the inductive
we run PLS to compute thB,, matrix on 50% Versions of the confidence machines as introduced
of the validation data, generating a lisbf fea- Py Papadopoulos et al. (2002).
tures ranked in decreasing order of importance. The proposed approach is to search for a threshold

2. Given the listL produced for a certain number value such that — ¢ (0 < 6 < 1) of the examples
of components, we re-train the regression aMWwhose predicted scores that are equal to or greater
gorithm on 5% of the validation data, adding than the threshold are indeed acceptable, i.e. their
features from one by one. We test the modelstrue scores are greater than or equal to a pre-fixed
on the remaining validation data and plot learnvalue, e.g.y > 3. Here,J is called thesignificance
ing curves. By analyzing the learning curves|evel while 1 — § is called theconfidence levefor
we select the first features that minimize the example,§ = 0.1 corresponds to a 90% confidence
error of the models. level. Such a threshold value can be obtained via a

3. Given the selected features and the num- binary search among the regression predictions for
ber of components that minimizes the error irexamples in a calibration dataset, as shown in Algo-
the validation data, we train PLS on the train+ithm 1. We call this threshold theonfidence thresh-
ing dataset and test the performance of the r@ld and denote it by, whilst the prefixed true score
gressor using these features on the test datastet,identify a good translation is callescceptance
computing the corresponding RMSPE. thresholdand is denoted by.



Algorithm 1: Search for confidence threshold be expressed by = f(z). We then define our

1 input: y regression predictions strangeness measureo be:
y  true scores . L
T acceptance threshold (gt y") =sgn(r—y*) - (" —p) (2

0  significance level wheresgn(z) returns+1 if z > 0, and—1 other-

:2; SL:{IZ?(Z)l’)‘U<Z?aX(Y)’ wise. Computing the-value according to Eq. (1)
S based on the: defined above implies Line 5 in Al-
4 p < median(§ys); . .
5 5 Hilizp,vi<r}l. gorithm 1. For new examples, we also only consider
L ZER I those(z*, y*) that havef (z*) > p.

6 fo=dorL=U

7 return p; 5.2 \Validity of the P-value

8 else ifé < o To prove the validity of the-value in Eq. (1), we

9 L — p,goto3; assume that the calibration examples and new ex-

10 else amples are independently and identically distributed

11 U — p, goto 3; (i.i.d.) according to a fixed distributio. Ac-
cordingly, we will have the active validation ex-
amples(z3,y7),...,(z},y}) and a new example

The theory of inductive confidence machine%;;ﬂjyzﬂ) ii.d. drawn from the conditional dis-

shows that the confidence threshold guarantees thg,ytion P* .— P{(z,v)|f(z) > p}.

confidence level on unseen data. For any distribution P and any significance

level ¢, a valid p-value satisfiesP{p(y) <

0y < 0. The methodology used by Pa-
In order to search for the confidence threshefdr  padopoulos et al. (2002) can be employed to
a given acceptance threshatdwith a significance prove the validity of our p-value. We as-

5.1 Inductive Confidence Machines

level 6, we use a training se¥ := {(z;,y:)|i = sume that the sequende;,v;),.... (x5, 1,v5 1)
1,...,1}, which is split into two sets: a properis generated from a bag, i.e., an unordered set
training setSr = {(z;,y:)[i = 1,...,m} with | (2%,vy}),..., (2} 1, y5.1) |, by assigning a per-

m < [ examples and &alibration setSc := mutation to it. There will ben + 1)! possible per-
{(TmtisYmri)lt = 1,...,k} with k :== [ — m ex- mutations.

amples. The original regression model is trained on The probability of the very example:;; |, 5, 1)
the proper training set, and tested on the calibraeing selected as th@ + 1)th (i.e. the new) exam-

tion set to obtain calibration predictions,; for ple is oy = 7iq. Asp(y;,q) < 4 if and only
i=1,... k. if a9}, 1,y5,,) is among the[d(n + 1)| largest

A strangeness measure functiaiy, y) is then a(gr,y¥), the probability P{p(y;,,) < &} =
defined to associate a correctness score for eveny—|§(n + 1)] < 4, since all the(n + 1)! permuta-
predictiony, obtaining thep-value expression for a tions are equally probable.

new example, denoted &8, 1, y;11): 6 Result
esults

(1) 6.1 PLS Regression

Table 2 shows the performance obtained by PLS

where we usex; to represent (4,4, ym+i) for  (without ICM) for all datasets annotated with 1-4
short. scores. The figures for the subsets of features con-
For any threshold valug, we only consider those sistently outperform those for using all features and
examples whos¢ > p. Hence, we redefine the are also more stable (lower standard deviations). Us-
“active” calibration set to besf, := {(z},y;)|1 < ingonly the selected features, predictions deviate on

i < n} = {(Tmti,Ymyi)|l < @ <k, f(z;) > averagev 0.618-0.68 from the true score. Although
p}, where we assume the regression problem iibis not possible to compare these results to previous

_ |{Z|1§Z§]€—|—1, aizak+1}|
k+1

p(y) :



| Dataset| RMSPE | RMSPE all featureg that should be scored as “requires complete retrans-

Matrax | 0.6804 0.007 1.261+ 0.760 lation” (score 1) will be predicted as “a little post

Portage| 0.618+ 0.016|  0.719+ 0.094 editing needed” (score 3) and sent for post-edition,

Sinuhe | 0.669+ 0.016] 1.203+0.839 delaying the translation process. We applied the
Table 2: RMSPE for all datasets method described in Section 5 to minimize the num-

ber of such cases.

We use the predictions found by PLS for the vali-

SFUdIeS’ since dn‘fer_ent data_sets are u_se;d, We COfation dataset as the ICM “calibration” set to find a
sider them to be satisfactory if the predictions are t ood confidence threshold and then apply it on the

be used as such, to provide the end user with an id %t set to split the test cases into “bad” and “good”

about the quality of the j[ranslations. In that case, tht‘?anslations. The first step is to establish the true
observed error would yield on average crossing Onfcceptance threshold-)( for a given task, that s,

adjacltentk(?atego:]y i;‘ the 1-4 ralnking. the true score under which translations should be
By looking at the features selected by PLS, we C_‘"‘E‘onsidered “bad”. This threshold is usually based

highlight the following features appearing as top NN the language-pair, text domain and possibly the

all datasets: level of experience of translators, e.g., the more ex-
Berienced the translator, the higher the acceptance
threshold for a translation to be useful. Based on this
threshold, the resulting performance can be quan-
R _ Rfied in terms of the “good” cases kept for post-
* *percentages of cardinalities of word align-gqition (that is, cases scored above the true accep-
ments (1-1, 1-n, etc.); tance threshold), usingrecision (number of cases
e *percentage and mismatch in the numbers angbrrectly classified as “good” divided by number of
punctuation symbols in the source and target; cases classified as “goodfgcall (number of cases
e *ratio of percentage of a-z tokens in the sourceorrectly classified as “good” divided by total num-
and target; ber of “good” cases) anidmeasurgharmonic mean
e percentage of unigrams seen in the corpus.  Of precision and recall).
Figure 1 shows the precision and f-score of the
In general, the top features indicate the difficultthree MT systems on a test set of 800 examples, con-
of translating the source sentence (because it is lorgjderingr = 3 and expected confidence levels from
ambiguous, or not commonplace, for example) 098% to 80% (i.e.y = 0.02 to 0.2). This figure shows
some form of mismatch between source and targetat by using ICM it is possible to control the re-
sentences. Many of these features had not been usggdred CE precision for a particular task by setting
before for CE (marked with *" here). Interestingly, different expected confidence levels: the precision
apart from the target length and language modedbtained is linear to that confidence level. It also
these features are not part of the set used in standatgows that by decreasing the confidence level, it is
SMT models. possible to significantly improve the f-score (as a
consequence of improving recall). The curves show
the same behavior for the three MT systems, and
As previously mentioned, the models produced fotheir precision is comparable. However, recall (and
different datasets using PLS deviate 0.618-0.68 consequently f-measure) is significantly higher for
points when predicting sentence-level 1-4 score®ortage, followed by Sinuhe. This may be explained
which can be considered a satisfactory deviation iy the differences in the overall quality of these MT
the scores are used as such, but may have a stra@ygtems. According to human and automatic MT
negative impact if the scores are thresholded for fievaluation metrics, the ranking of the systems for
tering out the bad translations, as necessary in thiee datasets used here is the same as in this figure:
scenario we address in this paper. Since this is @vortage, Sinuhe and Matrax. In fact, we believe the
average error, there might be cases where a sentemgality of the MT system may influence the quality

e source & target sentence 3-gram languag
model probabilities;

e source & target sentence lengths and their rati

6.2 Inductive Confidence Machines



Figure 1: Precision and F-Score of PLS + ICM for 3
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and different confidence levels

| 7 | SVM 4-classes SVM binary | PLS+ICM |

2| 91.60G£0.62 | 90.99+0.95 | 90.88+1.26
3| 50.09:1.61 | 69.19+0.97 | 87.94+-7.33

Table 4: Comparison between precision of SVM classi-
fiers and PLS+ICM for Matrax (confidence level = 90%)

lower 7s, since these make the problem easier. For
higherrs, in order to try to guarantee the expected
confidence level, a larger proportion of positive ex-
amples need to discarded. This is in line with the
post-edition scenario that we are targeting in this
paper, where a higher and higher confidence lev-
els are aimed at more experienced translators. In
fact, for most professional translators, translations
are only expected to be useful for post-edition if they

[ 7] Model | Precision | Recall | require little retranslation (scored equal or above 3).
, |CMF:SL—SO o gé-gig-% ?é-gig-g% Focusing on such experienced translators, in Ta-
ICM 6=0.1 | 91.3700.97 | 99.43:1 13 ble _4 we compare the_ precision of the PLS+ICM
PLS 91451811 25 01354 against using two versions of a Support Vector Ma-
31 ICM =005 94227 10| 17.46+1.23 chines (SVM) classifier (Joachims, 1999) to predict
ICM §=0.1 | 88.18:5.97 | 30.68:1.27 a discrete score:

Table 3: Comparison between performance of PLS and e A binary version to directly classify the test

PLS+ICM in Sinuhe (confidence levels = 95% and 90%) cases into “good” or “bad”, by considering
scores equal or above 2 as “good” for compari-
son withr = 2, and equal or above 3 as “good”
for comparison withr = 3.

e A multi-class implementation of SVM to pre-
dict the 1-4 categories which are then thresh-
olded for comparison with =2 or7 = 3.

of the CE estimates: the CE task becomes easier for
an MT system which produces very good (or very
bad) translations most of the times.

With 7 = 2, results are similar, but the precision
and recall curves flatten frod above 0.1, with f-
measure of approximately 95% for all systems. This o
behavior is observed because for 2 the CE prob- 107 = 2, both SVM and PLS+ICM have similar
lem becomes “easier”, since the vast majority of thB'€CiSIons, but = 3, PLS+ICM guarantees a much
translations are scored equal or above 2. higher level of confidence. Results for other datasets

Table 3 compares the performance obtained b?/e comparable to these.

PLS and the comb_ination of_PLS wi'th ICM for one-  npiscussion and conclusions

of the datasets (Sinuhe), with confidence levels of

95% and 90% and the acceptance threshot)l®{ We proposed a method for further improving the
interest in this paper (2 and 3). It shows that foguality estimates produced for machine translations
higher expected confidence leveis{0.05) for both  at the sentence level. Focusing on a scenario where
acceptance thresholds, ICM guarantees higher preai-binary score is necessary for filtering out “bad”
sion, while recall drops, as compared to PLS aloneranslations, we applied the theory of Inductive Con-
On the other hand, when lower confidence levels af@ence Machines to allow controlling the expected
expectedd = 0.1), ICM guarantees higher recall, butlevel of confidence (precision) of the scores pre-
has lower precision. The difference between PLS8icted using a regression algorithm. This was done
and PLS+ICM for the other datasets is comparableby dynamically establishing a threshold to catego-

The guaranteed confidence levels are higher faoize translations into “bad” or “good” classes based



on such confidence level. With translation datasefe Joachims, 1999. Advances in Kernel Methods -
produced by different MT systems, we showed that Support Vector Learningchapter Making large-scale
this method improves results over regression and SVM learning practical. MIT Press.

classification algorithms, allowing for better preci-' - Jonnson F. Sadat, G. Foster, R. Kuhn, M. Simard,
’ E. Joanis, and S. Larkin. 2006. Portage: with

sion or recall, depending on the translation quality gyqothed phrase tables and segment choice models.
required. The method allows control the expected |nworkshop on Statistical Machine Translatigages
precision (and as a consequence, recall) according134-137, New York.

to the needs of a certain translation task, that i§. T. Kaariainen. 2009. Sinuhe: Statistical machine
whether it is better to keep a smaller number of very translation with a globally trained conditional expo-
likely to be good translations for post-edition or a nential family translation model. IEAMT Workshop

. . on Statistical Multilingual Analysis for Retrieval and
larger number of possibly doubtful translations. Translation Barcelona.

We plan now to train ICMs with multiple param- A Kulesza and A. Shieber. 2004. A learning approach to
eters by reformulating it to an optimization problem improving sentence-level mt evaluation. 1ath Inter-
that guarantees an expected confidence level whilenational Conference on Theoretical and Methodologi-
maximizing the number of accepted cases, that is, ¢l Issues in Machine TranslatioBaltimore.

improving precision and recall at the same time A. Lavie and A. Agarwal. 2007. METEOR: An au-
P 9p ’ tomatic metric for MT evaluation with high levels of

correlation with human judgments. Bnd Workshop
on Statistical Machine Translatiorpages 228-231,
Prague, Czech Republic.

Papadopoulos, K. Proedrou, V. Vovk, and A. Gam-
merman. 2002. Inductive confidence machines for re-
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