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Abstract

We investigate the problem of estimating the
quality of the output of machine translation
systems at the sentence level when reference
translations are not available. The focus is on
automatically identifying a threshold to map
a continuous predicted score into “good” /
“bad” categories for filtering out bad-quality
cases in a translation post-edition task. We use
the theory of Inductive Confidence Machines
(ICM) to identify this threshold according to a
confidence level that is expected for a given
task. Experiments show that this approach
gives improved estimates when compared to
those based on classification or regression al-
gorithms without ICM.

1 Introduction

Computer-aided translation (CAT) tools like transla-
tion memories and electronic dictionaries have long
been used to improve productivity of professional
translators. On the other hand, machine translation
(MT) systems, and particularly statistical machine
translation (SMT), only recently have started to at-
tract language-service providers’ and translators’ at-
tention. As any other CAT tool, MT is seen as an
instrument to save translators’ time. As with trans-
lation memories, the usual workflow is to apply an
MT system and then manually post-edit the transla-
tion to correct mistakes.

It is nowadays easy to set-up an SMT system from
existing tools and parallel data. Moreover, improve-
ments in the average quality of such systems have
been observed in the last years (Callison-Burch et
al., 2008). However, there is no guarantee that a
given translated segment will be good enough for
post-edition. Human translators need to read the
segment many times to find out that it is better to
delete it and start from scratch. The time spent to
read a translation and attempt to post-edit it before
dropping it out may be even longer than the time to
translate the source sentence from scratch. The lack
of information about the quality of an SMT system’s
output is certainly one of the reasons hampering the
use of these systems. The research area addressing
this problem is referred to as Confidence Estimation
(Blatz et al., 2003).

Our target scenario is that of professional trans-
lators post-editing MT segments. In that scenario,
the simplest and possibly most effective form of a
segment-level quality estimate is a binary “good” or
“bad” score, where translations judged as “bad” are
not suggested for post-edition. We propose a score
that is estimated using a machine learning technique
from a collection of information sources and trans-
lations annotated according to 1-4 quality scores. A
regression algorithm produces a continuous score,
which is then thresholded into the two classes to fil-
ter out “bad” translations. Differently from previous
work, we define this threshold dynamically by estab-



lishing a confidence level that is expected from the
models. This is done using the theory of Inductive
Confidence Machines (Papadopoulos et al., 2002) to
introduce an extra layer of confidence verification
in the models. This verification allows tuning the
threshold according to the translators’ needs. For
example, for very experienced and fast translators,
usually only very good-quality translations are better
than translating from scratch, while medium-quality
translations could already be helpful for other trans-
lators. We show that this yields better results than
thresholding the continuous scores according to the
true quality score or using binary or multi-class clas-
sifiers to directly estimate discrete “bad” / “good” or
1-4 scores.

In the remainder of this paper we first discuss
the previous work on CE for MT (Section 2), then
describe our experimental setting (Section 3), the
method used to estimate the CE scores (Section 4)
and the method threshold them based on an expected
confidence level (Section 5). We finally present and
discuss the results obtained (Sections 6).

2 Related Work

The task of Confidence Estimation (CE) for MT is
concerned with predicting the quality (e.g., fluency
or adequacy, post-editing requirements, etc.) of a
system’s output for a given input, without any infor-
mation about the expected output. We distinguish,
therefore, the task of CE from that of automatic MT
evaluation by the need, in the latter, of reference
translations.

Although not directly comparable, some of the
metrics proposed for sentence-level MT evaluation
also exploit learning algorithms and sometimes sim-
ilar features to those used in CE. Kulesza and
Shieber (2004) use a classifier withn-gram preci-
sion and other reference-based features to predict if a
sentence is produced by a human translator (presum-
ably good) or by an MT system (presumably bad).
Albrecht and Hwa (2007a; 2007b) rely on regression
algorithms and (pseudo-)reference-based features to
measure the quality of sentences.Pseudo-references
are produced by alternative MT systems, instead of
humans, but this scenario with multiple MT systems
is different from that of CE envisaged in our work.

Blatz et al. (2004) train regressors and classifiers

for CE on features extracted for translations tagged
according to MT metrics like NIST (Doddington,
2002). NIST scores are thresholded to label the 5th
or 30th percentile of the examples as “good”. How-
ever, there is no reason to believe that exactly the top
5% or 30% of translations are good.

Quirk (2004) uses classifiers and a pre-defined
threshold for “bad” / “good” translations consid-
ering a small set of translations manually labelled
for quality (350 sentences). Models trained on this
dataset outperform those trained on a larger set of
automatically labelled data.

Gamon et al. (2005) train a classifier using lin-
guistic features extracted from machine and human
translations to distinguish between these two types
of translations. The predictions obtained have very
low correlation with human judgements, which is
an indication, as discussed by (Albrecht and Hwa,
2007a), that high human-likeness does not necessar-
ily imply good MT quality.

Our work differs from previous approaches in
several respects, including the addition of new fea-
tures that were found to be very relevant, the ex-
ploitation of multiple datasets of translations from
different MT systems, through the use of resource-
independent features and the definition of system-
independent features, and the use of a feature se-
lection procedure that enables identifying relevant
features in a systematic way. More importantly, the
main contribution of this paper is the use of Induc-
tive Confidence Machines to dynamically define the
threshold to filter out bad translations under a certain
expected level of confidence.

3 Experimental Setting

3.1 Features

A number of features have been used in previous
work for CE (see (Blatz et al., 2003) for a list). In
this paper we focus on features that do not depend on
any aspect of the translation process, that is, which
can be extracted from any MT system, given only
the input (source) and translation (target) sentences,
and possibly monolingual or parallel corpora. We
call these “black-box” features.

The decision to use only black-box features aims
to allow performing the task of CE across different
MT systems, which may use different frameworks,



to which we may not have access. It was also moti-
vated by our observation, in previous work, that for
the language pair addressed in this paper, more elab-
orated (and computationally more costly) features
do not yield significant gains in performance (Specia
et al., 2009).

We extract all linguistic resource- and MT
system- independent features that have been pro-
posed in previous work, and also some new fea-
tures. In what follows, we describe our 77 features,
grouped for space reasons. A ‘*’ is used to indicate
new features with respect to previous work on CE.

• source & target sentence lengths and their ra-
tios

• source & target sentence 3-gram language
model probability & perplexity
• source & target sentence type/token ratio

• source sentence 1 to 3-gram frequency statistics
in a given frequency quartile of a monolingual
corpus

• alignment score for source and target and per-
centage of different types of word alignment, as
given by GIZA++.
• percentages and mismatches of many superfi-

cial constructions between the source and target
sentences (brackets, quotes and other punctua-
tion symbols, numbers, etc.)
• *average number of translations per source

word in the sentence (as given by probabilis-
tic dictionaries), unweighted or weighted by the
(inverse) frequency of the words

• *Levenshtein edit distance between the source
sentence and sentences in the corpus used to
train the SMT system

• *source & target percentages of numbers,
content-words and non-content words
• *POS-tag target language model, based on the

target side of the corpus used to train the SMT
system.

3.2 Data

We use translation data produced by three phrase-
based SMT systems: Matrax (Simard et al., 2005),
Portage (Johnson et al., 2006) and Sinuhe (Kaari-
ainen, 2009). The systems are trained on approx-
imately 1 million sentence pairs from the Europarl

Metric Matrax Portage Sinuhe

Human 2.5081 2.8345 2.5581
BLEU 0.3241 0.3880 0.3521
NIST 8.4041 8.8586 8.3985
TER 49.543 47.090 49.624

METEOR 0.2397 0.2824 0.2528

Table 1: Average sentence-level human score and corpus-
based MT evaluation metrics for all datasets

English-Spanish parallel corpus provided by WMT-
08 (Callison-Burch et al., 2008) and used to trans-
late 4K Europarl sentences from the development
and test sets also provided by WMT-08.

For each system, translations are manually an-
notated by professional translators with 1-4 quality
scores, which are commonly used by them to indi-
cate the quality of translations with respect to the
need for post-edition:

1. requires complete retranslation
2. post editing quicker than retranslation
3. little post editing needed
4. fit for purpose

Table 1 shows the overall quality of the transla-
tions in such datasets, as given by the average human
annotation (i.e., scores 1-4) and common evaluation
MT metrics: BLEU (Papineni et al., 2002), NIST
(Doddington, 2002), TER (Snover et al., 2006) and
METEOR (using the lemmas of the words) (Lavie
and Agarwal, 2007).

The feature vector for each dataset is randomly
subsampled five times in training (40%), validation
(40%) and test (20%) using a uniform distribution.

We also performed experiments in which the qual-
ity score used to annotate sentences was the time
spent by a profession translator post-editing a sen-
tence. However, we found a very large variability in
the post-edition time for sentences with similar sizes
and quality, even by the same translator. Therefore,
this type of annotation did not yield reliable results.

3.3 Partial Least Squares Regression

In order to predict the sentence-level 1-4 scores, we
use Partial Least Squares (PLS) (Wold et al., 1984).
PLS projects the original data onto a different space
of latent variables (or “components”). It can be de-
fined as an ordinary multiple regression problem,



i.e., Y = XBw + F , whereX is a matrix of in-
put variables,Y is a vector of response variable,Bw

is the regression matrix,F is the residual matrix, but
Bw is computed directly using an optimal number of
components. WhenX is standardized, an element of
Bw with large absolute value indicates an important
X-variable.

To evaluate the performance of the approach, we
compute the average error in the estimation of the
human scores by means of the Root Mean Squared
Prediction Error (RMSPE) metric:

√√√√ 1

N

N∑

j=1

(yj − ŷj)2

whereN is the number of test cases,ŷ is the predic-
tion obtained by the regressor andy is the true score
of the test case. RMSPE quantifies the amount by
which the estimator differs from the true score.

4 Predicting the CE Score

We use the technique of PLS, as described in Sec-
tion 3.3, to estimate the CE score in [1,4]. We take
advantage of a property of PLS, which is the order-
ing of the features ofX in Bw according to their
relevance, to select subsets of discriminative fea-
tures. The method to perform regression supported
by an embedded feature selection procedure consists
of the following steps:

1. Given each possible number of components
(from 1 to the maximum number of features),
we run PLS to compute theBw matrix on 50%
of the validation data, generating a listL of fea-
tures ranked in decreasing order of importance.

2. Given the listL produced for a certain number
of components, we re-train the regression al-
gorithm on 50% of the validation data, adding
features fromL one by one. We test the models
on the remaining validation data and plot learn-
ing curves. By analyzing the learning curves,
we select the firstn features that minimize the
error of the models.

3. Given the selectedn features and the num-
ber of components that minimizes the error in
the validation data, we train PLS on the train-
ing dataset and test the performance of the re-
gressor using these features on the test dataset,
computing the corresponding RMSPE.

This is repeated five times for each of the subsam-
ples of the original dataset, and the average error is
computed.

As we have shown in previous work (Specia et al.,
2009), the use of PLS with feature selection to esti-
mate a continuous score allows considerable gain in
performance as compared to PLS or other regression
methods without this step.

5 Controlling the Acceptance Threshold
via Conformal Prediction

The user scenario investigated in this paper requires
distinguishing between only two classes of transla-
tions: “good” and “bad”. The main problem ad-
dressed here is thus how to choose a threshold to
categorize the regression predictions in such classes.
In this particular scenario, one might want to prior-
itize precision or recall, depending on whether it is
preferable to select a small set of good quality trans-
lations for post-edition or a larger set of doubtful
translations. We define a mechanism to control the
threshold for the two classes which is based on the
expected confidence level of the predictions. This
results in a mechanism to control the precision of
the CE models, and different choices yield a natural
trade-off between precision and recall.

The theory of conformal prediction (Vovk et al.,
2005), whose models are also referred to asconfi-
dence machines, is adopted to deal with this prob-
lem. We are especially interested in the inductive
versions of the confidence machines as introduced
by Papadopoulos et al. (2002).

The proposed approach is to search for a threshold
value such that1 − δ (0 < δ < 1) of the examples
whose predicted scores that are equal to or greater
than the threshold are indeed acceptable, i.e. their
true scores are greater than or equal to a pre-fixed
value, e.g.y ≥ 3. Here,δ is called thesignificance
level, while 1 − δ is called theconfidence level, for
example,δ = 0.1 corresponds to a 90% confidence
level. Such a threshold value can be obtained via a
binary search among the regression predictions for
examples in a calibration dataset, as shown in Algo-
rithm 1. We call this threshold theconfidence thresh-
old and denote it byρ, whilst the prefixed true score
to identify a good translation is calledacceptance
thresholdand is denoted byτ .



Algorithm 1: Search for confidence threshold
1 input: ŷ regression predictions

y true scores
τ acceptance threshold
δ significance level

2 L← min(ŷ), U ← max(ŷ);
3 s← {i|L ≤ ŷi ≤ U};
4 ρ← median(ŷs);

5 δ̂ ← |{i|ŷi≥ρ, yi<τ}|
|{j|ŷj≥ρ}| ;

6 if δ̂ = δ or L = U

7 return ρ;
8 else if δ̂ < δ

9 L← ρ, goto 3;
10 else
11 U ← ρ, goto 3;

The theory of inductive confidence machines
shows that the confidence threshold guarantees the
confidence level on unseen data.

5.1 Inductive Confidence Machines

In order to search for the confidence thresholdρ for
a given acceptance thresholdτ , with a significance
level δ, we use a training setS := {(xi, yi)|i =
1, . . . , l}, which is split into two sets: a proper
training setST := {(xi, yi)|i = 1, . . . ,m} with
m < l examples and acalibration set SC :=
{(xm+i, ym+i)|i = 1, . . . , k} with k := l − m ex-
amples. The original regression model is trained on
the proper training set, and tested on the calibra-
tion set to obtain calibration predictionŝym+i for
i = 1, . . . , k.

A strangeness measure functionα(ŷ, y) is then
defined to associate a correctness score for every
predictionŷ, obtaining thep-value expression for a
new example, denoted as(xl+1, yl+1):

p(y) :=
|{i|1 ≤ i ≤ k + 1, αi ≥ αk+1}|

k + 1
(1)

where we useαi to representα(ŷm+i, ym+i) for
short.

For any threshold valueρ, we only consider those
examples whosêy ≥ ρ. Hence, we redefine the
“active” calibration set to beS∗

C := {(x∗
i , y

∗
i )|1 ≤

i ≤ n} := {(xm+i, ym+i)|1 ≤ i ≤ k, f(xi) ≥
ρ}, where we assume the regression problem to

be expressed bŷy = f(x). We then define our
strangeness measureα to be:

α(ŷ∗, y∗) := sgn(τ − y∗) · (ŷ∗ − ρ) (2)

wheresgn(z) returns+1 if z ≥ 0, and−1 other-
wise. Computing thep-value according to Eq. (1)
based on theα defined above implies Line 5 in Al-
gorithm 1. For new examples, we also only consider
those(x∗, y∗) that havef(x∗) ≥ ρ.

5.2 Validity of the P -value

To prove the validity of thep-value in Eq. (1), we
assume that the calibration examples and new ex-
amples are independently and identically distributed
(i.i.d.) according to a fixed distributionP . Ac-
cordingly, we will have the active validation ex-
amples(x∗

1, y
∗
1), . . . , (x

∗
n, y∗n) and a new example

(x∗
n+1, y

∗
n+1) i.i.d. drawn from the conditional dis-

tribution P ∗ := P{(x, y)|f(x) ≥ ρ}.
For any distribution P and any significance

level δ, a valid p-value satisfiesP{p(y) ≤
δ} ≤ δ. The methodology used by Pa-
padopoulos et al. (2002) can be employed to
prove the validity of our p-value. We as-
sume that the sequence(x∗

1, y
∗
1), . . . , (x

∗
n+1, y

∗
n+1)

is generated from a bag, i.e., an unordered set∫
(x∗

1, y
∗
1), . . . , (x

∗
n+1, y

∗
n+1)

∫
, by assigning a per-

mutation to it. There will be(n + 1)! possible per-
mutations.

The probability of the very example(x∗
n+1, y

∗
n+1)

being selected as the(n + 1)th (i.e. the new) exam-
ple is n!

(n+1)! = 1
n+1 . As p(y∗n+1) ≤ δ if and only

if α(ŷ∗n+1, y
∗
n+1) is among the⌊δ(n + 1)⌋ largest

α(ŷ∗i , y
∗
i ), the probability P{p(y∗n+1) ≤ δ} =

1
n+1⌊δ(n + 1)⌋ ≤ δ, since all the(n + 1)! permuta-
tions are equally probable.

6 Results

6.1 PLS Regression

Table 2 shows the performance obtained by PLS
(without ICM) for all datasets annotated with 1-4
scores. The figures for the subsets of features con-
sistently outperform those for using all features and
are also more stable (lower standard deviations). Us-
ing only the selected features, predictions deviate on
average∼ 0.618-0.68 from the true score. Although
it is not possible to compare these results to previous



Dataset RMSPE RMSPE all features

Matrax 0.680± 0.007 1.261± 0.760
Portage 0.618± 0.016 0.719± 0.094
Sinuhe 0.669± 0.016 1.203± 0.839

Table 2: RMSPE for all datasets

studies, since different datasets are used, we con-
sider them to be satisfactory if the predictions are to
be used as such, to provide the end user with an idea
about the quality of the translations. In that case, the
observed error would yield on average crossing one
adjacent category in the 1-4 ranking.

By looking at the features selected by PLS, we can
highlight the following features appearing as top in
all datasets:

• source & target sentence 3-gram language
model probabilities;

• source & target sentence lengths and their ratio;

• *percentages of cardinalities of word align-
ments (1-1, 1-n, etc.);

• *percentage and mismatch in the numbers and
punctuation symbols in the source and target;

• *ratio of percentage of a-z tokens in the source
and target;

• percentage of unigrams seen in the corpus.

In general, the top features indicate the difficulty
of translating the source sentence (because it is long,
ambiguous, or not commonplace, for example) or
some form of mismatch between source and target
sentences. Many of these features had not been used
before for CE (marked with ‘*’ here). Interestingly,
apart from the target length and language model,
these features are not part of the set used in standard
SMT models.

6.2 Inductive Confidence Machines

As previously mentioned, the models produced for
different datasets using PLS deviate∼ 0.618-0.68
points when predicting sentence-level 1-4 scores,
which can be considered a satisfactory deviation if
the scores are used as such, but may have a strong
negative impact if the scores are thresholded for fil-
tering out the bad translations, as necessary in the
scenario we address in this paper. Since this is an
average error, there might be cases where a sentence

that should be scored as “requires complete retrans-
lation” (score 1) will be predicted as “a little post
editing needed” (score 3) and sent for post-edition,
delaying the translation process. We applied the
method described in Section 5 to minimize the num-
ber of such cases.

We use the predictions found by PLS for the vali-
dation dataset as the ICM “calibration” set to find a
good confidence threshold and then apply it on the
test set to split the test cases into “bad” and “good”
translations. The first step is to establish the true
acceptance threshold (τ ) for a given task, that is,
the true score under which translations should be
considered “bad”. This threshold is usually based
on the language-pair, text domain and possibly the
level of experience of translators, e.g., the more ex-
perienced the translator, the higher the acceptance
threshold for a translation to be useful. Based on this
threshold, the resulting performance can be quan-
tified in terms of the “good” cases kept for post-
edition (that is, cases scored above the true accep-
tance threshold), usingprecision (number of cases
correctly classified as “good” divided by number of
cases classified as “good”),recall (number of cases
correctly classified as “good” divided by total num-
ber of “good” cases) andf-measure(harmonic mean
of precision and recall).

Figure 1 shows the precision and f-score of the
three MT systems on a test set of 800 examples, con-
sideringτ = 3 and expected confidence levels from
98% to 80% (i.e.,δ = 0.02 to 0.2). This figure shows
that by using ICM it is possible to control the re-
quired CE precision for a particular task by setting
different expected confidence levels: the precision
obtained is linear to that confidence level. It also
shows that by decreasing the confidence level, it is
possible to significantly improve the f-score (as a
consequence of improving recall). The curves show
the same behavior for the three MT systems, and
their precision is comparable. However, recall (and
consequently f-measure) is significantly higher for
Portage, followed by Sinuhe. This may be explained
by the differences in the overall quality of these MT
systems. According to human and automatic MT
evaluation metrics, the ranking of the systems for
the datasets used here is the same as in this figure:
Portage, Sinuhe and Matrax. In fact, we believe the
quality of the MT system may influence the quality
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Figure 1: Precision and F-Score of PLS + ICM forτ = 3
and different confidence levels

τ Model Precision Recall

PLS 92.86±0.81 91.84±0.81
2 ICM δ = 0.05 95.31±0.77 73.01±5.67

ICM δ = 0.1 91.37±0.97 99.43±1.13
PLS 91.45±1.81 25.01±3.54

3 ICM δ = 0.05 94.22±7.10 17.46±1.23
ICM δ = 0.1 88.18±5.97 30.68±1.27

Table 3: Comparison between performance of PLS and
PLS+ICM in Sinuhe (confidence levels = 95% and 90%)

of the CE estimates: the CE task becomes easier for
an MT system which produces very good (or very
bad) translations most of the times.

With τ = 2, results are similar, but the precision
and recall curves flatten fromδ above 0.1, with f-
measure of approximately 95% for all systems. This
behavior is observed because forτ = 2 the CE prob-
lem becomes “easier”, since the vast majority of the
translations are scored equal or above 2.

Table 3 compares the performance obtained by
PLS and the combination of PLS with ICM for one
of the datasets (Sinuhe), with confidence levels of
95% and 90% and the acceptance thresholds (τ ) of
interest in this paper (2 and 3). It shows that for
higher expected confidence levels (δ = 0.05) for both
acceptance thresholds, ICM guarantees higher preci-
sion, while recall drops, as compared to PLS alone.
On the other hand, when lower confidence levels are
expected (δ = 0.1), ICM guarantees higher recall, but
has lower precision. The difference between PLS
and PLS+ICM for the other datasets is comparable.

The guaranteed confidence levels are higher for

τ SVM 4-classes SVM binary PLS+ICM

2 91.60±0.62 90.99±0.95 90.88±1.26
3 50.09±1.61 69.19±0.97 87.94±7.33

Table 4: Comparison between precision of SVM classi-
fiers and PLS+ICM for Matrax (confidence level = 90%)

lower τs, since these make the problem easier. For
higherτs, in order to try to guarantee the expected
confidence level, a larger proportion of positive ex-
amples need to discarded. This is in line with the
post-edition scenario that we are targeting in this
paper, where a higherτ and higher confidence lev-
els are aimed at more experienced translators. In
fact, for most professional translators, translations
are only expected to be useful for post-edition if they
require little retranslation (scored equal or above 3).

Focusing on such experienced translators, in Ta-
ble 4 we compare the precision of the PLS+ICM
against using two versions of a Support Vector Ma-
chines (SVM) classifier (Joachims, 1999) to predict
a discrete score:

• A binary version to directly classify the test
cases into “good” or “bad”, by considering
scores equal or above 2 as “good” for compari-
son withτ = 2, and equal or above 3 as “good”
for comparison withτ = 3.

• A multi-class implementation of SVM to pre-
dict the 1-4 categories which are then thresh-
olded for comparison withτ = 2 orτ = 3.

For τ = 2, both SVM and PLS+ICM have similar
precisions, butτ = 3, PLS+ICM guarantees a much
higher level of confidence. Results for other datasets
are comparable to these.

7 Discussion and conclusions

We proposed a method for further improving the
quality estimates produced for machine translations
at the sentence level. Focusing on a scenario where
a binary score is necessary for filtering out “bad”
translations, we applied the theory of Inductive Con-
fidence Machines to allow controlling the expected
level of confidence (precision) of the scores pre-
dicted using a regression algorithm. This was done
by dynamically establishing a threshold to catego-
rize translations into “bad” or “good” classes based



on such confidence level. With translation datasets
produced by different MT systems, we showed that
this method improves results over regression and
classification algorithms, allowing for better preci-
sion or recall, depending on the translation quality
required. The method allows control the expected
precision (and as a consequence, recall) according
to the needs of a certain translation task, that is,
whether it is better to keep a smaller number of very
likely to be good translations for post-edition or a
larger number of possibly doubtful translations.

We plan now to train ICMs with multiple param-
eters by reformulating it to an optimization problem
that guarantees an expected confidence level while
maximizing the number of accepted cases, that is,
improving precision and recall at the same time.
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