
Bitextor, a free/open-source software to harvest translation memories from
multilingual websites

Miquel Esplà-Gomis
Grup Transducens, Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant

E-03071 Alacant, Spain
miquel.espla@ua.es

Abstract

Bitextor is a free/open-source application for
harvesting translation memories from multi-
lingual websites. It downloads all the HTML
files in a website, preprocesses them into a
coherent format and, finally, applies a set of
heuristics to select pairs of files which are can-
didates to contain the same text in two dif-
ferent languages (bitexts). From these paral-
lel texts, translation memories are generated in
TMX format using the library LibTagAligner,
which uses the HTML tags and the length of
text chunks to perform the alignment.

1 Introduction and motivation

Since its inception, one of the most important prob-
lems in the area of machine translation research,
particulary in corpus-based machine translation, has
been that of obtaining parallel multilingual corpora.

Nowadays, the Internet may be seen as a large
multilingual corpus as there a large number of web-
sites in which different pages can be found con-
taining the same text written in different languages.
These pages can be considered bitexts (or parallel
texts). The question remains which is the best sys-
tem to find these parallel texts and obtain an aligned
parallel corpus from them.

With this question in mind, Bitextor project was
born. Its aim is to develop a free/open-source appli-
cation capable of finding parallel texts in multilin-
gual websites, aligning them and generating transla-

tion memories formatted in TMX.1

Different studies have been performed about par-
allel text alignment. In Bitextor we have tried to take
advantage of different parameters used in alignment
for comparison. The idea is that the more reliable an
alignment is (it has best results for the alignment pa-
rameters used) the more probable is that the aligned
texts are parallel.

The earlier approaches to parallel text alignment
were based in sentence length (Brown et al., 1991;
Gale and Church, 1994). These systems provide
good results between languages with a high sentence
length correlation, but their weakness is that many
parallel texts are not sentence-to-sentence transla-
tions and it is usual to find, in example, that a sen-
tence in a text is written using more than one sen-
tence in its parallel.

Other systems use structural elements of a text,
independently of its content, to identify parallelisms
with otherwise (i.e.: Kit et al. (2005)). These sys-
tems have the advantage that they can work with
more combinations of languages and are able to tol-
erate imperfect translations. A very interesting ap-
proach uses HTML tag structure to align. The re-
sults with this approach are shown to be better than
simple sentence-length alignment (Sanchez-Villamil
et al., 2006).

In this case, the goal of Bitextor is to combine
HTML tag structure and sentence length informa-
tion to compare files and try to determine if they are
parallel texts.

1http://www.lisa.org/
Translation-Memory-e.34.0.html [Last visited:
30th July 2009]

2 Previous works

Nowadays, Bitextor is not the only approach around
the idea of using the Internet as a multilingual cor-
pus. Probably, one of the most closely related
project in this area is WeBiText (Désilets et al.,
2008). This application has the goal of creating a
system to find a set of words in a parallel text from a
bilingual website. The main difference is that Bitex-
tor’s aim is to generate a translation memory as big
as possible, independently of its content, and WeBi-
Text’s aim is to find only a parallelism for a group of
words searched in a bilingual website. So, we could
conclude that, although both projects use a common
concept (the use of the web as a multilingual par-
allel corpus) WeBiText is more oriented to use by
human translators and Bitextor is aimed at creating
large amounts of aligned parallel texts.

By focusing on technical issues, the most impor-
tant difference between both applications is that, in
WeBiText, the parallel texts are searched using lan-
guage markers in URLs (Nie et al., 1999) and then,
the text segment lengths are used to align the files. In
Bitextor, all the website is downloaded and HTML
tag structure and segment length are the elements
used to determine if two files are parallel or not and
to align them. Therefore, Bitextor has the advantage
that is not dependent on the language markers in the
URL and it can extract translation memories from
more websites.

3 File content representation

Bitextor uses a system to represent file contents us-
ing a string of integers that is used later to perform
the comparison. These strings consist of positive
and negative integers.2 The first step to create these
sequences is to segment each file considering into
two kinds of elements: HTML tags and text blocks.

Although this is explained in more detail later,3

Bitextor uses the tag categories defined in the LibTa-
gAligner configuration file which are established by
the user and are used to group tags. Tags not grouped
in any category are assigned automatically to the ir-
relevant category. These tags will not be considered
by the system in the comparison process; therefore,

2The number 0 will be considered as a positive integer rep-
resenting an empty text block.

3See section 5.1: The alignment process.

irrelevant tags will be deleted and text blocks sepa-
rated by them will be concatenated in a single block.

Once the file has been segmented, the second step
is to assign a unique negative integer to each tag
name. Bitextor mantains a dynamic symbol table
with correspondence between tag names and nega-
tive integers.

Each text block is assigned a positive number that
represents its length measured in characters.

The string of integers resulting from this process
will be called the fingerprint of the file.

4 File comparison

The key element in Bitextor is a functionality to
compare pairs of files and deduce which of them are
candidates to be a parallel text. To do this, it pri-
marily uses file fingerprints. But, before comparing
file fingerprints, a set of superficial heuristics are ap-
plied. Their aim is to ease the later tasks of Bitextor,
so that the application does not need to process ev-
ery pair of files to compare their fingerprints. Only
if a pair of files passes all these tests, the fingerprint
comparison will be performed.

These heuristics are:

• Text language comparison: It is obvious that
if two files are written in the same language,
one of them cannot be a translation of the other
one.4

• Filename extension comparison: It is assumed
that if a file in the same website is a translation
of another one, both files will usually have the
same filename extension.

• File size ratio: This parameter is relative and
is used to filter pairs of files whose size is very
different. The threshold for size ratio can be
defined by the user.

• Total text length difference: This parameter has
the same function that the later one, but it mea-
sures the size of each file’s plain text in charac-
ters.

4.1 Fingerprint comparison process
To perform the comparison process, an adaptation
of the Levenshtein edit distance algorithm (Leven-

4Section 4.3 explains how the language of a file is detected

shtein, 1966) has been applied. The cost function C
for the three different kind of operations is:

For insertions Ci(x) and deletions Cd(x), the cost
is the same for a tag and a text block (independently
of length) (x):

Ci(x) = 1

Cd(x) = 1

However, for substitutions we will have two differ-
ent values, depending on tags or text blocks. If we
substitute tags t1 and t2, the cost function Cs(t1, t2)
is:

Cs(t1, t2) =
{

0 if t1 = t2
1 if t1 != t2

In the case of text blocks b1 and b2, with a thresh-
old for text block comparison tb, the cost function
Cs(b1, b2) for substitution is:

Cs(b1, b2) =
{

1 if D(b1, b2) > tb
0 if D(b1, b2) ≤ tb

where D(b1, b2) is the percent difference between
the length of two text blocks b1 and b2:

D(b1, b2) =
|b1 − b2|

max(b1, b2)
· 100%

In the case of comparison between a tag and a text
block, the result will be infinite.

With this system, an integer representing the dis-
tance between both fingerprints is obtained and this
value will be used to discard the pairs of files when
it is larger than a certain threshold.

For example, we can see the result for the algo-
rithm with a text block comparison threshold tb =
20% in Figure 3, where the result of the edit distance
algorithm applied on the fingerprints extracted from
the files in Figure 1 and Figure 2 is represented.

Figure 1: HTML File 1 (in Catalan).

Figure 2: HTML File 2 (in English).

Figure 3: Optimal path in the edit distance algorithm.

Fingerprint comparison may be seen as using two
thresholds. The first one is an absolute threshold (ta)
and it will be compared directly with the result of the
edit distance algorithm. If the resulting value from
the edit distance is larger than this threshold, the pair
of files compared will be discarded.

The second threshold is relative (tr). It is defined
by the user as a percentage over the maximum length
of one of both fingerprints. This percentage can be
converted into an absolute value by applying this
function on the two fingerprints (f1 and f2):

t′
a = max(Len(f1),Len(f2)) · tr

100%

where Len(f) is a function that calculates the length
of a fingerprint.

For a pair of files, only the most restrictive thresh-
old will be applied. The absolute one is the main
threshold, but, in files with a very short fingerprint,
it can be useless because all possible results may be

lower than this limit. This is the reason why the rela-
tive threshold is defined. This idea is illustrated with
the Figure 4, where ta = 5 and tr = 20%.

Figure 4: Relation between fingerprint size and permitted
differences between them.

4.2 Optimisation of the algorithm
To improve the speed of the application, the cus-
tomary beam-search modification to the original
edit-distance algorithm has been applied, to change
the complexity in the comparison of two finger-
prints with lengths m and n from O(m · n) to
O(max(m, n)).

If we look at the edit distance algorithm imple-
mented, we can see that when two fingerprints are
similar, their optimal path5 will be close to the
straight diagonal line in the table. In our case, we are
only interested in very similar fingerprints, and, as a
consequence, all the fingerprints which do not have
their optimal path in a relatively narrow beam ar-
round the diagram edit distance algorithm table can
be safely discarded. Knowing this, it can be con-
cluded that it is only necessary to calculate that di-
agonal beam in the algorithm table.

If we take the example in the last section and limit
the calculations to a diagonal of width 2, the algo-
rithm will make the calculations on the beam repre-
sented in the Figure 5. As can be seen, the result
would be the same as in the exact calculation at a

5The path with the lowest cost from the upper-left corner
to the bottom-right corner in the algorithm table. Such as the
shaded path in Figure 3.

much lower cost. For long fingerprints the differ-
ence could be very significant.

Figure 5: Optimal path in edit distance algorithm.

A very important question is the relation between
the fingerprint comparison threshold (ta and tr) and
the width of the beam is that, if the beam is too nar-
row, the optimal path may lie out of it. This would
mean that the final result of the algorithm would not
be the optimal and we may discard some pairs of
files that should not be discarded. Then, it is impor-
tant to adapt the beam width to fingerprint thresh-
olds.

5 Steps in Bitextor’s processing

5.1 Downloading
The downloading phase is performed by using the
application HTTrack.6 The application downloads
all the HTML files from the multilingual website.
Downloading respects the directory tree structure. It
is necessary to emphasise the importance of down-
loading the whole website before starting the com-
parison process. During the comparison we will
need to validate every file with the others and we
will need to have all the set of files available. This
system can be limited to neighbouring levels in the
directory tree. Because of this, in the future, Bitextor
will be able to download every level of the directory
tree only when it is used.

6http://www.httrack.com [Last visited: 30th July
2009]

5.2 Preprocessing and information harvesting
During this phase, all the downloaded files will be
preprocessed to adapt them to the necessary require-
ments for subsequent phases. For this reason, Bitex-
tor uses the LibTidy7 library to standardise probably
invalid HTML files into valid XHTML files. With
this, we can guarantee that the structure of tags is
correct. The original character encoding is also con-
verted to UTF-8.8

Once a file has been preprocessed, the next step
is to collect some information necessary to compare
the files and generate the translation memories, such
as the name and filename extension of the files. The
language in which each text has been written is also
detected and saved by using LibTextCat.9 This li-
brary detects the language in which a text has been
written using an n-gram model extracted from a cor-
pus of texts written in this language. N -gram mod-
els for new languages can be added using the con-
figuration file.

The file’s fingerprint is also obtained in this step.
Finally, information obtained from the files is

saved in a list organised according to the depth in
the directory tree where the analysed file has been
found. Organising information in this way makes
access easier since comparison between files is per-
formed level by level.

5.3 Comparison between files and translation
memory generation

During this phase, the file comparison is performed.
The process is based on level comparisons. As men-
tioned, the user can limit the depth difference in the
directory tree when comparing. Parallel texts are
usually in the same level, or in very close levels. As
a result of this, it is not necessary to compare each
file with all the others. We will only need to compare
files within the defined level interval.

Then, to optimise the process, Bitextor works in
the following way: first, it loads all the levels al-
lowed by the level of comparison limitation. Then, it

7http://tidy.sourceforge.net [Last visited:
30th July 2009]

8To detect character encoding, Bitextor uses the LibEnca
library: http://sourceforge.net/projects/
freshmeat_enca/ [Last visited: 30th July 2009]

9http://software.wise-guys.nl/
libtextcat/ [Last visited: 30th July 2009]

gets the first file in the list of the upper level loaded
and compares it with all the other files (including
files in its same level). Once it has been compared,
this file is discarded and another one from its same
level is loaded. This process is repeated until all files
in the upper level loaded have been removed. Then,
a new level will be loaded and the process will start
again. Finally, when there are not more levels to
load, the remaining files will be compared between
them.

A diagram that explains the process can be seen
in Figure 6.

Figure 6: File comparison process.

6 Generation of translation memories with
LibTagAligner

Bitextor uses the LibTagAligner library to generate
translation memories in TMX format.

6.1 The alignment process
The system employed by LibTagAligner to align two
HTML files is based on a very similar method to the
one used by Bitextor to compare files. The main dif-
ference between them is that LibTagAligner uses a
finer representation to compare the files. As in Bi-
textor’s fingerprint system, TagAligner uses integers
to represent tags and text blocks. But, in addition,
TagAligner uses tag categories. These categories are
defined by the user and group tags of the same kind.
The objective of grouping tags is to allow assigning
different weights to every possible edit-distance al-
gorithm operation between tag categories. This sys-
tem obtains a higher precision in the alignment pro-
cess than text-length-based ones (Sanchez-Villamil
et al., 2006).

Tag categories are defined through a configuration
file where the user defines their names and the list of
tags contained in each category. There is only one
predefined kind of category: the irrelevant category.
Here is where all the uncategorised tags are collected
to be discarded during the alignment process.

For a tag t, the cost of an insertion Ci(t) or dele-
tion Cd(t) operation will be expressed by the func-
tions:

Ci(t) = Wi(t)

Cd(t) = Wd(t)

where Wi(t) and Wd(t) are the functions that return
the weights assigned by the user for the insertion and
deletion operations.

In the case of substitution, the cost function on
two tags (t1 and t2) will be:

Cs(t1, t2) =
{

0 if t1 = t2
Ws(t1, t2) if t1 != t2

where Ws(t1, t2) is the function that determines the
cost of a substitution on a pair of tags.10

Weights are also assigned to text block operations.
The main difference with the operation on tags is
that in the case of the text blocks the cost is not con-
stant, but depends instead on the difference between
their lengths. Then, in our case, the set of cost func-
tions for text blocks b is:

Ci(b) = Wi(b) · Len(b)
10Those values can be found in Sanchez-Villamil et al.

(2006).

URL Possible
correct
pairs

Generated
pairs

Correct
generated
pairs

http://www.fpc.upc.edu 22 13 13
http://congreso.lliurex.net 89 74 59

Table 1: Results obtained with Bitextor on the websites.

Cd(b) = Wd(b) · Len(b)

Cs(b1, b2) = Ws(b1, b2) · |Len(b1)− Len(b2)|

Obviously, tag-text block substitutions are not per-
mitted. To that effect, the cost of the operation will
be infinite.

6.2 Preliminary results

To perform a preliminary evaluation of the first re-
sults obtained by the application, a pair of tests have
been performed to get a basic idea of Bitextor’s
current potential. A small pair of trilingual web-
sites (Catalan–Spanish–English) have been selected
to perform the test. In this case, the size of the web-
sites is important to allow full evaluation: we must
choose websites that are not too large since we must
be able to do the file comparison process by hand to
compare them with the results obtained by Bitextor.

The objective of this test is to obtain information
about the precision and recall achieved by Bitextor.
Precision is the proportion of files paired up cor-
rectly from the total of files paired up. Recall is
the proportion of files paired up correctly over the
number of total files that could have been paired up
correctly.

We have focused these tests on precision and not
on recall. To do this, the fingerprint comparison
threshold has been set to 5 (this means that finger-
prints can only have five differences between them).
This is because it seems reasonable for a Bitextor
user to require quality in results and not quantity, to
make later correction easier.

The results of the test are presented in Table 1.
The first website has been processed (without count-
ing downloading time) in 3.5 seconds and the second
one, has been processed in 13.7 seconds. Precision
and recall percentages are given in Table 2.

As can be seen, there is room for improvement.
In any case, the precision has been 100% in both

URL Recall Precision
http://www.fpc.upc.edu 63% 100%

http://congreso.lliurex.net 83% 100%

Table 2: Recall and precision results.

cases.11

7 Conclusions and future work

At the moment, Bitextor produces promising results.
It carries out with a reasonable efficiency the objec-
tives raised at the starting of the project: it is able
to generate translation memories automatically from
multilingual websites with a reasonable level of pre-
cision. In fact, its high configurability allows the
users to optimise the results to the balance precision-
recall.

However, the results could be improved to a large
degree, mainly, regarding recall. One of the key el-
ements to do this is LibTagAligner’s aligning algo-
rithm. It would be very interesting to take advantage
of this algorithm’s precision in comparison process
without increasing dramatically the running time of
Bitextor.

It would also be important to increase the integra-
tion between Bitextor and the application HTTrack
to optimise the downloading process to only save on
disk the absolutely necessary files. It would allow
Bitextor to be used in computers with a smaller hard
disk.

We plan to work with other free/open-source
projects (i.e.: bitext2tmx)12 to integrate Bitextor
(and TagAligner) into them. With this, it could be
possible to build a bigger framework for bitext har-
vesting and correcting to help users to generate their
own multilingual corpora.

A final objective for the future in Bitextor project
is the generation and publication of corpus of TMX
translation memories harvested from multilingual
websites.

11Tag and sentence alignment parameters have been taken
from Sanchez-Villamil et al. (2006). In this article results for
sentence alignment are also present.

12http://www.sourceforge.net/projects/
bitext2tmx [Last visited: 30th July 2009]

8 About Bitextor

Bitextor and LibTagAligner are free/open-
source applications released under the Gen-
eral Public License version 2.0 (GPL v2). 13

They are available for UNIX-based platforms.
Code and releases can be found at http::
//sourceforge.net/projects/bitextor
and http:://sourceforge.net/projects/
tag-aligner.

9 Acknowledgements

The original development of Bitextor was funded by the
Ministerio de Ciencia y Tecnologı́a (Spanish Govern-
ment) between 2004 and 2006 through grant (TIC2003-
08681-C02).

The Bitextor Project is currently funded by the Univer-
sitat d’Alacant.

Enrique Sánchez Villamil was the author of the initial
version (v1.0) of TagAligner (on which the initial version
of LibTagAligner, used by Bitextor was based).

Miquel Simón i Martı́nez was the author of the sec-
ond version (v2.0) of TagAligner, with an improvement
in configurability through the incorporation of an XML
configuration file.

Many thanks to Francis M. Tyers and Mikel L. Forcada
for comments on the manuscript.

References
Brown, P., Lai, J., and Mercer, R. (1991). Aligning sen-

tences in parallel corpora. In Proceedings of the 29th
annual meeting on Association for Computational Lin-
guistics, pages 169–176. Association for Computa-
tional Linguistics Morristown, NJ, USA.

Désilets, A., Farley, B., Stojanovic, M., and Patenaude,
G. (2008). WeBiText: Building Large Heteroge-
neous Translation Memories from Parallel Web Con-
tent. Proc. of Translating and the Computer, 30:27–
28.

Gale, W. and Church, K. (1994). A program for aligning
sentences in bilingual corpora. Computational linguis-
tics, 19(1):75–102.

Kit, C., Liu, X., Sin, K., and Webster, J. J. (2005). Har-
vesting the bitexts of the laws of Hong Kong from the
Web.

Levenshtein, V. (1966). Binary codes capable of cor-
recting deletions, insertions and reversals. In Soviet
Physics Doklady, volume 10, pages 707–710.

13http://www.gnu.org/licenses/gpl-2.0.
html [Last visited: 30th July 2009]

Nie, J., Simard, M., Isabelle, P., and Durand, R. (1999).
Cross-Language Information Retrieval based on Paral-
lel Texts and Automatic Mining of Parallel Texts from
the Web. In Proceedings of SIGIR’99: 22nd Interna-
tional Conference on Research and Development in In-
formation Retrieval: University of California, Berke-
ley, August 1999, page 74. Association for Computing
Machinery (ACM).

Sanchez-Villamil, E., Santos-Anton, S., Ortiz-Rojas, S.,
and Forcada, M. (2006). Evaluation of alignment
methods for HTML parallel text. Lecture Notes in
Computer Science, 4139:280.

