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Structured Prediction

Each (multi-label) output contains multiple (micro-)labels

Micro-labels interacts each other

Example: sequence labeling (HMM)
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Summary 
 
We present a novel learning algorithm for structured classifica-
tion, where the task is to predict multiple and interacting labels 
(multilabel) for an input object. The problem of finding a large-
margin separation between correct multilabels and incorrect ones 
is formulated as a linear program. Instead of explicitly writing out 
the entire problem with an exponentially large constraint set, the 
linear program is solved iteratively via column generation. In this 
case, the process of generating most violated constraints is 
equivalent to searching for highest-scored misclassified incorrect 
multilabels, which can be easily achieved by decoding the struc-
ture based on current estimations. In addition, we also explore the 
integration of column generation and an extragradient method for 
linear programming to gain further efficiency.  
 
Not only does the proposed method has the advantages that it 
can handle arbitrary structures and larger-scale problems, its cov-
ering number bound also shows nice generalization properties. 
 

   

Column Generation 
 
 

Structured Classification 
 
 
 
 
 
 
 
 
 
 
 
 
 
LP Formulation 
 
We modify the SVM-style formulation of structured classification 
problems by replacing the L2-regularization in the objective func-
tion with an L1-regularization, yielding an LP problem that sepa-
rates correct multilabels from potential incorrect ones with ap-
proximate large margin. 
 
 
 
 
 
 
 
 
 
where  

   

Extragradient Method 
 
Let Q and S be two subsets of Euclidean space, and π(u, v) be a real-valued 
function, where u ∈ Q and v ∈ S. We assume that: 
 

1.  Q and S are closed and convex. 
2.  π(u, v) is convex in u and concave in v, differentiable, and its partial de-

rivatives satisfy the Lipschitz condition on Q × S. 
3. The set of saddle points U* × V* of π(u, v) on Q × S is nonempty 

 
The extragradient method finds the saddle points of π(u, v) by the following 
iterative update rules: 
 
 
 
 
 
 
Extragradient Method for LP 
 
To solve the relaxed LP subproblems in each iteration of the column gen-
eration process, we employ the entragradient method introduced above, 
which works by searching for a saddle point of the Lagrange function of 
the LP problem. That is: 

 

 

 

Extragradient Method with CG 
 
Korpelevich’s (1976) original proofs suggest that when applied to 
solve an LP problem, the iterative update process of the extragradi-
ent method goes along a spiral curve and converge to the optimum 
with the speed of a geometric progression, after finding a basis in a 
number of initial steps. If we integrate the column generation proce-
dure into the extragradient method, it actually makes the starting 
point for the next iteration shifts to a new position. We could intui-
tively expect that it converges faster if started from a point closer to 
the solution. Hence, this solution provides further efficiency espe-
cially when the constraints are not violated too much in each col-
umn generation iteration. The figure below demonstrates this proc-
ess, based on a very small LP problem.  
 
 
 
 
 
 
 
 
 
 
 
 
Experimental Results 
 

 
 
 
 
 
 
 
 
 

Part-of-Speech Tagging 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

ANSI C code for extragradient-based LP solver is available at: 
 

http://www.cs.ucl.ac.uk/staff/z.wang/ 
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CPU Time Expense:  
Dual-Simplex (dots) vs. Extragradient (crosses) 

Purely-Discriminative SMT: 
 

LP1 - separating all bad translations from pseudo-  
     references; 
LP2 - separating each bad translation from the 
     pseudo-reference closest to it. 

 

Model Error (%) CPU Time (s) #Iteration 
CRF 4.58 ± 0.14 51,403 205 

MIRA 4.91 ± 0.06 9,084 46 
Perceptron 5.38 ± 0.19 26 100 
LP/Simplex 4.94 ± 0.18 3,879 23 

LP/Extragradient 4.92 ± 0.13 856 14 
HMM 20.02 ± 0.29 — — 

 LP1  LP2 
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More examples: parsing tree, bipartite matching, hierarchical
classification, etc
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More examples: parsing tree, bipartite matching, hierarchical
classification, etc
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CPU Time Expense:  
Dual-Simplex (dots) vs. Extragradient (crosses) 

Purely-Discriminative SMT: 
 

LP1 - separating all bad translations from pseudo-  
     references; 
LP2 - separating each bad translation from the 
     pseudo-reference closest to it. 

 

Model Error (%) CPU Time (s) #Iteration 
CRF 4.58 ± 0.14 51,403 205 

MIRA 4.91 ± 0.06 9,084 46 
Perceptron 5.38 ± 0.19 26 100 
LP/Simplex 4.94 ± 0.18 3,879 23 

LP/Extragradient 4.92 ± 0.13 856 14 
HMM 20.02 ± 0.29 — — 

 LP1  LP2 
BLEU 0.323 0.324 
NIST 8.19 7.95 

MERT 
0.317 
7.94 
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More examples: parsing tree, bipartite matching, hierarchical
classification, etc
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Structured Prediction (Cont.)

Predict multi-label y = y1, y2, . . . , yl for an input object x.

Formally, given input and output space X and Y, learn a
w-parameterized function f : X × Y → R, such that the
prediction ŷ ∈ Y for an arbitrary x ∈ X is derived by:

ŷ = arg max
y∈Y

f (x, y; w)

Assume f is from the linear family, and define the joint
feature mapping Φ : X × Y → Rd . Then we have:

ŷ = arg max
y∈Y

w>Φ(x, y)

Seek the w-parameterized hyperplane separating the positive
and negative training examples S = {(xi , yi )}mi=1 with large
margin.
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Existing Techniques

Structured Perceptron [Collins, 2002]

Margin Infused Relaxed Algorithm (MIRA) [Crammer et al., 2006]

SVM-type Algorithms

Hidden Markov Support Vector Machines [Altun et al., 2003] and
extensions [Tsochantaridis et al., 2005]

Max-Margin Markov Networks [Taskar et al., 2003]

Combinatorial Models [Taskar et al., 2004,2005,2006]
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Large-Margin Separation

SVM-style formulation:

max
w,γ

γ

s.t. w>∆Φ(xi , yi , y) ≥ γ, ∀y 6= yi , i = 1, . . . ,m;

‖w‖2 = 1.

Equivalent form:

min
w

1

2
‖w‖2

2

s.t. w>∆Φ(xi , yi , y) ≥ 1, ∀y 6= yi , i = 1, . . . ,m.

where ∆Φ(xi , yi , y) = Φ(xi , yi )− Φ(xi , y).
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Large-Margin Separation (Cont.)

Soft margin:

min
w,ξ

1

2
‖w‖2

2 + C
m∑

i=1

ξi

s.t. w>∆Φ(xi , yi , y) ≥ 1− ξi , ∀y 6= yi , i = 1, . . . ,m.

ξ ≥ 0.

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 6/29



L1-Regularized Optimization

Modifying SVM formulation with L1-norm regularization:

max
w,γ

γ

s.t. w>∆Φ(xi , yi , y) ≥ γ, ∀y 6= yi , i = 1, . . . ,m;

‖w‖1 = 1; w ≥ 0.

Equivalent form:

min
w

‖w‖1

s.t. w>∆Φ(xi , yi , y) ≥ 1, ∀y 6= yi , i = 1, . . . ,m;

w ≥ 0.
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L1-Regularized Optimization (Cont.)

Soft margin:

max
w,ξ,γ

γ − D
m∑

i=1

ξi

s.t. w>∆Φ(xi , yi , y) ≥ γ − ξi , ∀y 6= yi , i = 1, . . . ,m;

‖w‖1 = 1; w ≥ 0; ξ ≥ 0.

Equivalent form:

min
w,ξ

‖w‖1 + C
m∑

i=1

ξi

s.t. w>∆Φ(xi , yi , y) ≥ 1− ξi , ∀y 6= yi , i = 1, . . . ,m;

w ≥ 0; ξ ≥ 0.

The latter is more convenient and efficient to handle in
practical computations.
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Column Generation

Algorithm 1: LP-based training with column generation
1 input: {(xi , yi )}mi=1
2 w← 1, ξ← 0,H← ( ),M← ( )
3 repeat
4 for i ← 1 to m
5 ŷ← arg maxy 6=yi

w>φ(xi , y)
6 if w>∆φ(xi , yi , ŷ) < 1− ξi
7 h← ∆φ(xi , yi , ŷ)>

8 H←
„

H
h

«
, M←

„
M
δi
∗

«
9 end if
10 end for

11 (w, ξ)←
min 1>w + C1>ξ
s.t. Hw ≥ 1−Mξ;

w ≥ 0; ξ ≥ 0.
12 until convergence
13 return w
∗ δi denotes the row vector with the ith component 1 and all the others 0.
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Extragradient Method

Let Q ⊂ Rm and S ⊂ Rn be two subsets of Euclidean space, and π(u, v)

be a real valued function, where u ∈ Q and v ∈ S. We assume that:

Q and S are closed and convex.
π(u, v) is convex on u and concave on v , differentiable and its
partial derivatives satisfy the Lipschitz condition on Q× S, i.e.
there exists a constant K ≥ 0 such that:

‖πu(u, v)− πu(u′, v′)‖2 ≤ K (‖u− u′‖2
2 + ‖v − v′‖2

2)1/2

‖πv(u, v)− πv(u′, v′)‖2 ≤ K (‖u− u′‖2
2 + ‖v − v′‖2

2)1/2

The set of saddle points U∗ × V∗ of π(u, v) on Q× S is
nonempty.
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Extragradient Method (Cont.)

The extragradient method finds saddle points of π(u, v) by the following
update rules:

ūt = PQ(ut − απu(ut , vt)) (1)

v̄t = PS(vt + απv(ut , vt))

ut+1 = PQ(ut − απu(ūt , v̄t))

vt+1 = PS(vt + απv(ūt , v̄t))

where α ≥ 0, and PQ and PS are operators projecting their argument
onto the corresponding sets.

Theorem 1.[Korpelevich, 1976] If assumptions hold and in addition
0 ≤ α ≤ 1

K
, then there exits a saddle point (u∗, v∗) ∈ U∗ × V∗ such that

(ut , vt)→ (u∗, v∗) when t →∞.
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Extragradient Method for LP

LP in standard form:

Primal: Dual:
min c>w
s.t. Hw ≥ b; w ≥ 0.

max b>u
s.t. H>u ≥ c; u ≥ 0.

Solve LP by finding the saddle point of its Lagrange function:

min
w≥0

max
u≥0
L(w,u) = c>w + b>u− u>Hw

Update rules:

w̄k = Pw≥0(wk − α(c−H>uk))

ūk = Pu≥0(uk + α(b−Hwk))

wk = Pw≥0(wk − α(c−H>ūk))

uk = Pu≥0(uk + α(b−Hw̄k))

where step size 0 < α < ‖2H‖−
1
2

F .

Converge geometrically.
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uk = Pu≥0(uk + α(b−Hw̄k))

where step size 0 < α < ‖2H‖−
1
2

F .

Converge geometrically.

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 12/29



Extragradient Method for LP

LP in standard form:

Primal: Dual:
min c>w
s.t. Hw ≥ b; w ≥ 0.

max b>u
s.t. H>u ≥ c; u ≥ 0.

Solve LP by finding the saddle point of its Lagrange function:

min
w≥0

max
u≥0
L(w,u) = c>w + b>u− u>Hw

Update rules:

w̄k = Pw≥0(wk − α(c−H>uk))
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Extragradient Method for LP (Cont.)

Apply to our problem, the Lagrange function is:

min
u=(w,ξ)

max
v=λ

π(u, v) = 1>w + C1>ξ + λ>1− λ>Mξ − λ>Hw

s.t. Q = {u = (w, ξ)|w ≥ 0, ξ ≥ 0};
S = {v = λ|λ ≥ 0}.

The corresponding update rules are:

w̄t = Pw≥0(wt − α(1−H>λt))

ξ̄
t

= Pξ≥0(ξt − α(C1−M>λt))

λ̄
t

= Pλ≥0(λt + α(1−Mξt −Hwt))

wt+1 = Pw≥0(wt − α(1−H>λ̄
t
))

ξt+1 = Pξ≥0(ξt − α(C1−M>λ̄
t
))

λt+1 = Pλ≥0(λt + α(1−Mξ̄
t −Hw̄t))
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Extragradient Method with CG

Algorithm 2: Extragradient method with column generation

1 tolerances: ε1, ε2

2 w0 ← w, ξ0 ← ξ, λ0 ← λ
3 for i ← 1 to m
4 if w>∆φ(xi , yi , ŷ) < 1− ξi
5 ξ0

i ← (1− w>∆φ(xi , yi , ŷ))

6 λ0 ←
„

λ0

0

«
7 end if
8 end for
9 iteratively update from ((w0, ξ0),λ0)

10 until ‖(wt ,ξt )−(wt−1,ξt−1)‖2
‖(wt ,ξt )‖2

< ε1 && ‖λt−λt−1‖2
‖λt‖2

< ε1

&& 0 < ‖wt‖1 + C‖ξt‖1 − ‖λt‖1 < ε2

11 w← wt , ξ ← ξt , λ← λt
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Extragradient Method with CG (Cont.)

Visualizations of the extragradient method and the CG
process:
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Extragradient method with CG
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Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE

5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training

1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test

5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU

32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1

Task: part-of-speech tagging

Features: first-order HMM features

Corpus:

6700 manually tagged sentences from MEDLINE
5700 for training
1000 for test
5 splits

Implementation: C/C++

Computing Environment:

8×3.00GHz Intel(R) Xeon(R) CPU
32GB RAM

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 16/29



Experimental Results 1 (Cont.)

Model Errall Errvoc # CPU Sec. # Iteration

HMM 20.02±0.29 14.44±0.19 – –
MIRA 4.91±0.06 1.96±0.12 9084 46

Perceptron 5.38±0.19 2.10±0.07 26 100
LP-Simplex 4.94±0.18 1.96±0.14 3879 23
LP-Xgrad 4.92±0.13 1.98±0.12 856 14

CRF 4.58±0.14 1.81±0.19 51403 205

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 17/29



Experimental Results 1 (Cont.)

Dual-Simplex vs. Extragradient
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Statistical Machine Translation

More complex situations:

Many possible translations exist for a given source sentence
Many paths in a word lattice may lead to a same translation
Correct translation may not be achieved by decoder

Possible solutions:

Taking each path y as a potential multi-label output, but not
the final translation y
Using pseudo-references (with inner alignment structures) as
positive examples
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More General Formulations

Separating negative examples from closest positive examples (I):

min
w,ξ

‖w‖1 + C
m∑

i=1

ξi

s.t. w>∆Φ(xi , arg min
y∈Yi

ϑ(y , ȳ), ȳ) ≥ 1− ξi ,

∀ȳ ∈ Y i , i = 1, . . . ,m;

w ≥ 0; ξ ≥ 0.

Separating all negative examples from all positive examples (II):

min
w,ξ

‖w‖1 + C
m∑

i=1

ξi

s.t. w>∆Φ(xi , y , ȳ) ≥ 1− ξi , ∀y ∈ Yi∀ȳ ∈ Y i i = 1, . . . ,m;

w ≥ 0; ξ ≥ 0.
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Experimental Results 2

Task: purely-discriminative training for SMT

Corpus: Canada Hansard Senate Debates corpus

Baseline system: Moses
Features:

Blanket Features Discriminative Features

distortion log-prob. 1 phrase distortions 213,191
–orientation-based ×3 –orientation-based ×3
–forward-backward ×2 –forward-backward ×2

translation log-prob. 1 phrase translations 213,191
–bidirectional ×2 –bidirectional ×2

lexicon weight 1 LM uni-grams 78,400
–bidirectional ×2 –backoff weights 78,400

tri-gram LM log-prob. 1 LM bi-grams 1,544,378
word penalty 1 –backoff weights 1,544,378
phrase penalty 1 LM tri-grams 1,593,959
distortion distance 1
Total: 14 Total: 7,925,811
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Experimental Results 2 (Cont.)

Pseudo-reference extraction:

Decode top 10,000-best lists
Keep all paths yielding translations
Filter out those with bad inner alignments (open questions)

Artificial rules
Statistically significant tests

  questions     marquées par l' astérisque .   

         questions     marked by asterisk . 
√

  questions     marquées par    l' astérisque    .      

    questions     marked     by     asterisk  . 

×
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Experimental Results 2 (Cont.)

Results with all features

LP (I) LP (II) Baseline

BLEU (%) 32.53 32.30 31.69
NIST 8.06 8.19 7.94

Effects of different features

LP (I): Blanket + DLM DTM DLM+DTM DD+DLM+DTM

BLEU (%) 33.00 31.55 32.79 32.53
NIST 8.12 7.89 8.15 8.06

LP (II): Blanket + DLM DTM DLM+DTM DD+DLM+DTM

BLEU (%) 33.80 31.47 32.87 32.30
NIST 8.11 7.80 7.98 8.19
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Approximate Large-Margin Separation

L2-regularization vs. L1-regularization:

Origin
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Unit simplex: ‖w‖1 = 1
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Generalization Bound Analysis

Proposition 1.

Suppose w parameterizes the supporting hyperplane for the
data set S . Then w parameterizes the optimal separating
hyperplane for the labeled data set,
{((xi , yi , ŷ, 1)|ŷ 6= yi}mi=1 ∪ {((xi , ŷ, yi ),−1)|ŷ 6= yi}mi=1.
Suppose w parameterizes the optimal separating hyperplane
passing through the origin for a labeled data set,
{((xi , y, ŷ), zi )|zi ∈ {−1,+1}, i = 1, . . . ,m}, aligned such that
y = yi , ŷ 6= yi for zi = 1, and y 6= yi , ŷ = yi for zi = −1. Then
w parameterizes the supporting hyperplane for the unlabeled
data set, {(xi , yi , ŷ)|ŷ 6= yi}mi=1.

Definition 1. Define the auxiliary inner product space:

L(X ) =

8<:f ∈ RX : supp(f ) is countable and
X

z∈supp(f )

f (z)2 <∞

9=; ,

in which the inner product is given by 〈f , g〉 =
P

z∈supp(f ) f (z)g(z).
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Definition 1. Define the auxiliary inner product space:

L(X ) =

8<:f ∈ RX : supp(f ) is countable and
X

z∈supp(f )

f (z)2 <∞

9=; ,

in which the inner product is given by 〈f , g〉 =
P

z∈supp(f ) f (z)g(z).

May 13, 2009 L1-Regularized Structured Prediction Z. Wang, J. Shawe-Taylor, S. Szedmák, 25/29



Generalization Bound Analysis

Proposition 1.

Suppose w parameterizes the supporting hyperplane for the
data set S . Then w parameterizes the optimal separating
hyperplane for the labeled data set,
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Generalization Bound Analysis (Cont.)

Embed our input spaceinto space X × L(X ) using the mapping
τ : (x, y, ŷ) 7→ ((x, y), 1

C
δx̂) where C > 0 is a constant, and δx̂ ∈ L(X ) is defined

to be:

δx̂(x, y, ŷ) =


1 if x = x̂;
0 otherwise.

For a function (f , g) ∈ F × L(X ), define its action on τ(x, y, ŷ) ∈ X × L(X ) as:

(f , g)(τ(x, y, ŷ)) = f (x, y, ŷ) +
1

C
〈g , δx〉.

For a fixed margin γ, the slack variables ξi in our LP problems can be derived
from ξi = max(0, γ − inf ŷ 6=yi

f (xi , yi , ŷ)).

Define gf = g(S, f , γ) ∈ L(X̂ ) to be gf = C
Pm

i=1 ξiδxi . It easy to check:

(f , g)(τ(x, y, ŷ)) =


f (x, y, ŷ) + ξx ≥ γ ∀ (x, y, ŷ) ∈ S ;
f (x, y, ŷ) ∀ (x, y, ŷ) 6∈ S .
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Define gf = g(S, f , γ) ∈ L(X̂ ) to be gf = C
Pm

i=1 ξiδxi . It easy to check:

(f , g)(τ(x, y, ŷ)) =
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Generalization Bound Analysis (Cont.)

Theorem 2. [Cristianini and Shawe-Taylor, 2000] Consider thresholding a
real-valued function space F and fixed γ ∈ R+. For any probability distribution
D on X , with probability 1− η over the training set S , any function f ∈ F for
which (f , gf ) ∈ G = F × L(X ) has generalization error no more than

errD(f ) ≤ ε(|S |,F , η, γ) =
2

|S|

„
log2N (G, 2|S |,

γ

2
) + log2

2

η

«
.

provided |S | > 2
ε

, and there is no discrete probability on misclassified training
points.

Based on our definition F(X ) = {f = 〈w,∆Φ(X )〉 |w ∈ Rd+} with respect to a
given projection ∆Φ : X → Rd , the L1-norm of (f , gf ) is then given by:

‖(f , gf )‖1 = ‖w‖1 + C
mX

i=1

ξi .

Corollary 3. (Zhang, 2002) If max{‖∆Φ(X )‖∞, 1
C
} ≤ b and

‖w‖1 + C
Pm

i=1 ξi ≤ c, for the function class G = F × L(X ) defined above, we
have that

log2N (G, n, γ) ≤
36c2b2(2 + ln(d + m))

γ2
log2

„
2

‰
4cb

γ
+ 2

ı
n + 1

«
.
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Conclusion

Advantages:

Accepting arbitrary structures
More efficient than QP-based methods
More accurate than perceptron
Nice generalization properties

Drawbacks:

Sensitive to pseudo-references in the SMT case
Force the solution to be too sparse sometimes

ANSI C code for extragradient LP solver is available at:
http://www.cs.ucl.ac.uk/staff/z.wang/

For reference, see:
Z. Wang & J. Shawe-Taylor (2009). Large-Margin Structured
Prediction via Linear Programming. In AISTATS 2009. USA.
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Thank you!
Questions?
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